
z/OS Communications Server

IP Configuration Guide
Version 1 Release 4

SC31-8775-02

���

z/OS Communications Server

IP Configuration Guide
Version 1 Release 4

SC31-8775-02

���

Note:
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 813.

Third Edition (September 2002)

This edition applies to Version 1 Release 4 of z/OS (5694-A01) and Version 1 Release 4 of z/OS.e (5655-G52) and
to all subsequent releases and modifications until otherwise indicated in new editions.

Publications are not stocked at the address given below. If you want more IBM® publications, ask your IBM
representative or write to the IBM branch office serving your locality.

A form for your comments is provided at the back of this document. If the form has been removed, you may address
comments to:

IBM Corporation
Software Reengineering
Department G7IA/ Bldg 503
Research Triangle Park, NC 27709-9990
U.S.A.

If you prefer to send comments electronically, use one of the following methods:

Fax (USA and Canada):
1-800-254-0206

Internet e-mail:
usib2hpd@vnet.ibm.com

World Wide Web:
http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

IBMLink™:
CIBMORCF at RALVM17

IBM Mail Exchange:
tkinlaw@us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www-1.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . xv

Tables . xix

About this document . xxi
Who should use this document xxi
Where to find more information xxi

Where to find related information on the Internet xxi
Accessing z/OS licensed documents on the Internet xxii
Using LookAt to look up message explanations xxiii
How to contact IBM service xxiii
z/OS Communications Server information xxiii

Summary of changes . xxxi

Part 1. Base TCP/IP system . 1

Chapter 1. Configuration overview 3
z/OS TCP/IP stack function support 3
z/OS msys for Setup and Wizard. 6

Wizard . 6
z/OS msys for Setup . 7

z/OS UNIX System Services (z/OS UNIX) concepts 10
Overview of data sets and HFS files 11

Hierarchical File System concepts 11
Understanding resolvers . 12

Setting up a resolver address space 14
Resolver customization . 15
Managing the resolver address space 18

Understanding search orders of configuration information 18
Configuration data set naming conventions 19

Configuration files for the TCP/IP stack 25
PROFILE.TCPIP search order 25
TCPIP.DATA search order . 26

Configuration files for TCP/IP applications 26
Resolver configuration files 27

MVS-related considerations . 37
MVS system symbols . 37
Automatic restart manager (ARM) 38
Logging of system messages 39
Accounting - SMF records . 40
Security considerations . 44

UNIX System Services security considerations 45
Requirement for an OMVS segment 45
Authorization of TCP/IP started task user ID 47
Other user IDs requiring z/OS UNIX superuser authority. 48
BPX.DAEMON facility class 48
Program control . 49

Defining TCP/IP as a UNIX System Services physical file system (PFS) 50
References . 52

Performance considerations . 52
Fast path support . 52
Considerations for multiple instances of TCP/IP 54

© Copyright IBM Corp. 2000, 2002 iii

||

||
||

||

Common INET physical file system (CINET PFS) 54
Port management overview 55
Selecting a stack when running multiple instances of TCP/IP 60
Specifying BPXPRMxx values for a CINET configuration 64

Considerations for Enterprise Extender 65
Considerations for VIPA . 65
Required steps before starting TCP/IP 67

Planning your installation and migration 67
Step 1: Install z/OS CS . 68
Verifying the initial installation 68
Step 2: Customize z/OS CS 69
Step 3: Configure VMCF and TNF 72
Step 4: Update the VTAM application definitions 75
Step 5: Verify that the resolver address space is active 76
Step 6: Start the TCP/IP address space. 76
Step 7: Set up cataloged procedures and configuration data sets 76
Step 8: Customize TCP/IP messages 76

Chapter 2. Security . 79
System resource protection . 79

Application security . 79
TCP/IP resource protection 81

Protecting data in the network 87
Network security principals 87
Network security protocols. 89

Security Event Reporting . 99
Integrated Intrusion Detection Services (IDS) 99

Chapter 3. Customization . 101
Configuring the syslog daemon (syslogd) 101

Configuration statements . 101
Starting and stopping syslogd 105
Offloading log files . 106
Using syslogd for z/OS UNIX application programs 107
Usage notes . 108
Diagnosing syslogd configuration problems 108

Configuring TCPIP.DATA . 109
Use of TCPIP.DATA and /etc/resolv.conf 109
Creating TCPIP.DATA . 109
TCPIP.DATA statements . 110

Configuring PROFILE.TCPIP 110
Changing configuration information 111
Setting up TCP/IP operating characteristics in PROFILE.TCPIP 112
Setting up physical characteristics in PROFILE.TCPIP 115
Setting up reserved port number definitions in PROFILE.TCPIP 139
Setting up SAF Server Access Authorization (SERVAUTH) (optional) . . . 143

Configuring the local host table (optional). 143
Why configure a local host table? 143
Creating HOSTS.LOCAL site host table 144
Creating /etc/hosts . 146
Creating ETC.IPNODES and /etc/ipnodes 146

Verifying your configuration . 148
Verify TCPIP.DATA and TCPIPJOBNAME. 148
Verify /etc/resolv.conf . 148
Verifying PROFILE.TCPIP with netstat or onetstat 149
Verifying interfaces with PING and TRACERTE 151

iv z/OS V1R4.0 CS: IP Configuration Guide

||

||
||

Verifying local name resolution with TESTSITE 152
Verifying PROFILE.TCPIP and TCPIP.DATA using HOMETEST 152
Verifying your X Windows System installation (Optional) 153

Chapter 4. Routing . 155
Routing terminology . 155

General terms. 155
Interior Gateway Protocols (IGP) 156

Static versus dynamic routing 157
The sample network . 157

IPv4 static routing . 158
Using static routing with OMPROUTE 160

IPv6 static routing . 161
Using static routing with router advertisements 162

Static routing configuration examples 162
z/OS TCPCS4. 162
z/OS TCPCS7. 163

IPv4 dynamic routing . 165
Routing daemons . 165
Migration from OROUTED to OMPROUTE 165
Dynamic routing using OMPROUTE 166
Configuring OSPF and RIP 179

IPv6 dynamic routing . 205
Verification of routing (Static and dynamic) 205

Verifying connections with NETSTAT, PING, and TRACERTE 206

Chapter 5. Virtual IP Addressing 209
Terminology . 209
Introduction to VIPA . 209
Moving a VIPA (For TCP/IP outage) 211
Static VIPAs, Dynamic VIPAs (DVIPAs), Distributed DVIPAs 212
Using static VIPAs . 213

Configuring static VIPAs for a z/OS TCP/IP stack 213
Configuring static VIPAs for Enterprise Extender 214
Considerations when using static VIPAs with IPv6 215
Planning for static VIPA Takeover and Takeback 215

Using Dynamic VIPAs (DVIPAs) 215
Configuring Dynamic VIPA (DVIPA) support 215
Planning for Dynamic VIPA Takeover 216
Different application uses of IP addresses and DVIPAs. 218
Configuring Dynamic VIPAs 218
Configuring the Multiple Application-Instance Scenario 219
Configuring the Unique Application-Instance Scenario 219

Choosing which form of Dynamic VIPA support to use 223
Configuring Distributed DVIPAs — Sysplex Distributor 224

Sysplex wide source VIPA 226
Sysplex Wide Security Associations 228

Resolution of Dynamic VIPA conflicts 232
Restart of the original VIPADEFINE TCP/IP after an outage 232
Movement of unique application-instance (BIND) 234
Movement of a unique APF-authorized application instance (ioctl). 235
Same Dynamic VIPA as VIPADEFINE and BIND(), SIOCSVIPA ioctl, or

MODDVIPA utility. 235
Dynamic VIPA creation results 236

Other considerations . 239
Mixture of types of Dynamic VIPAs within subnets 239

Contents v

||
||

||

||

||
||

MVS failure and Sysplex Failure Management 239
Applications and Dynamic VIPAs 239
Example of configuring Dynamic and Distributed VIPAs 240
Verifying the DVIPAs in a sysplex 241
Using NETSTAT support to verify Dynamic VIPA configuration 244
Verifying Sysplex Distributor workload 246

Dynamic VIPAs and routing protocols 247
OMPROUTE . 247
RIP (Routing Information Protocol) 249

Chapter 6. TCP/IP in a sysplex 251
Connectivity in a sysplex . 252

Dynamic XCF . 252
Workload balancing. 260

Single systemwide image 260
Horizontal growth . 260
Ease of management . 260
DNS/WLM . 261
External IP workload balancing 261
Sysplex Distributor . 261

Part 2. Server applications . 267

Chapter 7. Network connectivity with an SNA network 269
SNALINK LU0 environment . 269

Understanding the SNALINK environment 269
Configuring SNALINK LU0 270
Stopping and starting SNALINK 273
Verifying connection status using NETSTAT DEVLINKS 275
Controlling the SNALINK LU0 interface with the MODIFY command 275

SNALINK LU6.2 . 276
Configuring SNALINK LU6.2 276
Sample console . 278

X.25 NCP Packet Switching Interface (NPSI) 278
Configuring X.25 NPSI . 279

NCPROUTE . 285
Understanding the NCPROUTE environment 286
Configuring NCPROUTE . 290

Chapter 8. Accessing remote hosts using Telnet 305
TN3270 Telnet server . 305

Getting started . 306
Managing the Telnet server 309
Connection mode choices 314
Connection security. 319
Mapping Objects to Client Identifiers 325
Mapping methods . 335
Advanced LU mapping topics 344
Advanced application topics 354
Device types and logmode considerations 361
Using the Telnet Solicitor or USS logon panel 362
Timers . 366
Telnet diagnostics . 367
WorkLoad Manager for Telnet (WLM) 372

Configuring the z/OS UNIX Telnet server (otelnetd) 374
Installation information. 374

vi z/OS V1R4.0 CS: IP Configuration Guide

Starting, stopping, and administration of z/OS UNIX Telnet 375
otelnetd . 378
SMF record handling . 381
BPX.DAEMON considerations 381
Kerberos. 381

Chapter 9. Transferring files using FTP 383
Configuring PROFILE.TCPIP for FTP 384
Configuring ETC.SERVICES 385
Configuring /etc/syslog.conf . 385
Configuring the FTPD cataloged procedure 385

Security considerations for the FTP server 386
Defining environment variables for the FTP server (optional). 388

Configuring TCPIP.DATA for FTP 389
Configuring FTP.DATA. 389

Optionally configuring user-level server options using FTPS.RC 390
Data set attributes . 390
Specifying attributes for new MVS data sets. 391
Translation of data . 393

Accounting . 393
Configure the FTP server for SMF (optional) 393

Customizing the FTP server for TLS 394
Customizing the FTP server for the GSSAPI 395
DB2® and JES . 396
Configuring the optional FTP user exits 396

The FTPSMFEX user exit 396
The FTCHKIP user exit . 396
The FTCHKPWD user exit 397
The FTCHKCMD user exit 397
The FTCHKJES user exit 398
The FTPOSTPR user exit 398

Customizing the FTP-to-JES interface for JESINTERFACELevel 2 (optional) 399
Configuring the FTP server for anonymous logins (optional) 400

Creating an anonymous directory structure in the HFS 402
Configure the Welcome Banner Page, Login, and Directory Message (optional) 405

Using magic cookies to represent information 405
Configuring to send detailed login failure replies to an FTP client (optional) 406
Install the SQL query function (optional) and access the DB2 modules 406

Accessing DB2 modules . 408
FTP.DATA updates for SQL query function 408

Trivial File Transfer Protocol (TFTP). 408
Considerations for z/OS . 408

Verification of FTP . 410
Verify server . 410
Verify client . 411
Verify FTP.DATA statements 412
Verifying anonymous, banner, and other optional configuration information 414
Verify FTP-JES interface (optional) 414

Chapter 10. Domain Name System (DNS) 417
DNS and BIND overview . 417

Domain names . 418
Domain name servers . 419
Resolvers . 422
Recommended reading . 424

Migrating to BIND 9. 424

Contents vii

||

||

||

Performance issues. 424
Compatibility considerations. 425

Zone transfers . 425
Queries . 425
Dynamic update . 426
DNSSEC . 426
TSIG . 426
DNS/WLM (Sysplex connection balancing) 426
IPv6 support . 426
Stack affinity . 426
NOTIFY . 426

Running the name server in BIND 9 and BIND 4.9.3 mode simultaneously 426
Setting up and running the name server 427

Configuring a master (primary) name server. 427
Configuring a slave name server 450
Configuring a cache-only name server 453
Configuring a stealth name server 456
Adding forwarding to your name server 456
Configuring host resolvers: Name server considerations 457
Configuring host resolvers: onslookup considerations 457
Creating the syslog file . 458
BIND 9 security considerations 458
Special considerations when using Dynamic VIPA 462
Dynamic primary DNS movement using Dynamic VIPA. 462

Querying name servers . 463
nslookup command . 463

Diagnosing problems . 466
Checking messages sent to the operators console 467
Checking the syslog messages 467
Using name server signals to diagnose BIND 4.9.3 DNS problems 467
Using name server signals to diagnose BIND 9 DNS problems. 467
Using rndc to diagnose BIND 9 problems. 468
Checking name server logging files to diagnose BIND 9 468
Using nslookup to diagnose problems 468
Using dig to diagnose problems 469

Advanced BIND 9 name server topics 469
Multiple TCP/IP stack (common INET) considerations 469
Dynamic update . 470
Incremental zone transfers (IXFR) 470
Split DNS . 471
TSIG . 475
DNSSEC . 476
IPv6 support in BIND 9 . 479

Advanced BIND 4.9.3–Name server topics 482
Connection optimization in a sysplex domain 482
Dynamic IP . 496

DNS-related RFCs . 535
Proposed standards . 535
Proposed standards still under development 535
Other important RFCs about DNS implementation 536
Resource record types . 536
DNS and the Internet . 536
DNS operations . 536
Other DNS-related RFCs. 536

Chapter 11. Policy-Based Networking 539

viii z/OS V1R4.0 CS: IP Configuration Guide

||

||

The role of policy . 539
Policy components overview 539

Policy Agent . 539
RSVP Agent . 540
SNMP SLA subagent . 540
Intrusion Detection Services 540
Policy sample files . 541

Policy object model overview 543
What kind of policy do you want? 546

QoS policy . 546
IDS policy . 547

Where do you want to define your policies? 547
LDAP server . 548

Overview of the object classes 548
Considerations for defining LDAP objects. 554
Policy Agent retrieval of LDAP objects 554
Installing the schema definition on the LDAP server 555
Using the sample LDAP objects 556

Policy Agent common functions 557
Configuring the Policy Agent 557
Starting and stopping the Policy Agent 562
Refreshing policies . 563

Verification . 563
Are the policies defined correctly to the LDAP server? 563
Are the policies defined correctly to the Policy Agent? 563

Chapter 12. Quality of Service (QoS) 565
Differentiated Services (DS) policies 565
Integrated Services (RSVP) policies. 567
Sysplex Distributor (SD) policies 567
QoS specific Policy Agent functions 567

Sysplex distributor policy performance monitoring configuration 568
Type of Service (ToS) mapping configuration 569

Defining policies in a Policy Agent configuration file 570
Differentiated Services policy examples 571
RSVP policy example . 572
Sysplex Distributor policy example 573

Defining policies using LDAP 574
Differentiated Services policy example 574
RSVP policy example . 579
Sysplex Distributor routing policy example 580

RSVP . 583
Configuring the RSVP agent 584
Starting and stopping RSVP 584

Service Level Agreement Performance Monitor MIB subagent 585
Starting and stopping the SLA subagent 585

Verification . 586
Are the policies installed in the TCP/IP stacks? 586
Is the expected traffic mapping to the correct QoS policies? 586
Are the Sysplex Distributor policy functions working correctly? 587
Does anything need to be tuned? 587
Using PASEARCH . 587
Using the SLA subagent to monitor policies 588

Chapter 13. Intrusion Detection Services (IDS). 595
Scan policies . 598

Contents ix

||

Attack policies. 598
Traffic Regulation (TR) policies 601

TR TCP . 601
TR UDP . 602

Defining TR TCP policies using the Policy Agent 603
Defining IDS policies using LDAP 603

IDS policy definition considerations 603
IDS scan policy example . 605
IDS attack policy examples 608
Traffic Regulation (TR) policy examples 615

Verification . 619
Are the correct policies active? 619
Is the expected traffic mapping to the correct policies? 619
Are the IDS policy functions working correctly? 619

TRMD. 620
Running TRMD as a started task 620
Running TRMD from the z/OS UNIX shell 620
Stopping TRMD . 621
TRMDSTAT. 621

Chapter 14. Network management 623
Overview of SNMP . 623

Overview of z/OS CS SNMP version 3. 624
Processing an SNMP request 624
Deciding on SNMP security needs 625
Step 1: Configure the SNMP agent (OSNMPD) 627

Provide TCP/IP profile statements 627
Provide community-based security and notification destination information 629
Provide community-based and user-based security and notification

destination information . 631
Provide security product access to agent from subagents 634
Provide MIB object configuration information 634
Start the SNMP agent (OSNMPD) 635
Sample JCL procedure for starting OSNMPD from MVS 636
Starting OSNMPD from z/OS UNIX 636

Step 2: Configure the SNMP commands 636
Configure the NetView SNMP (SNMP) command 637
Configure the z/OS UNIX SNMP (osnmp) command. 640

Step 3: Configure the SNMP subagents 642
Step 4: Configure the Open Systems Adapter (OSA) support 642

OSA/SF prerequisites . 644
Required TCP/IP profile statements 645
Multiple TCP/IP instances considerations 645

Step 5: Configure the trap forwarder daemon 646
Provide PROFILE.TCPIP statements 647
Provide trap forwarder configuration information 647
Starting and stopping the trap forwarder daemon 647

Chapter 15. Remote Print Server (LPD). 649
Configuring the Remote Print Server 649

Step 1: Configuring PROFILE.TCPIP for LPD 649
Step 2: Updating the LPD server cataloged procedure 650
Step 3: Updating the LPD server configuration data set 651
Step 4: Creating a banner page (optional) 651

Chapter 16. Remote procedure calls. 653

x z/OS V1R4.0 CS: IP Configuration Guide

||
||

Configuring the PORTMAP address space 653
Step 1: Configuring PROFILE.TCPIP for PORTMAP. 653
Step 2: Updating the PORTMAP cataloged procedure 654
Step 3: Defining the data set for well-known procedure names 654
Starting the PORTMAP address space. 656

Configuring the z/OS UNIX PORTMAP address space 656
Step 1: Configuring PROFILE.TCPIP for UNIX PORTMAP 656
Step 2: Updating the PORTMAP cataloged procedure 657
Starting the PORTMAP address space. 657

Configuring the NCS interface 657
Understanding the LLBD server 658
Understanding the NRGLBD server 658
Step 1: Configuring PROFILE.TCPIP for NCS 658
Step 2: Updating the NRGLBD cataloged procedure. 659
Step 3: Updating the LLBD cataloged procedure 659

Configuring the Network Database (NDB) System 659
Step 1: Updating the NDB setup sample job 660
Step 2: Running the NDB setup job 660
Step 3: Updating and installing the DB2 sample connection exit routine 660
Step 4: Updating the PORTS cataloged procedure 662
Step 5: Updating the PORTC cataloged procedure 662
Step 6: Creating the NDB clients 662
Starting NDB . 668

Chapter 17. Mail servers . 669
Configuring the SMTP server 669

Checklist for working within the SMTP environment 669
Configuration process . 670

Configuring z/OS UNIX sendmail and popper 689
Overview . 689
Configuring z/OS UNIX sendmail 691
sendmail as a daemon . 696
Configuring popper . 696

Chapter 18. TIMED daemon 699
Starting TIMED from z/OS shell 699
Starting TIMED as a procedure 699

Chapter 19. SNTPD daemon 701
Steps for starting SNTPD from the z/OS shell 701
Steps for starting SNTPD as a procedure. 702
Stack affinity . 703

Chapter 20. Remote Execution 705
UNIX REXEC . 705
TSO REXEC . 705
Configuring the TSO Remote Execution server. 705

Step 1: Configuring PROFILE.TCPIP for TSO Remote Execution server 705
Step 2: Determine whether Remote Execution client will send REXEC or

RSH commands . 706
Step 3: Permit remote users to access MVS resources (optional) 706
Step 4: Update the TSO Remote Execution cataloged procedure 707
Step 5: Create a user exit routine (optional) 707

Configuring the z/OS UNIX Remote Execution servers 708
Installation information. 708

Contents xi

||
||
||
||

Configuring TSO and z/OS UNIX Remote Execution servers to use the same
port . 710

Chapter 21. Miscellaneous (MISC) server 713
Discard protocol . 713
Echo protocol . 713
Character generator protocol 713
Configuring the MISC server 714

Step 1: Configuring PROFILE.TCPIP for the MISC server. 714
Step 2: Updating the MISC server cataloged procedure (MISCSERV) . . . 715

Part 3. Appendixes . 717

Appendix A. Setting up the inetd configuration file 719

Appendix B. TLS/SSL security 721
Secure Socket Layer overview. 721

Server authentication . 722
Client authentication . 724
Encryption algorithms . 724

Creating and managing keys and certificates at the server 726
Overview . 726
Using the gskkyman utility 728
Using RACF’s common keyring support 734
Migrating an existing gskkyman key database to RACF 739

Creating and managing keys and certificates at the client 740
Create a self-signed client certificate 740
Add server certificates to the client keyring 744

Appendix C. Express Logon Feature (ELF) 749
Configuring RACF services for Express Logon 750
Configuring the Express Logon components. 751

Configuring the HOD V5 TN3270 client 751
Configuring the z/OS TN3270 server 752
Configuring the middle-tier TN3270 server (CS/2 example) 752
Configuring the Digital Certificate Access Server (DCAS) 752

Appendix D. Using HCD . 757

Appendix E. Configuring the OROUTED server 769
Understanding OROUTED . 769

Routing Information Protocol (RIP) 770
RIP Version 2 . 771
OROUTED miscellaneous features 771

RIP input/output filters . 772
RIP routes . 772
OROUTED gateways . 773

Passive RIP routes . 773
External RIP routes . 773
Active gateways . 773

OROUTED gateways summary 774
OROUTED configuration process. 774
Step 1: Configure the OROUTED profile 774
Step 2: Update configuration statements in PROFILE.TCPIP 777
Step 3: Update the resolver configuration file 778
Step 4: Update the OROUTED cataloged procedure (optional) 779

xii z/OS V1R4.0 CS: IP Configuration Guide

|
||

OROUTED cataloged procedure 779
Step 5: Specify the OROUTED port number in the SERVICES file 779
Step 6: Configure the gateways file or data set (optional) 779

Syntax rules . 780
Step 7: Configure and start syslogd 785
Step 8: RACF-authorize user IDs. 785
OROUTED parameters . 786
Specifying parameters. 788
Starting OROUTED. 788
Configuration examples . 789

Configuring a passive route 789
Configuring an external route 790
Configuring an active gateway 791
Configuring a point-to-point link 792
Configuring a default route 792
Configuring ORouteD with Enterprise Extender 792
Configuring OROUTED with VIPA 793
Configuring OROUTED to split traffic with VIPA 793
Configuring OROUTED with OSA-Express in QDIO mode 795
Configuring OROUTED with HiperSockets 796

Appendix F. Related protocol specifications (RFCs). 797
Draft RFCs . 804

Appendix G. Information APARs 807
Information APARs for IP documents 807
Information APARs for SNA documents 808
Other information APARs. 808

Appendix H. Accessibility . 811
Using assistive technologies 811
Keyboard navigation of the user interface. 811

Notices . 813
Trademarks. 816

Index . 819

Communicating Your Comments to IBM 833

Contents xiii

||
||

||

||

xiv z/OS V1R4.0 CS: IP Configuration Guide

Figures

1. Resolver related configuration files in z/OS UNIX and native MVS environments 27
2. syslogd operation . 39
3. Generic server. 56
4. Server with affinity for a specific transport provider 57
5. Example of binding an application to a specific transport provider 57
6. REXX program to switch TSO user to another TCP/IP stack 63
7. SYS1.PARMLIB(BPXPRMxx) for CINET . 64
8. Syntax for TCP/IP message IDs . 77
9. Elements of a secure TCP/IP deployment. 79

10. User identification, authentication, and access control for z/OS Communications Server
applications . 80

11. Stack Access Control overview. 82
12. Port Access Control overview . 83
13. Network Access Control example . 85
14. IP filtering at the z/OS communication endpoint 87
15. Security protocols from a protocol layering perspective 88
16. e-business scenarios with Virtual Private Networks 89
17. IPSec AH protocol header formats and security coverage 90
18. IPSec ESP protocol header formats and security coverage 91
19. IPSec and IKE overview . 92
20. TN3270 SSL overview . 94
21. Using multiple TN3270 ports to separate SSL and non-SSL traffic 95
22. Combining TN3270 SSL with IPSec client-to-firewall authentication 95
23. TN3270 SSL and non-SSL traffic using a single TN3270 port 96
24. FTP client and server TLS overview . 97
25. Intrusion Detection Services overview. 100
26. Example of TCP/IP operating characteristics in PROFILE.TCPIP 112
27. Example of physical characteristics in PROFILE.TCPIP 115
28. HiperSockets Virtual LAN . 130
29. HiperSockets multiple LANs . 131
30. Candidate configuration for HiperSockets Accelerator 135
31. HiperSockets Accelerator configuration . 136
32. Example of reserved port number definitions . 139
33. Sample network. 158
34. Static VIPA configuration . 214
35. Sample DVIPA addressing in a sysplex environment 217
36. DVIPA takeover with SWSA . 230
37. Sysplex Distributor with SWSA . 231
38. SNALINK environment interfaces . 270
39. SNA DLC link . 271
40. APPL statement for SNALINK . 273
41. SNALINK console example . 274
42. APPL statement for SNALINK LU6.2 . 277
43. Sample MVS system console messages on SNALINK LU6.2 address space startup 278
44. NCPROUTE environment . 286
45. NCPROUTE example configuration . 291
46. NCPROUTE data sets relationship . 300
47. NCPROUTE configuration example of a passive route 301
48. Configuring an active gateway . 302
49. Telnet connectivity . 305
50. Telnet parameter placement . 308
51. Telnet profiles and connections . 313
52. Port 1023 connection characteristics . 324

© Copyright IBM Corp. 2000, 2002 xv

||

||
||

53. Mapping model . 325
54. Search method . 333
55. Session initiation failures scenarios . 355
56. Session ending scenarios . 356
57. Hierarchical naming tree . 419
58. Name resolution to a sysplex . 484
59. Address association with mvsplex.mycorp.com 486
60. Address association with myserver . 487
61. Policy components in z/OS CS . 541
62. Basic policy objects . 543
63. Complex policy conditions . 544
64. Rule-specific conditions and actions . 545
65. Reusable conditions and actions . 545
66. Policy groups. 546
67. LDAP schema object class hierarchy . 551
68. Overview of SNMP support . 624
69. Configuration files for SNMP agent . 627
70. Configuration files for NetView SNMP. 637
71. Configuration files for osnmp . 640
72. Subagent connection to OSA/SF . 646
73. Sender MUA transmits the message to sendmail 689
74. sendmail transmits the message to an intermediate SMTP server 690
75. A sendmail daemon receives the message from an SMTP client 690
76. sendmail delivers the message to the local recipient 690
77. Receiver’s MUA has direct access to the mail spool file 691
78. Receiver’s MUA retrieves the message over a POP3 connection with a popper daemon 691
79. Adding applications to /etc/inetd.conf . 719
80. Setting traces in /etc/inetd.conf . 719
81. IBM Keys Management . 741
82. Create New Self-Signed Certificate. 741
83. IBM Key Management . 742
84. Export/Import Key . 742
85. Extract Certificate to a File . 743
86. HOD connection using a client certificate . 743
87. HOD security properties . 744
88. Security Information . 745
89. Extract a Certificate . 745
90. Certificate was extracted . 745
91. Creating a new CustomizedCAs.class. 746
92. Default location displayed . 746
93. Add CA’s Certificate From a File . 746
94. Add CA’s Certificate From a File — continued 747
95. Express Logon network . 749
96. Select processors . 757
97. Work with attached channel paths . 757
98. Initiate the Define Channel Path dialog . 758
99. Add channel path . 758

100. Specify Maximum Frame Size . 759
101. Define the channel path access list . 760
102. Channel path number FF defined . 760
103. Work with attached control units . 761
104. Add the control unit(s) . 761
105. Define a control unit . 762
106. Define it to the processor . 762
107. Currently defined control unit . 763
108. Define the devices . 763

xvi z/OS V1R4.0 CS: IP Configuration Guide

||

109. Empty device list . 764
110. Define the devices for the control unit. 764
111. Add devices of type IQD . 765
112. Define number of devices . 765
113. Define device to operating system . 766
114. Select systems . 766
115. Complete the definition . 767
116. Definition completed . 767
117. Sample OROUTED configuration file . 777
118. Sample portion of services file . 779
119. Example commands to start multiple copies of OROUTED 789
120. OROUTED configuration example . 790
121. Configuring an active gateway . 791
122. Single VIPA configuration . 794
123. Multiple VIPA configuration . 795

Figures xvii

xviii z/OS V1R4.0 CS: IP Configuration Guide

Tables

1. z/OS TCP/IP stack function support . 3
2. TCP/IP configuration data sets . 21
3. Local definitions available to resolver . 27
4. syslogd facilities . 40
5. Setting up default of OMVS segment . 46
6. BPX.DAEMON . 48
7. Program control . 49
8. How your own socket programs select a stack . 61
9. Interior Gateway Protocol characteristics . 156

10. Multipath route limitations . 171
11. Route precedence . 192
12. Summary of Dynamic VIPA creation results . 236
13. RIP route advertising rules . 288
14. NCPROUTE gateways summary . 290
15. Client 1 example . 333
16. Client 2 example . 334
17. Client 3 example . 335
18. PORTCOMMAND scenarios . 387
19. Settings that affect nslookup operation . 465
20. DHCP server configuration . 497
21. Monitor control and monitor status object bit values 591
22. Security advantages and disadvantages . 626
23. Summary of SMTP configuration statements . 682
24. Required and recommended m4 items . 693
25. Sendmail permission table . 695
26. Frame size specification. 759
27. OROUTED gateways summary . 774
28. ORouteD parameters . 788
29. IP information APARs. 807
30. SNA information APARs . 808
31. Non-document information APARs . 809

© Copyright IBM Corp. 2000, 2002 xix

||

||

||
||
||

xx z/OS V1R4.0 CS: IP Configuration Guide

About this document

This document contains guidance material to enable you to configure IP address
spaces, servers, and applications for z/OS™ Communications Server. This volume
is part of a two-volume set:

v z/OS Communications Server: IP Configuration Guide, which contains concepts
and guidance, explaining an overall approach to IP configuration.

v z/OS Communications Server: IP Configuration Reference, which describes
parameters and options, and syntax of statements.

The information in this document supports both IPv6 and IPv4. Unless explicitly
noted, information describes IPv4 networking protocol. IPv6 support is qualified
within the text.

For detailed information about configuration-related data sets and statements, refer
to z/OS Communications Server: IP Configuration Reference.

For detailed information about commands used during configuration, refer to z/OS
Communications Server: IP System Administrator’s Commands.

This document supports z/OS.e™.

Who should use this document
This document is intended for programmers and system administrators who are
familiar with TCP/IP, MVS™, z/OS UNIX®, and the Time Sharing Option Extensions
(TSO/E).

Where to find more information
This section contains:

v Pointers to information available on the Internet

v Information about licensed documentation

v Information about LookAt, the online message tool

v A set of tables that describes the documents in the z/OS Communications Server
(z/OS CS) library, along with related publications

Where to find related information on the Internet
z/OS

– http://www.ibm.com/servers/eserver/zseries/zos/

z/OS Internet Library

– http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

IBM Communications Server product

– http://www.software.ibm.com/network/commserver/

IBM Communications Server product support

– http://www.software.ibm.com/network/commserver/support/

IBM Systems Center publications

– http://www.redbooks.ibm.com/

IBM Systems Center flashes

– http://www-1.ibm.com/support/techdocs/atsmastr.nsf

© Copyright IBM Corp. 2000, 2002 xxi

http://www.ibm.com/servers/eserver/zseries/zos/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs

RFCs

– http://www.ietf.org/rfc.html

RFC drafts

– http://www.ietf.org/ID.html

Information about Web addresses can also be found in information APAR II11334.

DNS web sites
For more information about DNS, see the following USENET news groups and
mailing:

USENET news groups:
comp.protocols.dns.bind

For BIND mailing lists, see:

v http://www.isc.org/ml-archives/

– BIND Users

- Subscribe by sending mail to bind-users-request@isc.org.

- Submit questions or answers to this forum by sending mail to
bind-users@isc.org.

– BIND 9 Users (Note: This list may not be maintained indefinitely.)

- Subscribe by sending mail to bind9-users-request@isc.org.

- Submit questions or answers to this forum by sending mail to
bind9-users@isc.org.

For definitions of the terms and abbreviations used in this document, you can view
or download the latest IBM Glossary of Computing Terms at the following Web
address:

http://www.ibm.com/ibm/terminology

Note: Any pointers in this publication to Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites.

Accessing z/OS licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code.

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

xxii z/OS V1R4.0 CS: IP Configuration Guide

|

|

|

|

|
|

|
|

|

|

|

|

|
|

|

|

|
|

http://www.rfc-editor.org/rfc.html
http://www.ietf.org/ID.html
http://www.ibm.com/ibm/terminology
www.ibm.com/servers/resourcelink
www.ibm.com/servers/resourcelink

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/OS
Collection (SK3T-4269) or from the News section on the LookAt Web site.

Some messages have information in more than one document. For those
messages, LookAt displays a list of documents in which the message appears.

How to contact IBM service

For immediate assistance, visit this Web site:
http://www.software.ibm.com/network/commserver/support/

Most problems can be resolved at this Web site, where you can submit questions
and problem reports electronically, as well as access a variety of diagnosis
information.

For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-237-5511).
You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m. –
5:00 p.m., local customer time).

Outside of the United States or Puerto Rico, contact your local IBM representative
or your authorized IBM supplier.

If you would like to provide feedback on this publication, see “Communicating Your
Comments to IBM” on page 833.

z/OS Communications Server information
This section contains descriptions of the documents in the z/OS Communications
Server library.

z/OS Communications Server publications are available:

v Online at the z/OS Internet Library web page at
http://www.ibm.com/servers/eserver/zseries/zos/bkserv

About this document xxiii

|
|

|
|
|

|
|
|
|

|
|

|
|

|

|
|

www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.software.ibm.com/network/commserver/support/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

v In softcopy on CD-ROM collections.

Softcopy information
Softcopy publications are available in the following collections:

Titles Order
Number

Description

z/OS V1R4 Collection SK3T-4269 This is the CD collection shipped with the z/OS product. It includes
the libraries for z/OS V1R4, in both BookManager® and PDF
formats.

z/OS Software Products
Collection

SK3T-4270 This CD includes, in both BookManager and PDF formats, the
libraries of z/OS software products that run on z/OS but are not
elements and features, as well as the Getting Started with Parallel
Sysplex® bookshelf.

z/OS V1R4 and Software
Products DVD Collection

SK3T-4271 This collection includes the libraries of z/OS (the element and
feature libraries) and the libraries for z/OS software products in both
BookManager and PDF format. This collection combines SK3T-4269
and SK3T-4270.

z/OS Licensed Product Library SK3T-4307 This CD includes the licensed documents in both BookManager and
PDF format.

System Center Publication
IBM S/390® Redbooks™

Collection

SK2T-2177 This collection contains over 300 ITSO redbooks that apply to the
S/390 platform and to host networking arranged into subject
bookshelves.

z/OS Communications Server library
z/OS V1R4 Communications Server documents are available on the CD-ROM
accompanying z/OS (SK3T-4269 or SK3T-4307). Unlicensed documents can be
viewed at the z/OS Internet library site.

Updates to documents are available on RETAIN® and in information APARs (info
APARs). See Appendix G, “Information APARs” on page 807 for a list of the
documents and the info APARs associated with them.

v Info APARs for OS/390® documents are in the document called OS/390 DOC
APAR and PTF ++HOLD Documentation which can be found at
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/
BOOKS/IDDOCMST/CCONTENTS.

v Info APARs for z/OS documents are in the document called z/OS and z/OS.e
DOC APAR and PTF ++HOLD Documentation which can be found at
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/
BOOKS/ZIDOCMST/CCONTENTS.

Planning and migration:

Title Number Description

z/OS Communications Server:
SNA Migration

GC31-8774 This document is intended to help you plan for SNA, whether you
are migrating from a previous version or installing SNA for the
first time. This document also identifies the optional and required
modifications needed to enable you to use the enhanced
functions provided with SNA.

z/OS Communications Server:
IP Migration

GC31-8773 This document is intended to help you plan for TCP/IP Services,
whether you are migrating from a previous version or installing IP
for the first time. This document also identifies the optional and
required modifications needed to enable you to use the
enhanced functions provided with TCP/IP Services.

xxiv z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|

||||

|
|
||
|
|
|
|

|
|
||
|
|
|
|

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Title Number Description

z/OS Communications Server:
IPv6 Network and Application
Design Guide

SC31-8885 This document is a high-level introduction to IPv6. It describes
concepts of z/OS Communications Server’s support of IPv6,
coexistence with IPv4, and migration issues.

Resource definition, configuration, and tuning:

Title Number Description

z/OS Communications Server:
IP Configuration Guide

SC31-8775 This document describes the major concepts involved in
understanding and configuring an IP network. Familiarity with the
z/OS operating system, IP protocols, z/OS UNIX System
Services, and IBM Time Sharing Option (TSO) is recommended.
Use this document in conjunction with the z/OS Communications
Server: IP Configuration Reference.

z/OS Communications Server:
IP Configuration Reference

SC31-8776 This document presents information for people who want to
administer and maintain IP. Use this document in conjunction
with the z/OS Communications Server: IP Configuration Guide.
The information in this document includes:

v TCP/IP configuration data sets

v Configuration statements

v Translation tables

v SMF records

v Protocol number and port assignments

z/OS Communications Server:
SNA Network Implementation
Guide

SC31-8777 This document presents the major concepts involved in
implementing an SNA network. Use this document in conjunction
with the z/OS Communications Server: SNA Resource Definition
Reference.

z/OS Communications Server:
SNA Resource Definition
Reference

SC31-8778 This document describes each SNA definition statement, start
option, and macroinstruction for user tables. It also describes
NCP definition statements that affect SNA. Use this document in
conjunction with the z/OS Communications Server: SNA Network
Implementation Guide.

z/OS Communications Server:
SNA Resource Definition
Samples

SC31-8836 This document contains sample definitions to help you implement
SNA functions in your networks, and includes sample major node
definitions.

z/OS Communications Server:
AnyNet SNA over TCP/IP

SC31-8832 This guide provides information to help you install, configure,
use, and diagnose SNA over TCP/IP.

z/OS Communications Server:
AnyNet Sockets over SNA

SC31-8831 This guide provides information to help you install, configure,
use, and diagnose sockets over SNA. It also provides information
to help you prepare application programs to use sockets over
SNA.

z/OS Communications Server:
IP Network Print Facility

SC31-8833 This document is for system programmers and network
administrators who need to prepare their network to route SNA,
JES2, or JES3 printer output to remote printers using TCP/IP
Services.

Operation:

About this document xxv

|||

|
|
|

||
|
|

Title Number Description

z/OS Communications Server:
IP User’s Guide and Commands

SC31-8780 This document describes how to use TCP/IP applications. It
contains requests that allow a user to log on to a remote host
using Telnet, transfer data sets using FTP, send and receive
electronic mail, print on remote printers, and authenticate
network users.

z/OS Communications Server:
IP System Administrator’s
Commands

SC31-8781 This document describes the functions and commands helpful in
configuring or monitoring your system. It contains system
administrator’s commands, such as TSO NETSTAT, PING,
TRACERTE and their UNIX counterparts. It also includes TSO
and MVS commands commonly used during the IP configuration
process.

z/OS Communications Server:
SNA Operation

SC31-8779 This document serves as a reference for programmers and
operators requiring detailed information about specific operator
commands.

z/OS Communications Server:
Quick Reference

SX75-0124 This document contains essential information about SNA and IP
commands.

Customization:

Title Number Description

z/OS Communications Server:
SNA Customization

LY43-0092 This document enables you to customize SNA, and includes the
following:

v Communication network management (CNM) routing table

v Logon-interpret routine requirements

v Logon manager installation-wide exit routine for the CLU
search exit

v TSO/SNA installation-wide exit routines

v SNA installation-wide exit routines

Writing application programs:

Title Number Description

z/OS Communications Server:
IP Application Programming
Interface Guide

SC31-8788 This document describes the syntax and semantics of program
source code necessary to write your own application
programming interface (API) into TCP/IP. You can use this
interface as the communication base for writing your own client
or server application. You can also use this document to adapt
your existing applications to communicate with each other using
sockets over TCP/IP.

z/OS Communications Server:
IP CICS Sockets Guide

SC31-8807 This document is for programmers who want to set up, write
application programs for, and diagnose problems with the socket
interface for CICS® using z/OS TCP/IP.

z/OS Communications Server:
IP IMS Sockets Guide

SC31-8830 This document is for programmers who want application
programs that use the IMS™ TCP/IP application development
services provided by IBM’s TCP/IP Services.

xxvi z/OS V1R4.0 CS: IP Configuration Guide

|
|
|

||
|
|
|
|
|

Title Number Description

z/OS Communications Server:
IP Programmer’s Reference

SC31-8787 This document describes the syntax and semantics of a set of
high-level application functions that you can use to program your
own applications in a TCP/IP environment. These functions
provide support for application facilities, such as user
authentication, distributed databases, distributed processing,
network management, and device sharing. Familiarity with the
z/OS operating system, TCP/IP protocols, and IBM Time Sharing
Option (TSO) is recommended.

z/OS Communications Server:
SNA Programming

SC31-8829 This document describes how to use SNA macroinstructions to
send data to and receive data from (1) a terminal in either the
same or a different domain, or (2) another application program in
either the same or a different domain.

z/OS Communications Server:
SNA Programmer’s LU 6.2
Guide

SC31-8811 This document describes how to use the SNA LU 6.2 application
programming interface for host application programs. This
document applies to programs that use only LU 6.2 sessions or
that use LU 6.2 sessions along with other session types. (Only
LU 6.2 sessions are covered in this document.)

z/OS Communications Server:
SNA Programmer’s LU 6.2
Reference

SC31-8810 This document provides reference material for the SNA LU 6.2
programming interface for host application programs.

z/OS Communications Server:
CSM Guide

SC31-8808 This document describes how applications use the
communications storage manager.

z/OS Communications Server:
CMIP Services and Topology
Agent Guide

SC31-8828 This document describes the Common Management Information
Protocol (CMIP) programming interface for application
programmers to use in coding CMIP application programs. The
document provides guide and reference information about CMIP
services and the SNA topology agent.

Diagnosis:

Title Number Description

z/OS Communications Server:
IP Diagnosis

GC31-8782 This document explains how to diagnose TCP/IP problems and
how to determine whether a specific problem is in the TCP/IP
product code. It explains how to gather information for and
describe problems to the IBM Software Support Center.

z/OS Communications Server:
SNA Diagnosis Vol 1,
Techniques and Procedures and
z/OS Communications Server:
SNA Diagnosis Vol 2, FFST
Dumps and the VIT

LY43-0088

LY43-0089

These documents help you identify an SNA problem, classify it,
and collect information about it before you call the IBM Support
Center. The information collected includes traces, dumps, and
other problem documentation.

z/OS Communications Server:
SNA Data Areas Volume 1 and
z/OS Communications Server:
SNA Data Areas Volume 2

LY43-0090

LY43-0091

These documents describe SNA data areas and can be used to
read an SNA dump. They are intended for IBM programming
service representatives and customer personnel who are
diagnosing problems with SNA.

Messages and codes:

About this document xxvii

Title Number Description

z/OS Communications Server:
SNA Messages

SC31-8790 This document describes the ELM, IKT, IST, ISU, IUT, IVT, and
USS messages. Other information in this document includes:

v Command and RU types in SNA messages

v Node and ID types in SNA messages

v Supplemental message-related information

z/OS Communications Server:
IP Messages Volume 1 (EZA)

SC31-8783 This volume contains TCP/IP messages beginning with EZA.

z/OS Communications Server:
IP Messages Volume 2 (EZB)

SC31-8784 This volume contains TCP/IP messages beginning with EZB.

z/OS Communications Server:
IP Messages Volume 3 (EZY)

SC31-8785 This volume contains TCP/IP messages beginning with EZY.

z/OS Communications Server:
IP Messages Volume 4
(EZZ-SNM)

SC31-8786 This volume contains TCP/IP messages beginning with EZZ and
SNM.

z/OS Communications Server:
IP and SNA Codes

SC31-8791 This document describes codes and other information that
appear in z/OS Communications Server messages.

APPC Application Suite:

Title Number Description

z/OS Communications Server:
APPC Application Suite User’s
Guide

SC31-8809 This documents the end-user interface (concepts, commands,
and messages) for the AFTP, ANAME, and APING facilities of the
APPC application suite. Although its primary audience is the end
user, administrators and application programmers may also find it
useful.

z/OS Communications Server:
APPC Application Suite
Administration

SC31-8835 This document contains the information that administrators need
to configure the APPC application suite and to manage the
APING, ANAME, AFTP, and A3270 servers.

z/OS Communications Server:
APPC Application Suite
Programming

SC31-8834 This document provides the information application programmers
need to add the functions of the AFTP and ANAME APIs to their
application programs.

Redbooks
The following Redbooks may help you as you implement z/OS Communications
Server.

Title Number

TCP/IP Tutorial and Technical Overview GG24–3376

SNA and TCP/IP Integration SG24–5291

IBM Communications Server for OS/390 V2R10 TCP/IP Implementation Guide:
Volume 1: Configuration and Routing

SG24–5227

IBM Communications Server for OS/390 V2R10 TCP/IP Implementation Guide:
Volume 2: UNIX Applications

SG24–5228

IBM Communications Server for OS/390 V2R7 TCP/IP Implementation Guide:
Volume 3: MVS Applications

SG24–5229

Secureway Communications Server for OS/390 V2R8 TCP/IP: Guide to
Enhancements

SG24–5631

TCP/IP in a Sysplex SG24–5235

Managing OS/390 TCP/IP with SNMP SG24–5866

xxviii z/OS V1R4.0 CS: IP Configuration Guide

Title Number

Security in OS/390–based TCP/IP Networks SG24–5383

IP Network Design Guide SG24–2580

Migrating Subarea Networks to an IP Infrastructure SG24–5957

IBM Communication Controller Migration Guide SG24–6298

Related information
For information about z/OS products, refer to z/OS Information Roadmap
(SA22-7500). The Roadmap describes what level of documents are supplied with
each release of z/OS Communications Server, as well as describing each z/OS
publication.

Relevant RFCs are listed in an appendix of the IP documents. Architectural
specifications for the SNA protocol are listed in an appendix of the SNA documents.

The table below lists documents that may be helpful to readers.

Title Number

z/OS Security Server Firewall Technologies SC24-5922

S/390: OSA-Express Customer’s Guide and Reference SA22-7403

z/OS JES2 Initialization and Tuning Guide SA22-7532

z/OS MVS Diagnosis: Procedures GA22-7587

z/OS MVS Diagnosis: Reference GA22-7588

z/OS MVS Diagnosis: Tools and Service Aids GA22-7589

z/OS Security Server LDAP Client Programming SC24-5924

z/OS Security Server LDAP Server Administration and Use SC24-5923

Understanding LDAP SG24-4986

z/OS UNIX System Services Programming: Assembler Callable Services Reference SA22-7803

z/OS UNIX System Services Command Reference SA22-7802

z/OS UNIX System Services User’s Guide SA22-7801

z/OS UNIX System Services Planning GA22-7800

z/OS MVS Using the Subsystem Interface SA22-7642

z/OS C/C++ Run-Time Library Reference SA22-7821

z/OS Program Directory GI10-0670

DNS and BIND, Fourth Edition, O’Reilly and Associates, 2001 ISBN 0-596-00158-4

Routing in the Internet , Christian Huitema (Prentice Hall PTR, 1995) ISBN 0-13-132192-7

sendmail, Bryan Costales and Eric Allman, O’Reilly and Associates, 1997 ISBN 156592–222–0

TCP/IP Tutorial and Technical Overview GG24-3376

TCP/IP Illustrated, Volume I: The Protocols, W. Richard Stevens, Addison-Wesley
Publishing, 1994

ISBN 0-201-63346-9

TCP/IP Illustrated, Volume II: The Implementation, Gary R. Wright and W. Richard
Stevens, Addison-Wesley Publishing, 1995

ISBN 0-201-63354-X

TCP/IP Illustrated, Volume III, W. Richard Stevens, Addison-Wesley Publishing, 1995 ISBN 0-201-63495-3

z/OS System Secure Sockets Layer Programming SC24-5901

About this document xxix

||

||

|
|
|
|

|
|

|

|||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

|
|
|

|
|
|

||

||

Determining if a publication is current
As needed, IBM updates its publications with new and changed information. For a
given publication, updates to the hardcopy and associated BookManager softcopy
are usually available at the same time. Sometimes, however, the updates to
hardcopy and softcopy are available at different times. The following information
describes how to determine if you are looking at the most current copy of a
publication:

v At the end of a publication’s order number there is a dash followed by two digits,
often referred to as the dash level. A publication with a higher dash level is more
current than one with a lower dash level. For example, in the publication order
number GC28-1747-07, the dash level 07 means that the publication is more
current than previous levels, such as 05 or 04.

v If a hardcopy publication and a softcopy publication have the same dash level, it
is possible that the softcopy publication is more current than the hardcopy
publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the
hardcopy publication.

v To compare softcopy publications, you can check the last two characters of the
publication’s filename (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk (*) that indicates whether a
publication is new or changed.

xxx z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

Summary of changes

Summary of changes
for SC31-8775-02
z/OS Version 1 Release 4

This document contains information previously presented in SC31-8775-01, which
supports z/OS Version 1 Release 2. The information in this document supports both
IPv6 and IPv4. Unless explicitly noted, information describes IPv4 networking
protocol. IPv6 support is qualified within the text.

New information

v z/OS msys for Setup, see “z/OS msys for Setup and Wizard” on page 6.

v Access control, see “System resource protection” on page 79.

v Transparent fault-tolerance for failed or stopped IPv4 devices or IPv6 interfaces,
see “Interface-layer fault-tolerance for local area networks (interface-takeover
function)” on page 137.

v Using a single sysplex wide Dynamic VIPA (DVIPA) as the source IP address for
TCP applications, and having the sysplex stacks collaborate on assigning
ephemeral ports to prevent duplicate connection 4-tuples (combination of source
and destination IP addresses and ports), see “Sysplex wide source VIPA” on
page 226.

v Sysplex Wide Security Associations (SWSA), see “Sysplex Wide Security
Associations” on page 228.

v FTP, see “Translation of data” on page 393 and “Configuring the optional FTP
user exits” on page 396.

v Simple Network Time Protocol (SNTP), see Chapter 19, “SNTPD daemon” on
page 701.

v The following areas contain new information pertaining to IPv6 support:

– z/OS TCP/IP stack-related functions and the level of support provided in an
IPv6 network, see “z/OS TCP/IP stack function support” on page 3.

– Sample BPXPRMxx definitions needed for IPv6 support, see “Defining TCP/IP
as a UNIX System Services physical file system (PFS)” on page 50.

– Resolver support, see “Understanding resolvers” on page 12, “Configuration
files for TCP/IP applications” on page 26, and “Configuring the local host table
(optional)” on page 143.

– Autoconfiguring addresses for an interface using information provided by IPv6
routers, see “IPv6 considerations: Stateless autoconfiguration and duplicate
address detection” on page 137.

– Routing in an IPv6 network, see Chapter 4, “Routing” on page 155.

– FTP, see “Security considerations for the FTP server” on page 386.

– DNS, see Chapter 10, “Domain Name System (DNS)” on page 417.

– inetd, otelnetd, orexecd, and orshd, see Appendix A, “Setting up the inetd
configuration file” on page 719.

An appendix with z/OS product accessibility information has been added.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

© Copyright IBM Corp. 2000, 2002 xxxi

Starting with z/OS V1R4, you may notice changes in the style and structure of
some content in this document–for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

This document supports z/OS.e.

Summary of changes
for SC31-8775-01
z/OS Version 1 Release 2

This document contains information previously presented in SC31-8775-00, which
supports z/OS Version 1 Release 1.

New information

v Managed System Infrastructure for Setup, see “z/OS msys for Setup and Wizard”
on page 6

v SMF recording enhancements, see “Accounting - SMF records” on page 40

v OSA-Express Token Ring support, see “Setting up physical characteristics in
PROFILE.TCPIP” on page 115

v Connection load balancing, see “Connection load balancing using Sysplex
Distributor in a network with CISCO routers” on page 264

v New chapter for Security, see Chapter 2, “Security” on page 79

v New chapter for TCP/IP in a Sysplex, see Chapter 6, “TCP/IP in a sysplex” on
page 251

v HiperSockets, see “HiperSockets concepts and connectivity” on page 130

v HiperSockets Accelerator, see “Efficient routing using HiperSockets Accelerator”
on page 135

v OROUTED to OMPROUTE migration, see “Migration from OROUTED to
OMPROUTE” on page 165

v BIND 9-Based DNS, see Chapter 10, “Domain Name System (DNS)” on
page 417

v New chapter for Quality of Service, see Chapter 12, “Quality of Service (QoS)” on
page 565

v New chapter for Intrusion Detection Services, see Chapter 13, “Intrusion
Detection Services (IDS)” on page 595

v SMTP exit to filter unwanted mail, see Chapter 17, “Mail servers” on page 669

v New appendix for SSL/TLS, see Appendix B, “TLS/SSL security” on page 721

v New appendix for Express Logon, see Appendix C, “Express Logon Feature
(ELF)” on page 749

v New appendix for using HCD to configure IQD CHPIDs, see Appendix D, “Using
HCD” on page 757

Changed information

v Resolver enhancements

v VMCF/TNF sample start procedure (EZAZSSI)

v OMPROUTE to allow RIP1 and RIP2 packets over the same interface

v Replaceable static routes

v OSPF MD5 authentication

xxxii z/OS V1R4.0 CS: IP Configuration Guide

v Telnet enhancements

v FTP enhancements

v Netstat enhancements

v Sysplex Distributor policy enhancements

v Policy Agent enhancements

v Application driven policy classification

v Virtual LAN priority tagging

Deleted information

v Kerberos

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of changes
for SC31-8775-00
z/OS Version 1 Release 1

This document contains information also presented in OS/390 V2R10 IBM
Communications Server: IP Configuration Guide.

New information

v Added new information in “UNIX System Services security considerations” on
page 45. This information was removed from IP Migration.

v Added a new section, “Defining TCP/IP as a UNIX System Services physical file
system (PFS)” on page 50. This information was removed from IP Migration.

v Added information to section, “Making SYS1.PARMLIB changes” on page 69.
This information was removed from IP Migration.

Summary of changes xxxiii

xxxiv z/OS V1R4.0 CS: IP Configuration Guide

Part 1. Base TCP/IP system

© Copyright IBM Corp. 2000, 2002 1

2 z/OS V1R4.0 CS: IP Configuration Guide

Chapter 1. Configuration overview

The objective of this chapter is to help you be better prepared for installation related
activities. It is important to understand the terms, relationships, and dependencies
presented in this chapter as a prerequisite to installation and customization.

After reading this chapter, you will be familiar with:

v z/OS TCP/IP stack function support

v z/OS Managed System Infrastructure for Setup (z/OS msys for Setup)

v z/OS UNIX System Services concepts

v Differences between HFS files and MVS data sets

v Setting up a resolver address space

v Configuration files and their search orders

v MVS Considerations

v Accounting and security issues for the more commonly used daemons

v Defining TCP/IP as a UNIX System Services physical file system (PFS)

v Performance considerations

v Considerations for multiple instances of TCP/IP

v Enterprise Extender considerations

v Virtual IP Address (VIPA) considerations

v The steps required before starting TCP/IP

z/OS TCP/IP stack function support
Table 1 summarizes z/OS TCP/IP stack-related functions and the level of support
provided in an IPv6 network. It is anticipated that many more of these functions will
be enabled for IPv6 support in subsequent releases of z/OS Communications
Server.

In other locations where these functions are described in detail, there might be no
statement of support on an IPv6 network. Consult this table to determine whether a
given function is applicable to IPv6.

For more information on the related configuration statements for a particular
function, refer to z/OS Communications Server: IP Configuration Reference.

Table 1. z/OS TCP/IP stack function support

z/OS TCP/IP stack
function

IPv4
support?

IPv6
support?

Comments

Link-layer device
support

IPv4 devices are defined with the
DEVICE and LINK configuration
statements. In IPv6, interfaces are
defined with the INTERFACE
statement.

© Copyright IBM Corp. 2000, 2002 3

|

|

|

|

|

|
|
|
|

|
|
|

|
|

||

|
|
|
|
|
|
|

|
|
|||
|
|
|
|

Table 1. z/OS TCP/IP stack function support (continued)

z/OS TCP/IP stack
function

IPv4
support?

IPv6
support?

Comments

Ethernet LAN
connectivity using
OSA-Express in
QDIO mode

Y Y To define an MPCIPA device for
IPv4, use the DEVICE statement
with the MPCIPA parameter and the
LINK statement with the IPAQENET
parameter. For IPv6 traffic,
OSA-Express QDIO fast ethernet
and gigabit ethernet support is
configured using an INTERFACE
statement of type IPAQENET6. This
is the only DLC that currently
supports IPv6.

Related configuration statements:

v DEVICE and LINK (MPCIPA
devices)

v HOME

v INTERFACE (IPAQENET6
interfaces)

Virtual IP
addressing support

Virtual
device/interface
configuration

Y Y With IPv4, a static virtual device is
configured using DEVICE and LINK
statements with the VIRTUAL
parameter. An IPv6 virtual interface
is configured with an INTERFACE
statement of type VIRTUAL6.

Related configuration statements:

v DEVICE and LINK (VIRTUAL
devices)

v HOME

v INTERFACE (VIRTUAL6
interfaces)

Sysplex support Y N Related configuration statements:

v VIPADYNAMIC

v IPCONFIG

IP routing functions

Dynamic routing -
OSPF and RIP

Y N

Dynamic routing -
AutoConfiguration

N Y For information on
AutoConfiguration, see “IPv6
considerations: Stateless
autoconfiguration and duplicate
address detection” on page 137.

Static route
configuration using
BEGINROUTES
statement

Y Y Related configuration statements:

v BEGINROUTES

Static route
configuration using
GATEWAY statement

Y N Related configuration statements:

v GATEWAY

4 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|
|
|
|
|

|
|
|
|

|||
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

|
|
|||

|
|
|

|||
|
|
|
|
|

|

|
|

|

|
|

||||

|

|

||||

|
|
|||

|
|
|||
|
|
|
|

|
|
|
|

|||

|

|
|
|

|||

|

Table 1. z/OS TCP/IP stack function support (continued)

z/OS TCP/IP stack
function

IPv4
support?

IPv6
support?

Comments

Multipath routing
groups

Y Y Related configuration statements:

v IPCONFIG

v IPCONFIG6

Miscellaneous stack
functions

Path MTU discovery Y Y Path MTU discovery is mandatory in
IPv6.

Related configuration statements:

v IPCONFIG

v IPCONFIG6

Configurable device
or interface recovery
interval

Y Y Set with the DevRetryDuration
keyword on the IPCONFIG
statement.

Related configuration statements:

v IPCONFIG

v IPCONFIG6

Link-layer address
resolution

Y Y In IPv4, performed using Address
Resolution Protocol (ARP). In IPv6,
performed using neighbor discovery
protocol.

Related configuration statements:

v DEVICE and LINK (LAN Channel
Station and OSA devices)

v INTERFACE (IPAQENET6
interfaces)

ARP/Neighbor cache
PURGE capability

Y Y Use the V TCPIP,,PURGECACHE
command. For information, see
z/OS Communications Server: IP
System Administrator’s Commands.

Datagram forwarding
enable/disable

Y Y Related configuration statements:

v IPCONFIG

v IPCONFIG6

Transport-layer
functions

Fast response cache
accelerator

Y N

Enterprise extender Y N

Server-BIND control Y Y Related configuration statements:

v PORT

UDP Checksum
disablement option

Y N UDP checksum is required when
operating over IPv6.

Related configuration statements:

v UDPCONFIG

Chapter 1. Configuration overview 5

|

|
|
|
|
|
|
|

|
|
|||

|

|

|
|
|||

||||
|

|

|

|

|
|
|

|||
|
|

|

|

|

|
|
|||
|
|
|

|

|
|

|
|

|
|
|||
|
|
|

|
|
|||

|

|

|
|
|||

|
|
|||

||||

||||

|

|
|
|||
|

|

|

Table 1. z/OS TCP/IP stack function support (continued)

z/OS TCP/IP stack
function

IPv4
support?

IPv6
support?

Comments

Network
management and
accounting
functions

SNMP Y N

Policy-based
networking

Y N

SMF Y Y Type 118 records do not support
IPv6 addresses. IPv6 support in
type 119 records is being phased in.
Currently, only the following records
provide IPv6 support:

v TCP connection initiation

v TCP connection termination

v UDP socket close

v FTP client transfer completion

v FTP server transfer completion

v FTP server logon failure

Related configuration statements:

v SMFCONFIG

Security functions For an overview of security
services, see Chapter 2, “Security”
on page 79.

IPSec Y N Related configuration statements:

v IPCONFIG

IP filtering Y N

Network access
control

Y N Related configuration statements:

v NETACCESS

Stack and port
access control

Y Y Related configuration statements:

v PORT

v DELETE

Intrusion detection
services

Y N

z/OS msys for Setup and Wizard

Wizard
IBM provides a Web-based wizard called the z/OS IP Configuration Wizard. Use it
at any time to configure a single stack, with simple instances of OMPROUTE, FTP,
and TN3270 servers, and with all device types, including static VIPA. If you finish
using the wizard and complete the tasks defined in the output checklist, you will be
ready to use z/OS TCP/IP to communicate with other hosts in your network. The
wizard can be found at: http:// www.ibm.com/eserver/zseries/zos/wizards/.

6 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|
|
|
|
|

|
|
|
|

|||

||||

|
|
|||

||||
|
|
|
|

|

|

|

|

|

|

|

|

||||
|
|

||||

|

||||

|
|
|||

|

|
|
|||

|

|

|
|
|||

http:// www.ibm.com/eserver/zseries/zos/wizards/

z/OS msys for Setup
A z/OS system is controlled using a multitude of settings, such as parmlib
members, /etc files for Unix System Services, or the RACF® database, which are
governed by different access methods. There is not a consistent representation of
the configuration data; rather system administrators must keep track of various
configuration data sets with varying semantics and syntax. While this renders z/OS
systems highly flexible, at the same time it makes them complex and laborious to
maintain.

Managed System Infrastructure for Setup (Msys for Setup) addresses these
difficulties by establishing a central directory for product configuration data and a
single interface to this directory. System administrators using msys will configure
z/OS by way of GUI panels presented by the msys Windows NT® or Windows®

2000 application. Multiple products can be configured through the same msys
application. The configuration data will be collected and stored together as a
common entity within an LDAP server. When directed by the system administrator,
msys code running on z/OS will extract the configuration data stored in LDAP and
produce the various configuration data sets on the z/OS system. This removes the
system administrator from the details of the actual configuration statements,
parameters and data set locations.

Msys for Setup consists of a collection of GUI panels that run on a Windows NT or
Windows 2000 workstation and is connected through IP to an LDAP directory and
to an MVS driving system. Msys for Setup provides the infrastructure for an msys
exploiter to provide the user the following functionality:

v Refresh/Priming processing - parses a customer’s existing configuration files and
stores this configuration data, transformed into a tree structure, into an LDAP
directory.

v Customization - reads the Refresh data stored in LDAP and populates the data
fields on the GUI panels from this Refresh data. The data can then be changed
by the system administrator as the panels are navigated. It is also likely that no
Refresh step was done, and the panels are presented with either default data or
no data. When customization changes are completed, the data is transformed
into a tree structure and stored into the LDAP directory.

v Update Processing - after the configuration customization is complete, the
administrator can make the ’Perform update’ selection. Msys for Setup sends an
FTP batch job to the mainframe driving system. Msys for Setup invokes a series
of the msys exploiter’s Java™ methods that ultimately result in updating
msys-created configuration files or creating new configuration files from the new
customized data that is extracted from the LDAP directory.

v Commit processing - after update processing is complete, the administrator can
make the ’Commit update’ selection. If update processing resulted in the creation
or modification of temporary msys-created configuration files, those temporary
files are copied into more permanent configuration files.

When using TCP/IP’s msys for Setup, you will be prompted by GUI panels for
customization information, which is then stored in an LDAP directory. Only a subset
of TCP/IP’s total configuration is supported using msys for Setup.

TCP/IP offers two different levels of service in msys:

v Customization and update processing only

v Refresh, customization, update, and commit processing

Chapter 1. Configuration overview 7

|
|

|
|

|

|
|

|
|
|
|

|
|
|

|

|

|

Included in the customization and update processing only level of service is support
for all network devices, routing selections of OSPF or RIP, or use of default routers
and static routes. The TN3270 server can be configured in a basic setup, or in
advanced mode that supports nearly all TN3270 options. The FTP server is
configured to use all defaults. Update processing creates TCP/IP configuration files
in a PDS of your choice. The configuration files created are those typically referred
to as TCPIP.DATA, PROFILE.TCPIP, and OMPROUTE.CONF, as well as TN3270
and PORTS. Supported configuration statements are listed below:

v For TCPIP.DATA

DATASETPREFIX
DOMAINORIGIN
HOSTNAME
NSINTERADDR
TCPIPJOBNAME

Defaults are used for all other configuration statements.

v For PROFILE.TCPIP

ATMARPSV
ATMLIS
ATMPVC
AUTOLOG / ENDAUTOLOG
BEGINROUTES / ENDROUTES and ROUTE
DEVICE
HOME
LINK
START
TCPCONFIG RESTRICTLOWPORTS
TRANSLATE
UDPCONFIG RESTRICTLOWPORTS

Defaults are used for all other configuration statements.

v For OMPROUTE

INTERFACE
OSPF_INTERFACE
RIP_INTERFACE

Defaults are used for all other configuration statements.

v For TN3270

ALLOWAPPL
BEGINVTAM / ENDVTAM
CLIENTAUTH
CONNTYPE
DEFAULTAPPL
DEFAULTLUS
DEFAULTLUSSPEC
DEFAULTPRT
DEFAULTPRTSPEC
DESTIPGROUP
DROPASSOCPRINTER
ENCRYPTION
EXPRESSLOGON

8 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

HNGROUP
INACTIVE
IPGROUP
KEYRING
LINEMODEAPPL
LINKGROUP
LUGROUP
LUMAP
LUSESSIONPEND
MSG07
PORT / SECUREPORT
PRTDEFAULTAPPL
PRTGROUP
PRTMAP
SCANINTERVAL / TIMEMARK
SMFINIT / SMFTERM
SNAEXT
TELNETDEVICE
TELNETGLOBALS / ENDTELNETGLOBALS
TELNETPARMS / ENDTELNETPARMS
TKOSPECLU
USERGROUP
USSTCP

Defaults are used for all other configuration statements.

v For PORTS

PORT
PORTRANGE

The refresh, customization, update, and commit processing level of service supports
only port reservations. Refresh processing is optional, but useful if the
administrator’s port reservations are in their own configuration file. If no refresh is
performed, customization begins with default port reservations. This TCP/IP service
can accept port reservations requested by other msys for Setup services such as
LDAP. For example, during customization of the LDAP msys for Setup service, the
administrator might be asked which port LDAP should use. When the administrator
is done customizing the LDAP service, the TCP/IP service would receive a request
for that port. Update processing creates or modifies a temporary PORTS
configuration file and reserves ports requested by other msys for Setup services.
Commit processing copies this temporary file into a more permanent msys PORTS
configuration file and can also modify the user’s active PROFILE.TCPIP
configuration file to use the msys PORTS file. Supported configuration statements
are listed below:

v For PORTS

PORT
PORTRANGE

For more detailed information on z/OS msys for Setup, refer to z/OS Managed
System Infrastructure for Setup User’s Guide.

Chapter 1. Configuration overview 9

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

z/OS UNIX System Services (z/OS UNIX) concepts
Beginning with MVS/ESA™ Version 4.3 a new type of application program interface
was added to the MVS platform with the intent of integrating a UNIX operating
system into MVS. Both a C programming API and an interactive environment called
the shell were defined to interoperate with UNIX-style files, called Hierarchical File
Systems (HFS). Over time, other organizations developed approaches to working
with UNIX on various platforms until an organization named X/Open documented
standards of what to implement for UNIX interfaces in a series of guides published
as the X/Open Portability Guides (XPG). X/Open now owns the term UNIX and
certifies different implementations of UNIX according to the UNIX definitions
contained in XPG 4.2. In 1996, OS/390 OpenEdition® was awarded UNIX 95 brand
certification, thus confirming that it is compliant with all current open industry
standards.

Note: In 1998, IBM changed the name OS/390 OpenEdition to OS/390 UNIX
System Services.

z/OS UNIX System Services or z/OS UNIX is the z/OS or MVS implementation of
UNIX as defined by X/Open in the XPG 4.2. z/OS UNIX coexists with traditional
MVS functions and traditional MVS file types (partitioned data sets, sequential files,
and so on). It concurrently allows access to HFS files and to UNIX utilities and
commands by means of application programming interfaces (APIs) and the
interactive SHELL environment. MVS offers two variants of the UNIX SHELL
environment:

v The OMVS shell, much like a native UNIX environment

v The ISHELL, an ISPF interface with access to menu-driven command interfaces

With the APIs, programs can run in any environment including batch jobs, in jobs
submitted by TSO/E interactive users, and in most other started tasks, or in any
other MVS application task environment. The programs can request:

v Only MVS services

v Only z/OS UNIX services

v Both MVS and z/OS UNIX services

The shell interface is an execution environment analogous to TSO/E, with a
programming language of shell commands analogous to Restructured eXtended
eXecutor (REXX) language. The shell support consists of:

v Programs that are run interactively by shell users

v Shell commands and scripts that are run interactively by shell users

v Shell commands and scripts that are run as batch jobs

Prior to OS/390 V2R5, OS/390 UNIX required APPC/MVS for programs issuing the
fork() or spawn() function of OpenEdition callable services. APPC/MVS is no longer
required for this purpose. Forked and spawned address spaces are now
implemented in z/OS for UNIX processing by the Work Load Manager (WLM)
component of MVS.

For a fork(), the system copies one process, called the parent process, into a new
process, called the child process, and places the child process in a new address
space, the forked address space.

10 z/OS V1R4.0 CS: IP Configuration Guide

Spawn() also starts a new process in a new address space. Unlike a fork(), in a
spawn() call the parent process specifies a name of a program to start the child
process.

The types of processes can be:

v User processes, which are associated with a user

v Daemon processes, which perform continuous or periodic functions, such as a
Web server

Daemons are programs that are typically started when the operating system is
initialized and remain active to perform standard services. Some programs that
initialize processes for users are considered daemons, even though these
daemons are not long-running processes. Examples of daemons provided by
z/OS UNIX are cron, which starts applications at specific times, and inetd, which
starts applications on demand.

A user or daemon process can have one or more threads. A thread is a single flow
of control within a process. Application programmers create multiple threads to
structure an application in independent sections that can run in parallel for more
efficient use of system resources.

Overview of data sets and HFS files
Data set and file are comparable terms. If you are familiar with MVS, you probably
use the term data set to describe a unit of data storage. If you are familiar with
AIX® or UNIX, you probably use the term file to describe a named set of records
stored or processed as a unit. In the TCP/IP environment, in addition to the
traditional MVS data set organizations (such as sequential, partitioned) the z/OS
UNIX files are arranged in a Hierarchical File System (HFS) and are called HFS
files.

Some data sets and HFS files have special importance because of their function.
For example, certain data sets and HFS files are used when configuring the TCP/IP
environment. Other data sets are used by the Telnet server (Telnet daemon) when
performing specific communication functions. See Table 2 on page 21 for
descriptions of the data sets and HFS files necessary for configuring the TCP/IP
environment and the search orders used to find them. A search order can include
both HFS files and data sets, and these data sets and HFS files will be collectively
referred to as the configuration files in this section.

Note: Not all applications support HFS files.

Hierarchical File System concepts
The Hierarchical File System lets you set up a file hierarchy that consists of:

v HFS files, which contain data or programs. A file containing a load module, shell
script, or REXX program is called an executable file. Files are kept in directories.

v Directories that contain files, other directories, or both. Directories are arranged
hierarchically, in a structure that resembles an upside down tree, with root
directory at the top and the branches at the bottom. The root is the first directory
for the file system at the peak of the tree and is designated by a slash (/).

v Additional local or remote file systems that are mounted on directories of the
root file system or of additional file systems.

v Lastly, the HFS also includes named pipes, links, and other UNIX items. One of
these is character special files like /dev/console that are used by applications like

Chapter 1. Configuration overview 11

syslogd. Refer to z/OS UNIX System Services Planning for more information
about UNIX items like character special files.

To the z/OS system, the file hierarchy is a collection of HFS data sets. Each HFS
data set is a mountable file system. The root file system is the first file system
mounted. Subsequent file systems can be logically mounted on a directory within
the root file system or on a directory within any mounted file system.

Except for the direction of the slashes, the Hierarchical File System is similar to a
Disk Operating System (DOS) or an OS/2® file system.

Each mountable file system resides in an HFS data set on direct access storage.
DFSMS/MVS® manages the HFS data sets and the physical files.

The root file system
The root system is the starting point for the overall HFS file structure. It contains the
root directory and any related HFS files or subdirectories. The root file system is
created as part of the installation process, either the SERVERPAC method or
CPBDO, when you install z/OS.

Understanding resolvers
The resolver acts on behalf of programs as a client that accesses name servers for
name-to-address or address-to-name resolution. The resolver can also be used to
provide protocol and services information. To resolve the query for the requesting
program, the resolver can access available name servers, use local definitions (for
example, /etc/resolv.conf, /etc/hosts, /etc/ipnodes, HOSTS.SITEINFO,
HOSTS.ADDRINFO, or ETC.IPNODES), or use a combination of both. How and if
the resolver uses name servers is controlled by TCPIP.DATA statements (resolver
directives).

The resolver address space must be started before any application or TCP/IP stack
resolver calls can occur. When the resolver address space starts, it reads an
optional resolver setup data set pointed to by the SETUP DD card in the resolver
JCL procedure. This resolver setup data set enables the following capabilities:

v Specification of a TCPIP.DATA file that contains global settings for the MVS
image. The GLOBALTCPIPDATA setup statement identifies the file.

The global TCPIP.DATA file is being provided to allow the administrator to retain
control of which resolver statements are used for name resolution, and to
eliminate the complexity of attempting to merge resolver statements from multiple
files in a predictable and useful manner.

This global TCPIP.DATA file, when specified, will become the first TCPIP.DATA
file read regardless of the Socket API library being used. Any parameters found
in this file will be global settings for this MVS image. If a global TCPIP.DATA file
has been specified then all resolver statements will only be obtained from this
file. Any of the resolver statements specified in files lower in the search order will
be ignored.

Resolver statements are those required by the resolver to process queries.
Resolver TCPIP.DATA statements are:

– DomainOrigin/Domain

– NSInterAddr/NameServer

– NSPortAddr

– ResolveVia

– ResolverTimeOut

12 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|

|
|

|

– ResolverUDPRetries

– Search

– SortList

Other statements not specified in the global TCPIP.DATA file can still be located
in one of the TCPIP.DATA files in the search order for each socket API type. For
example, if TCPIPJOBNAME is not specified in the global TCPIP.DATA file, the
resolver library will locate the next available file in the search order (the search
will depend on the socket API being used) and attempt to find the
TCPIPJOBNAME there. Note that once a file is found beyond the global
TCPIP.DATA file the searching stops. For example, if the TCPIP.DATA file was
found by way of the SYSTCPD DD card and no TCPIPJOBNAME was specified
in this file, then the normal defaults for TCPIPJOBNAME are applied (for
example, TCPIP if the native MVS API search order is used, or a null character if
the z/OS UNIX API search order is used). In effect, you can concatenate up to
two TCPIP.DATA files with this approach. Note that the search order for the local
hosts table (HOSTS.xxxxINFO, ETC.IPNODES, /etc/hosts, or /etc/ipnodes)
remains the same. Depending on the application environment, either the native
MVS or z/OS UNIX search order will be in effect.

The ability to specify a global TCPIP.DATA file has several advantages. The
administrator can decide on which options are global for the installation and
which can be specified on an application basis. For example, it is anticipated that
most administrators will prefer to control the resolver statements in TCPIP.DATA
at a global level. However, it is quite unlikely that they will want a global setting
of the TRACE RESOLVER option. This option would typically not be specified on
a global TCPIP.DATA file, rather it would get picked up from the first file found in
the search order after the global TCPIP.DATA file. This would allow application
programmers to continue to turn on the option. Another advantage of this
approach is that the administrator may not be aware of all the private
TCPIP.DATA files that may be in use on their systems. This approach allows
them to implement global options gradually versus an all or nothing approach.

Also, note that this approach lends itself to a multistack (CINET) environment.
The administrator can still set up a global TCPIP.DATA file with the global options
for this MVS image and omit specifying the TCPIPJOBNAME keyword. The
TCPIPJOBNAME keyword would then be located using the appropriate search
order. However, using the global TCPIP.DATA file with CINET requires that the
resolver TCPIP.DATA statements are able to be used by all stacks. For example,
the IP addresses specified by the NameServer statement must be accessible
from all stacks. If they are not, then the GLOBALTCPIPDATA file should not be
used and you should continue with multiple TCPIP.DATA data sets.

v Support for user specified default TCPIP.DATA file. The DEFAULTTCPIPDATA
setup statement identifies the file.

The user can specify the file to be used as the final location in the search order
instead of TCPIP.TCPIP.DATA. This can be used as the replacement for the
TCP/IP V3R2 EZAPPRFX sample installation job.

v Specification of the local host file search order for IPv4 and IPv6 name queries.
The COMMONSEARCH setup statement identifies that a common local host file
search order is to be used for both IPv4 and IPv6 name queries in the native
MVS and z/OS UNIX environments. The NOCOMMONSEARCH setup statement
identifies that a different local host file search order is to be used for IPv4 and
IPv6 name queries in the MVS and UNIX environments.

Chapter 1. Configuration overview 13

|
|

|

|

|
|
|
|
|

|

|
|
|
|
|
|

v Specification of a local host file that contains hard-coded IP addresses and host
names that can be used globally. The GLOBALIPNODES setup statement
identifies this file.

v Support for a user-specified default local host file. The DEFAULTIPNODES setup
statement identifies this file.

Follow the steps in “Setting up a resolver address space” to take advantage of the
resolver capabilities described above.

If the setup information is not provided, the resolver uses the applicable native MVS
or z/OS UNIX search order without any GLOBALTCPIPDATA,
DEFAULTTCPIPDATA, GLOBALIPNODES, DEFAULTIPNODES, or
COMMONSEARCH information.

Application programs using the gethostbyaddr and gethostbyname resolver calls
from the following IBM APIs result in using the z/OS Communications Server
resolver.

v z/OS Language Environment® C/C++ API

v z/OS UNIX Assembler Callable Services

v z/OS Communications Server C/C++ API

v z/OS Communications Server Callable and Macro API

v z/OS Communications Server REXX API

v z/OS Communications Server PASCAL API

Application programs using the getaddrinfo, getnameinfo, and freeaddrinfo resolver
calls from the following IBM APIs result in using the z/OS Communications Server
resolver.

v z/OS Language Environment C/C++ API

v z/OS UNIX Assembler Callable Services

v z/OS Communications Server Callable and Macro API

v z/OS Communications Server REXX API

Application programs using the sethostent, gethostent, and endhostent resolver
calls from the following IBM APIs result in using the z/OS Communications Server
resolver.

v z/OS Language Environment C/C++ API

v z/OS Communications Server C/C++ API

The z/OS Communications Server SMTP server, BIND 9 DNS and DNS V9 utilities
(dig, nslookup and nsupdate) provide their own unique resolver services. When
their resolver initializes it will use GLOBALTCPIPDATA and DEFAULTTCPIPDATA
information.

Note that the SMTP resolver only uses the first value of the SEARCH TCPIP.DATA
statement when resolving host names.

Setting up a resolver address space
There are two ways in which to start the resolver address space:

v z/OS UNIX initialization will attempt to start the resolver unless explicitly
instructed not to. Using z/OS UNIX is the recommended method since it will
ensure that the resolver is available before any applications can make a
resolution request.

14 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|

|
|

|
|
|

|
|
|

|

|

|
|
|

|

|

|

|

|
|
|

|

|

A BPXPRMxx statement, RESOLVER_PROC, is used to specify the procedure
name, if any, to be used to start the resolver address space. If the
RESOLVER_PROC statement is not in the BPXPRMxx parmlib member or is
specified with a procedure name of DEFAULT, z/OS UNIX will start a resolver
address space with the assigned name of RESOLVER. The resolver will use the
applicable search order for finding TCPIP.DATA statements but without a
GLOBALTCPIPDATA specification. If the address space cannot be started, z/OS
UNIX initialization continues.

When z/OS UNIX starts the resolver, it is started so that the resolver does not
require JES (that is, SUB=MSTR is used). For SUB=MSTR considerations, refer
to z/OS MVS JCL Reference.

If the RESOLVER_PROC statement has been used to specify a start procedure
name, then:

– To find the procedure, it must reside in a data set that is specified by the
MSTJCLxx PARMLIB member’s IEFPDSI DD card specification. For MSTJCL
considerations, refer to z/OS MVS Initialization and Tuning Reference.

– The procedure must not contain any DD cards that specify SYSOUT=*.

Since z/OS UNIX does not receive any error indication when it tries to start the
address space, it will issue an informational message containing the name of the
procedure it has started. The message will be:
BPXF224I THE RESOLVER_PROC, procname, IS BEING STARTED.

Note: If the RESOLVER_PROC statement is not present or is specified with a
procedure name of DEFAULT, procname will be RESOLVER even though
no start procedure was used. If you want to use the procedure name
RESOLVER, a RESOLVER_PROC(RESOLVER) statement must be added
to your BPXPRMxx parmlib member.

If the start procedure is not found or has a JCL error in it, the usual z/OS error
messages will be issued.

For more detailed information refer to z/OS UNIX System Services Planning.

v An installation can use its automation tools to start the resolver by use of the
MVS START operator command. If this approach to starting the resolver is used,
care should be taken to ensure that no applications that need resolver services
(for example, INETD) are started before the resolver address space is initialized.
This may mean removing the starting of INETD from the z/OS UNIX /etc/rc file
and starting INETD with automation after the resolver has initialized.

Resolver customization
If an installation wants to make use of any resolver setup statement facilities, the
following steps will be required. If the facilities are not required, no customization is
required and the search order for TCPIP.DATA will be determined by the API being
used.

v Create a resolver start procedure

The procedure requires a //SETUP DD JCL statement that points to a resolver
setup file. The z/OS CS provided sample procedure below can be found as
member EZBREPRC(alias RESOPROC) in SEZAINST:
//RESOLVER PROC PARMS=’CTRACE(CTIRES00)’
//*
//* IBM Communications Server for OS/390
//* SMP/E distribution name: EZBREPRC
//*

Chapter 1. Configuration overview 15

|
|
|

|
|

|
|
|

|

|
|
|
|
|

|

|
|
|
|
|

//* 5694-A01 (C) Copyright IBM Corp. 2001, 2002
//* Licensed Materials - Property of IBM
//*
//* Function: Start Resolver
//*
//EZBREINI EXEC PGM=EZBREINI,REGION=0M,TIME=1440,PARM=&PARMS
//*
//* When the Resolver is started by UNIX System Services it is
//* started with SUB=MSTR.
//* This means that JES services are not available to the Resolver
//* address space. Therefore, no DD cards with SYSOUT can be used.
//* See the MVS JCL Reference manual for SUB=MSTR considerations in
//* section "Running a Started Task Under the Master Subsystem".
//* This Resolver start procedure will need to reside in a data
//* set that is specified by the MSTJCLxx PARMLIB member’s
//* IEFPDSI DD card specification. If not, the procedure will
//* not be found and the Resolver will not start.
//* See the MVS Initialization and Tuning Reference manual for
//* MSTJCL considerations in section "Understanding the Master
//* Scheduler Job Control Language"
//*
//* SETUP contains Resolver setup parameters.
//* See the section on "Understanding Resolvers" in the
//* IP Configuration Guide for more information. A sample of
//* Resolver setup parameters is included in member RESSETUP
//* of the SEZAINST data set.
//*
//*SETUP DD DSN=TCPIP.TCPPARMS(SETUPRES),DISP=SHR,FREE=CLOSE
//*SETUP DD DSN=TCPIP.SETUP.RESOLVER,DISP=SHR,FREE=CLOSE
//*SETUP DD PATH=’/etc/setup.resolver’,PATHOPTS=(ORDONLY)

v Create a resolver setup file (MVS data set or HFS file)

The setup file defines the location of the global TCPIP.DATA file (MVS data set or
HFS file) and the default TCPIP.DATA name (MVS data set or HFS file). The
following statements are supported:

– comments (; or #)

– COMMONSEARCH

– DEFAULTIPNODES

– DEFAULTTCPIPDATA

– GLOBALIPNODES

– GLOBALTCPIPDATA

– NOCOMMONSEARCH

The z/OS CS provided sample setup file below can be found as member
EZBRECNF(alias RESSETUP) in SEZAINST:
;
; IBM z/OS Communications Server
; SMP/E distribution name: EZBRECNF
;
; 5694-A01 (C) Copyright IBM Corp. 2002.
; Licensed Materials - Property of IBM
;
; Function: Sample Resolver setup file
;
;
; The following statement defines the final search location for
; TCPIP.DATA statements. It will replace TCPIP.TCPIP.DATA
; It may be an MVS data set or HFS file.
;
DEFAULTTCPIPDATA(’TCPIP.TCPIP.DATA’)
;
The following statement defines the first search location for

16 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

TCPIP.DATA statements. It may be an MVS data set or HFS file.
;
; Update with the correct data set or HFS file name
;
; GLOBALTCPIPDATA(’TCPCS.SYS.TCPPARMS(GLOBAL)’)
;
; GLOBALTCPIPDATA(/etc/tcpipglobal.data)
;
The following statement defines the first search location for
IPNODES statements. It may be an MVS data set or HFS file.
;
; Update with the correct data set or HFS file name
;
; GLOBALIPNODES(’TCPCS.SYS.TCPPARMS(IPNODES)’)
;
; GLOBALIPNODES(’TCPCS.ETC.IPNODES’)
;
; GLOBALIPNODES(/etc/ipnodes)
;
The following statement defines the final search location for
IPNODES statements. It may be an MVS data set or HFS file.
;
; Update with the correct data set or HFS file name
;
; DEFAULTIPNODES(’TCPCS.SYS.TCPPARMS(IPNODES)’)
;
; DEFAULTIPNODES(’TCPCS.ETC.IPNODES’)
;
; DEFAULTIPNODES(/etc/ipnodes)
;
The following statement defines if the common search order
should be used or not.
;
NOCOMMONSEARCH
;
; COMMONSEARCH
;

If the resolver setup file is an MVS data set it must be either sequential (PS) or
partitioned (PO) organization, fixed (F) or fixed block format (FB), a logical record
length (LRECL) between 80 and 256, and have any valid blocksize (BLKSIZE)
for fixed block. If the setup file may need to be modified, a member of an MVS
partitioned data set is recommended.

If the file is an HFS file, it can reside in any directory. The maximum length of
line supported is 256 characters. If the line is greater than 256 it will be truncated
to 256 and processed.

The user ID assigned to the resolver address space needs read access (through
RACF or equivalent) to SYS1.PARMLIB, the resolver setup file, the global
TCPIP.DATA file, the default TCPIP.DATA file, the global IPNODES file, and the
default IPNODES file. Likewise, any user IDs or jobs using TCPIP facilities will
need read access to the global TCPIP.DATA file, the default TCPIP.DATA file, the
global IPNODES file, and the default IPNODES file. For example, for the MVS
data set RACF UACC=READ and for the HFS file, permission bits of 644 (Owner
can read and write, Group can read, Other can read) could be used. For an HFS
file, an OMVS segment or the default OMVS segment must be configured for the
resolver user ID and any user IDs or jobs using TCPIP facilities.

v Update the z/OS UNIX BPXPRMxx parmlib member

The resolver start procedure name should be specified as the procname in the
BPXPRMxx Parmlib member’s RESOLVER_PROC(procname) statement. If for

Chapter 1. Configuration overview 17

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

some reason the recommended method of using z/OS UNIX to start the resolver
is not desired, use the MVS START command to start the resolver address
space.

Managing the resolver address space
A BPXPRMxx statement, RESOLVER_PROC, is used to specify the procedure
name, if any, to be used to start the resolver address space. If the
RESOLVER_PROC statement is not in the BPXPRMxx parmlib member or is
specified with a procedure name of DEFAULT, z/OS UNIX will start a resolver
address space with the assigned name of RESOLVER. This name is used with the
following MVS system commands to manage the resolver address space:

v Start (S)

v Stop (P)

Stopping and restarting of the resolver should only be used if a new level of the
resolver code has been installed.

v Force

v Modify (F)

The MODIFY command should be used to dynamically change resolver setup
statements, update the resolver’s usage of TCPIP.DATA statements, or update
the resolver’s usage of local host and services tables. Dynamic changes are not
supported by the resolver provided by the SMTP server, BIND 9 DNS and DNS
V9 utilities.

Refer to z/OS Communications Server: IP System Administrator’s Commands for
command details.

The following MVS System commands can be used to control and display the
status of the resolver CTRACE facilities:

v Trace CT

v Display Trace

Refer to the z/OS Communications Server: IP Diagnosis for CTRACE usage and
control information.

Understanding search orders of configuration information
It is important to understand the search order for configuration files used by TCP/IP
functions, and when you can override the default search order with environment
variables, JCL, or other variables you provide. This knowledge allows you to
accommodate your local data set and HFS file naming standards, and it is helpful to
know the configuration data set or HFS file in use when diagnosing problems.

It is important to note that the z/OS CS environment consists of the TCP/IP address
space, z/OS CS applications, and the TCP/IP MVS applications. The TCP/IP
address space functions are also referred to as the stack. The z/OS CS
applications refer to those applications using the z/OS UNIX socket API. The
TCP/IP MVS applications refer to those applications written to the MVS APIs (for
example, C, Sockets-Extended, CICS, IMS, and REXX). The TCP/IP stack and both
sets of applications have some common (or global) configuration files, but they also
use configuration files that are different.

Another important point to note is that when a search order is applied for any
configuration file, the search ends with the first file found. Therefore, unexpected
results are possible if you place configuration information in a file that never gets

18 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|

|
|
|

found, either because other files exist earlier in the search order, or because the file
is not included in the search order chosen by the application.

Configuration data set naming conventions
When searching for configuration files, you can explicitly tell TCP/IP where most
configuration files are by using DD statements in the JCL procedures or by setting
environment variables. Otherwise, you can let TCP/IP dynamically determine the
location of the configuration files, based on search orders shown in Table 2 on
page 21.

For example, in Table 2 on page 21, for the FTP server application, if the installation
did not code the //SYSFTPD DD statement, the FTP server would search for
jobname.FTP.DATA, then file /etc/ftp.data, then data set
SYS1.TCPPARMS(FTPDATA), and finally hlq.FTP.DATA.

Dynamic data set allocation
TCP/IP makes extensive use of dynamically allocated data sets using the MVS
dynamic data set allocation function to search for configuration files. Multiple
versions of a configuration data set can exist, each having a different high-level
qualifier or middle-level qualifier. The search order for any configuration file will
determine which data set is found and used.

High-level qualifier: High-level qualifiers (HLQ) permit you to associate an
application’s configuration data set with a particular jobname or TSO user ID, or
permit you to use a default configuration data set for the application. The possible
high-level qualifiers are:

v userid

Userid is the TSO user ID which invoked the application.

v jobname

Jobname is the application’s batch JCL jobname or the name of the application’s
started procedure.

v hlq

TCP/IP is distributed with a default high-level qualifier (HLQ) of TCPIP. To
override the default HLQ used by dynamic data set allocation, specify the
DATASETPREFIX statement in the TCPIP.DATA configuration file. For most
configuration files, the DATASETPREFIX value is used as the high-level qualifier
of the data set name in the last step in the search order. Note that the
DATASETPREFIX value is not used as the high-level qualifier of the data set
name used as the last step in the search order for the PROFILE.TCPIP and
TCPIP.DATA configuration files.

Middle-level qualifiers: Multiple middle-level qualifiers (MLQ) permit the isolation
of certain profile and translation table data sets. Two of the possible middle-level
qualifiers are:

v Node name

Node name is an MLQ used in the search order for finding the configuration file
PROFILE.TCPIP. Node name is determined by the parameters specified during
VMCF initialization. For further information on initializing VMCF, refer to z/OS
Program Directory.

v Function name

The TCP/IP implementation of national language support (NLS) and double-byte
character set (DBCS) support requires the use of multiple translation tables. To
facilitate the concurrent use of multiple languages and code pages, TCP/IP uses

Chapter 1. Configuration overview 19

|
|
|
|

|

|

|

|
|

a middle-level qualifier to designate which server or client uses a particular
translation table. STANDARD, the default MLQ, is available for use if a single
translation table can be used by multiple servers or clients. The TCP/IP Telnet
client and FTP provide a TRANSLATE parameter that permits you to specify your
chosen MLQ to replace the function name for that invocation of the command.
For example, SRVRFTP is used as an MLQ by the File Transfer Protocol server.

Following are some of the data sets that are only dynamically allocated by TCP/IP
in a configuration file search order (you cannot specify them with DD statements in
JCL):
ETC.PROTO ETC.RPC
HOSTS.ADDRINFO HOSTS.SITEINFO
SRVRFTP.TCPCHBIN SRVRFTP.TCPHGBIN
SRVRFTP.TCPKJBIN SRVRFTP.TCPSCBIN
SRVRFTP.TCPXLBIN STANDARD.TCPCHBIN
STANDARD.TCPHGBIN STANDARD.TCPKJBIN
STANDARD.TCPSCBIN STANDARD.TCPXLBIN

For each of these data sets, the fully qualified name is established by using one of
the following values as the data set HLQ:

v User ID or job name

v DATASETPREFIX value

Naming conventions for dynamically allocated data sets: A data set that you
allocate explicitly (with a DD statement in JCL) can have any valid MVS data set
name or HFS file name. A data set that you create for the purpose of being
allocated dynamically by TCP/IP must use the following naming conventions.

Note: In the examples below, xxxx indicates an appropriate high-level qualifier,
yyyy indicates an appropriate middle-level qualifier, and zzzz indicates an
appropriate low-level qualifier.

v userid.yyyy.zzzz

userid is the user ID of the logged on TSO user.

v TSOprefix.yyyy.zzzz

TSOprefix is the data set prefix established by the TSO PROFILE command.
userid is the default value of TSOprefix.

v jobname.yyyy.zzzz

jobname is the job name specified on the JOB statement for a job stream or the
procedure name for a started procedure.

v hlq.yyyy.zzzz

hlq is the TCP/IP HLQ distributed as the system default, which can be overridden
by the value in the DATASETPREFIX statement.

v xxxx.nodename.zzzz

nodename is an MLQ that is used to define the data set name for the TCP/IP
stack profile data set.

v xxxx.function_name.zzzz

function_name denotes an acronym specifying a particular TCP/IP server (for
example SRVRFTP for the FTP server) and is used as an MLQ for the
translation table data set for that application.

v xxxx.private_name.zzzz

private_name is a user-specified private qualifier that can be specified as an
option on some TCP/IP commands.

v SYS1.TCPPARMS(TCPDATA)

20 z/OS V1R4.0 CS: IP Configuration Guide

The member of a system data set used to find the configuration file TCPIP.DATA.

Table 2 lists the configuration data sets used by the TCP/IP servers and functions. It
includes the name of the sample and the usage of the data set.

Table 2. TCP/IP configuration data sets

Data set (search order) Copied from Usage

hlq.ETC.IPNODES SEZAINST(EZBREIPN) One of the local host files used for
IPv6 name query, or IPv4 and IPv6
name query when COMMONSEARCH
is specified in the resolver setup file.

ETC.PROTO usr/lpp/tcpip/samples/protocol Used to map types of protocol to
integer values to determine the
availability of the specified protocol.
Required by several z/OS CS
components.
Note: The search order depends on
the type of application (z/OS UNIX or
native MVS).

ETC.RPC SEZAINST(ETCRPC) Defines RPC applications to the
Portmapper function.

ETC.SERVICES usr/lpp/tcpip/samples/services Establishes port numbers for servers
using TCP and UDP. Required for
z/OS UNIX SNMP, OROUTED, and
OMPROUTE (if the RIP protocol is
used).
Note: The search order depends on
the type of application (z/OS UNIX or
native MVS).

FTP.DATA
1. //SYSFTPD
2. userid/jobname.FTP.DATA
3. /etc/ftp.data
4. SYS1.TCPPARMS(FTPDATA)
5. hlq.FTP.DATA

SEZAINST(FTCDATA) for the client
and (FTPSDATA) for the server

Overrides default FTP client and
server parameters for the FTP server.
For more information about hlq,
jobname, or userid, see Chapter 9,
“Transferring files using FTP” on
page 383.

HOSTS.LOCAL (or /etc/hosts) SEZAINST(HOSTS) Input data set to MAKESITE for
generation of HOSTS.ADDRINFO and
HOSTS.SITEINFO.

LPD.CONFIG SEZAINST(LPDDATA) Configures the Line Printer Daemon
for the Remote Print Server.

LU62CFG SEZAINST(LU62CFG) Provides configuration parameters for
the SNALINK LU6.2 interface.

MASTER.DATA No sample provided DNS database input required for
authoritative name servers.

MIBS.DATA

1. The name of an HFS file or an
MVS file specified by the
MIBS_DATA environment variable

2. /etc/mibs.data HFS file

No sample provided Defines textual names for MIB objects
for the osnmp command.

NPSIDATE SEZAINST(NPSIDATE) Operates the TCP/IP X.25 NCP
Packet Switching Interface.

NPSIGATE SEZAINST(NPSIGATE) Supports GATE MCHs for X.25 NCP
Packet Switching Interface.

Chapter 1. Configuration overview 21

|||
|
|
|

Table 2. TCP/IP configuration data sets (continued)

Data set (search order) Copied from Usage

OMPROUTE configuration

1. The name of an HFS file or MVS
file specified by the
OMPROUTE_FILE environment
variable

2. /etc/omproute.conf

3. hlq.ETC.OMPROUTE.CONF

SEZAINST(EZAORCFG) Contains OMPROUTE configuration
statements.

OSNMP.CONF

1. /etc/osnmp.conf

2. /etc/snmpv2.conf

/usr/lpp/tcpip/samples/snmpv2.conf Defines target host security
parameters for the osnmp command.

OSNMPD.DATA

1. The name of an HFS file or MVS
file specified by the
OSNMPD_DATA environment
variable

2. /etc/osnmpd.data HFS file

3. The data set specified on the
OSNMPD DD statement in the
agent procedure

4. jobname.OSNMPD.DATA, where
jobname is the name of the job
used to start the SNMP agent

5. SYS1.TCPPARMS(OSNMPD)

6. hlq.OSNMPD.DATA, where hlq
either defaults to TCPIP or is
specified on the DATASETPREFIX
statement in the TCPIP.DATA file
being used

Note: The first file found in the
search order is used.

/usr/lpp/tcpip/samples/osnmpd.data Used by SNMP for setting values for
selected MIB objects.

PAGENT.CONF

1. File or data set specified with -c
startup option

2. File or data set specified with
PAGENT_CONFIG_FILE
environment table

3. /etc/pagent.conf

4. hlq.PAGENT.CONF

/usr/lpp/tcpip/samples/pagent.conf Defines Policy Agent configuration
parameters and optionally defines
service policies (rules and actions).

PROFILE.TCPIP

1. //PROFILE

2. job_name.node_name.TCPIP

3. hlq.node_name.TCPIP

4. job_name.PROFILE.TCPIP

5. hlq.PROFILE.TCPIP

SEZAINST(SAMPPROF) Provides TCP/IP initialization
parameters and specifications for
network interfaces and routing.

Resolver Setup File SEZAINST (RESSETUP) Provides configuration statements for
the resolver.

22 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|

|

Table 2. TCP/IP configuration data sets (continued)

Data set (search order) Copied from Usage

PW.SRC

1. The name of an HFS file or an
MVS file specified by the
PW_SRC environment variable

2. /etc/pw.src HFS file

3. The data set specified on
SYSPWSRC DD statement in the
agent procedure

4. jobname.PW.SRC, where jobname
is the name of the job used to
start the SNMP agent

5. SYS1.TCPPARMS(PWSRC)

6. hlq.PW.SRC, where hlq either
defaults to TCPIP or is specified
on the DATASETPREFIX
statement in the TCPIP.DATA file
being used

Note: The first file found in the
search order is used.

No sample provided Defines a list of community names
used when accessing objects on a
destination SNMP agent.

RSVPD.CONF

1. File or data set specified with -c
startup option

2. File or data set specified with
PAGENT_CONFIG_FILE
environment table

3. /etc/rsvpd.conf

4. hlq.RSVPD.CONF

/usr/lpp/tcpip/samples/rsvpd.conf Defines RSVP Agent configuration
parameters.

SNMPD.BOOTS

1. The name of an HFS file or an
MVS file specified by the
SNMPD_BOOTS environment
variable.

2. /etc/snmpd.boots

Note: The first file found in the
search order is used.

No sample provided Defines the SNMP agent security and
notification destinations.
Note: If the SNMPD.BOOTS file is
not provided, the SNMP agent creates
the file. If multiple SNMPv3 agents are
running on the same MVS image, use
the environment variable to specify
different SNMPD.BOOTS files for the
different agents. For security reasons,
ensure unique engine IDs are used for
different SNMP agents.

SNMPD.CONF

1. The name of an HFS file or an
MVS file specified by the
SNMPD_CONF environment
variable.

2. /etc/snmpd.conf

Note: The first file found in the
search order is used.

/usr/lpp/tcpip/samples/snmpd.conf Defines the SNMP agent security and
notification destinations.
Note: If the SNMPD.CONF file is
found, the PW.SRC file and the
SNMPTRAP.DEST files are not used.

Chapter 1. Configuration overview 23

|

Table 2. TCP/IP configuration data sets (continued)

Data set (search order) Copied from Usage

SNMPTRAP.DEST

1. The name of an HFS file or an
MVS file specified by the
SNMPTRAP_DEST environment
variable

2. /etc/snmptrap.dest HFS file

3. The data set specified on
SNMPTRAP DD statement in the
agent procedure

4. jobname.SNMPTRAP.DEST,
where jobname is the name of the
job used to start the SNMP agent

5. SYS1.TCPPARMS(SNMPTRAP)

6. hlq.SNMPTRAP.DEST, where hlq
either defaults to TCPIP or is
specified on the DATASETPREFIX
statement in the TCPIP.DATA file
being used

Note: The first file found in the
search order is used.

No sample provided Defines a list of managers to which
the SNMP agent sends traps.

SMTPCONF SEZAINST(SMTPCONF) Provides configuration parameters for
the Simple Mail Transfer Protocol.

SMTPNOTE SEZAINST(SMTPNOTE) Defines note parameters for Simple
Mail Transfer Protocol.

TCPIP.DATA SEZAINST(TCPDATA) Provides parameters for TCP/IP client
programs.
Note: The search order depends on
the type of application (z/OS UNIX or
native MVS).

TNDBCSCN SEZAINST(TNDBCSCN) Provides configuration parameters for
Telnet 3270 Transform support.

TRAPFWD.CONF

1. An HFS file or an MVS data set
specified by the
TRAPFWD_CONF environment
variable

2. /etc/trapfwd.conf

Note: The first file found in the
search order is used.

No sample provided Defines addresses to which the Trap
Forwarder Daemon forwards traps.
Note: If the environment variable is
set and if the file specified by the
environment variable is not found, the
Trap Forwarder daemon terminates.

VTAMLST SEZAINST(VTAMLST) Defines VTAM® applications and their
characteristics. Entries required for
Telnet, SNALINK LU0, SNALINK
LU6.2, and X.25 NPSI Server.

X25CONF SEZAINST(X25CONF) Provides configuration parameters for
the X.25 NCP Packet Switching
Interface.

X25VSVC SEZAINST(X25VSVC) Provides switched virtual circuit
configuration for the X.25 NCP Packet
Switching Interface.

24 z/OS V1R4.0 CS: IP Configuration Guide

Configuration files for the TCP/IP stack
Two configuration files are used by the TCP/IP stack, PROFILE.TCPIP and
TCPIP.DATA. PROFILE.TCPIP is used only for the configuration of the TCP/IP
stack. TCPIP.DATA is used during configuration of both the TCP/IP stack and
applications; the search order used to find TCPIP.DATA is the same for both the
TCP/IP stack and applications.

PROFILE.TCPIP search order
During initialization of the TCP/IP stack, system operation and configuration
parameters for the TCP/IP stack are read from the configuration file
PROFILE.TCPIP. As shown in Table 2 on page 21, the search order used by the
TCP/IP stack to find PROFILE.TCPIP involves both explicit and dynamic data set
allocation as follows:

v //PROFILE DD DSN=aaa.bbb.ccc(anyname)

v jobname.nodename.TCPIP

v hlq.nodename.TCPIP

v jobname.PROFILE.TCPIP

v TCPIP.PROFILE.TCPIP

Note: Explicitly specifying the PROFILE DD statement in the TCPIPROC JCL is the
recommended way to specify PROFILE.TCPIP. If this DD statement is
present, the data set it defines is explicitly allocated by MVS and no dynamic
allocation is done. If this statement is not present, the search order continues
to use dynamic allocation for the PROFILE.TCPIP.

Examples
The following examples show the search order used by TCP/IP to find the
configuration file PROFILE.TCPIP. These examples use the sample TCP/IP started
procedure, TCPIPROC, installed in the hlq.SEZAINST data set.

Example when DD cards are in your TCP/IP startup procedure: In this
example, the PROFILE DD cards are specified as follows:
//TCPIP PROC PARMS=’CTRACE(CTIEZB00)’
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB01G
//*
//* 5694-A01 (C) Copr. IBM Corp. 1991,2001.
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted
//* by GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions
//*
//TCPIP EXEC PGM=EZBTCPIP,
// PARM=’&PARMS’,
// REGION=0K,TIME=1440
//*...
//PROFILE DD DISP=SHR,DSN=MVSA.PROD.PARMS(PROFILE)...

Because the PROFILE DD is the first step in the search order, TCP/IP uses the
data set MVSA.PROD.PARMS(PROFILE) as the PROFILE.TCPIP configuration file.

Chapter 1. Configuration overview 25

Example when no DD cards are in your TCP/IP startup procedure: In this
example, the PROFILE DD statement is not specified:
//TCPIP PROC PARMS=’CTRACE(CTIEZB00)’
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB01G
//*
//* 5694-A01 (C) Copr. IBM Corp. 1991,2001.
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted
//* by GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions
//*
//TCPIP EXEC PGM=EZBTCPIP,
// PARM=’&PARMS’,
// REGION=0K,TIME=1440
//*...

For the configuration file PROFILE.TCPIP, the search order used is as follows:

1. PROFILE DD

No PROFILE DD exists...search continues.

2. jobname.nodename.TCPIP

If jobname.nodename.TCPIP is found, the search stops here.

3. hlq.nodename.TCPIP

If hlq.nodename.TCPIP is found, the search stops here.

4. jobname.PROFILE.TCPIP

If jobname.PROFILE.TCPIP is found, the search stops here.

5. TCPIP.PROFILE.TCPIP

TCPIP.PROFILE.TCPIP is searched last if necessary.

TCPIP.DATA search order
TCPIP.DATA is used by the stack address space as follows:

v The TCP/IP stack’s configuration component uses TCPIP.DATA during TCP/IP
stack initialization to determine the stack’s HOSTNAME. To get its value, the
z/OS UNIX environment search order is used.

v The TCP/IP stack’s TN3270 Telnet server component uses TCPIP.DATA
statements to resolve a client’s IP address to a name. To obtain the
resolver-related statements for address resolution, the native MVS environment
search order is used.

For details on the z/OS UNIX environment and native MVS environment search
orders and the usage of z/OS UNIX environment variables, see “Resolver
configuration files” on page 27.

Configuration files for TCP/IP applications
This section describes the resolver configuration files that can be used by TCP/IP
applications and the search orders for those files. In addition to resolver files, an
application can also have its own configuration files that are specific to that
application. For more information about application-specific configuration files, see
the descriptions of the individual applications in Part 2, “Server applications” on
page 267.

26 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|

|
|
|
|

|
|
|

|

|
|
|
|
|
|

Resolver configuration files
Understanding the resolver search orders used in native MVS and z/OS UNIX
environments is key to setting up your system properly.

As described in “Understanding resolvers” on page 12, the resolver can use
available name servers, local definitions, or a combination of both, to process API
resolver requests. Figure 1 shows how local definitions can be specified and
searched for when needed.

Table 3 shows the complete set of local definition possibilities available to the
resolver. The actual search order of the candidate files varies depending on the
type of API used and the resolver’s setup. The search orders are explained in more
detail in “Search orders used in the z/OS UNIX environment” on page 28 and
“Search orders used in the native MVS environment” on page 33.

Table 3. Local definitions available to resolver

File type
description

APIs affected Candidate files

Base resolver
configuration
files

All APIs 1. GLOBALTCPIPDATA

2. RESOLVER_CONFIG environment variable

3. /etc/resolv.conf

4. SYSTCPD DD-name

5. userid.TCPIP.DATA

6. jobname.TCPIP.DATA

7. SYS1.TCPPARMS(TCPDATA)

8. DEFAULTTCPIPDATA

9. TCPIP.TCPIP.DATA

TCP UDP RAW

IP

Device Interfaces

Rexx
Sockets

System
Resolver

UNIX System Services
Socket API

System
Resolver

Config
HFS files:

Config
Data Sets:

C
Sockets

IMS CICS

Sockets

Sockets Extended
Callable

Sockets Extended
Assembler MACRO

Native MVS Sockets

TCPIP.DATA
ETC.IPNODES
ETC.PROTO
ETC.SERVICES
HOSTS.ADDRINFO
HOSTS.SITEINFO

/etc/resolv.conf
/etc/protocol
/etc/services
/etc/hosts
/etc/ipnodes

Figure 1. Resolver related configuration files in z/OS UNIX and native MVS environments

Chapter 1. Configuration overview 27

|

|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|

||

|
|
||

|
|
|

||

|

|

|

|

|

|

|

|

Table 3. Local definitions available to resolver (continued)

File type
description

APIs affected Candidate files

Translate
tables

All APIs 1. X_XLATE environment variable

2. userid.STANDARD.TCPXLBIN

3. jobname.STANDARD.TCPXLBIN

4. hlq.STANDARD.TCPXLBIN

5. Resolver-provided translate table, member
STANDARD in SEZATCPX

Local host
tables

endhostent
endnetent
getaddrinfo
gethostbyaddr
gethostbyname
gethostent
GetHostNumber
GetHostResol
GetHostString
getnameinfo
getnetbyaddr
getnetbyname
getnetent
IsLocalHost
Resolve
sethostent
setnetent

1. X_SITE environment variable

2. X_ADDR environment variable

3. /etc/hosts

4. userid.HOSTS.xxxxINFO

5. jobname.HOSTS.xxxxINFO

6. hlq.HOSTS.xxxxINFO

7. GLOBALIPNODES

8. RESOLVER_IPNODES environment variable

9. userid.ETC.IPNODES

10. jobname.ETC.IPNODES

11. hlq.ETC.IPNODES

12. DEFAULTIPNODES

13. /etc/ipnodes

Protocol
information

endprotoent
getprotobyname
getprotobynumber
getprotoent
setprotoent

1. /etc/protocol

2. userid.ETC.PROTO

3. jobname.ETC.PROTO

4. hlq.ETC.PROTO

Services
information

endservent
getaddrinfo
getnameinfo
getservbyname
getservbyport
getservent
setservent

1. /etc/services

2. SERVICES DD-name

3. userid.ETC.SERVICES

4. jobname.ETC.SERVICES

5. hlq.ETC.SERVICES

Host alias
table

getaddrinfo
gethostbyname

HOSTALIASES environment variable

Search orders used in the z/OS UNIX environment
This section describes setting environment variables for configuration files, and the
search orders used in the z/OS UNIX environment for the different file types shown
in Table 3 on page 27. The z/OS UNIX socket functions utilize various types of
TCP/IP data sets and HFS files. They include:

v Base resolver configuration files

v Translate tables

v Local host tables

v Protocol information

v Services information

v Host alias table

28 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
||

|
|
||

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|
|
|
|

|

|

|

|

|

|
|
|
|
|

|

|
|
|
|
|

|

|

|

|

|

|

The particular file or table chosen can be either an MVS data set or an HFS file,
depending on the resolver configuration settings and the presence of given files on
the system.

Note: A program’s first resolver service request initializes the resolver definitions
that will be used for all resolver requests. For long running programs, the
definitions can be modified by use of the MODIFY REFRESH operator
command. For command usage and syntax, see z/OS Communications
Server: IP System Administrator’s Commands.

Setting environment variables for configuration files:

A z/OS C/C++ environment variable is an identifier used like a variable in a
program. In Table 3 on page 27, the following environment variables appear:

HOSTALIASES
The host aliases data set or file.

RESOLVER_CONFIG
The resolver configuration data sets or files.

RESOLVER_IPNODES
The IPNODES data sets or files.

X_SITE and X_ADDR
The HOSTS.SITEINFO and HOSTS.ADDRINFO data sets or files created
by the MAKESITE TSO command.

X_XLATE
The ASCII-EBCDIC translate table data set or file created by the
CONVXLAT TSO command.

Setting an environment variable so that a z/OS UNIX application is able to retrieve
the value depends on whether the z/OS UNIX application is started from the z/OS
shell or from JCL.

If the z/OS UNIX application is to be started from the z/OS shell, the export shell
command can be used to set the environment variable. For example, to set the
value of RESOLVER_CONFIG to the HFS file /etc/tcpa.data, you can code the
following export command:
export RESOLVER_CONFIG=/etc/tcpa.data

If instead of an HFS file, you want to set RESOLVER_CONFIG to the data set
MVSA.PROD.PARMS(TCPDATA), you can specify the following export command.
Be sure to put the single quotation marks around the data set name. If you do not,
your user ID will be added as a prefix to the data set name when the resolver tries
to open the file.
export RESOLVER_CONFIG="//’MVSA.PROD.PARMS(TCPDATA)’"

If the z/OS UNIX application is to be started from JCL instead of from the z/OS
shell, the environment variable needs to be passed as a parameter in the JCL of
the application. For example, the following shows the RESOLVER_CONFIG
variable set to pick up the TCPIP.DATA information from a file in the HFS:
//OSNMPD PROC
//*
//* Procedure for running the SNMP agent
//*
//OSNMPD EXEC PGM=EZASNMPD,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON) ALL31(ON)/’

Chapter 1. Configuration overview 29

|
|
|

|
|
|
|
|

|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|

|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

// ’ENVAR("RESOLVER_CONFIG=/etc/tcpa.data")/-d 0’))...

The following example shows the RESOLVER_CONFIG variable set to pick up the
TCPIP.DATA information from a partitioned data set:
//OSNMPD PROC
//*
//* Procedure for running the SNMP agent
//*
//OSNMPD EXEC PGM=EZASNMPD,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON) ALL31(ON)/’
// ’ENVAR("RESOLVER_CONFIG=//’’TCPA.MYFILE(TCPDATA)’’")/-d 0’))...

The following example shows an alternate method of accessing environment
variables:
//OSNMPD PROC
//*
//* Procedure for running the SNMP agent
//*
//OSNMPD EXEC PGM=EZASNMPD,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON) ALL31(ON)/’
// ’ENVAR("_CEE_ENVFILE=DD:STDENV")/-d 0’))
//STDENV DD DSN=TCPA.MYFILE(TCPDATA),DISP=SHR

In this case, the environment variables will be read from the file specified on the
STDENV DD statement. If this file is an MVS data set, the data set must be
allocated with RECFM=V. RECFM=F is not recommended, because RECFM=F
enables padding with blanks for the environment variables. See z/OS C/C++
Programming Guide for more information on specifying a list of environment
variables using the _CEE_ENVFILE environment variable.

Base resolver configuration files: The base resolver configuration file contains
TCPIP.DATA statements. In addition to resolver directives, it is referenced to
determine, among other things, the data set prefix (DATASETPREFIX statement’s
value) to be used when trying to access some of the configuration files specified in
this section.

The search order used to access the base resolver configuration file is as follows:

1. GLOBALTCPIPDATA

If defined, the resolver GLOBALTCPIPDATA setup statement value is used. For
a description of the GLOBALTCPIPDATA statement, see “Understanding
resolvers” on page 12.

The search continues for an additional configuration file. The search ends with
the next file found.

2. The value of the environment variable RESOLVER_CONFIG

The value of the environment variable is used. This search will fail if the file
does not exist or is allocated exclusively elsewhere.

3. /etc/resolv.conf

4. //SYSTCPD DD card

The data set allocated to the DDname SYSTCPD is used. In the z/OS UNIX
environment, a child process does not have access to the SYSTCPD DD. This
is because the SYSTCPD allocation is not inherited from the parent process
over the fork() or exec function calls.

5. userid.TCPIP.DATA

30 z/OS V1R4.0 CS: IP Configuration Guide

||||

|
|

|
|
|
|
|
|
||||

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|

|
|
|

|
|

|

|
|

|

|

|
|
|
|

|

userid is the user ID that is associated with the current security environment
(address space or task/thread)

6. SYS1.TCPPARMS(TCPDATA)

7. DEFAULTTCPIPDATA

If defined, the resolver DEFAULTTCPIPDATA setup statement value is used. For
a description of the DEFAULTTCPIPDATA statement, see “Understanding
resolvers” on page 12.

8. TCPIP.TCPIP.DATA

Any TCPIP.DATA statements that have not been found will have their default values,
if any, assigned.

Translate tables: The translate tables (EBCDIC-to-ASCII and ASCII-to-EBCDIC)
are referenced to determine the translate data sets to be used.

The search order used to access this configuration file is as follows. The search
order ends at the first file found:

1. The value of the environment variable X_XLATE

The value of the environment variable is the name of the translate table
produced by the CONVXLAT TSO command.

2. userid.STANDARD.TCPXLBIN

userid is the user ID that is associated with the current security environment
(address space or task/thread).

3. hlq.STANDARD.TCPXLBIN

hlq represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); otherwise, hlq is TCPIP by default.

4. If no table is found, the resolver uses a hardcoded default table that is identical
to the STANDARD member in the SEZATCPX data set.

Local host tables: The local host table supplies sitename information for, as one
example, resolving hostnames to host or network addresses. The local host table
can also supply address information, for example, for resolving addresses to
hostname or network names. There are different search orders used for selecting
the local host table for these different purposes. The search order to use is based
on certain resolver setup statements, the type of API invocation, and possibly the
type of host address (IPv4 versus IPv6) being requested or being resolved.

IPv4-unique search order for sitename information: The resolver uses the
IPv4-unique search order for sitename information when the resolver setup
statement NOCOMMONSEARCH is specified (or left to default), and either the:

v getaddrinfo API is attempting to locate an IPv4 address.

v gethostbyname, sethostent, gethostent, or endhostent API is invoked.

The resolver uses the IPv4-unique search order for sitename information
unconditionally for getnetbyname API calls.

The IPv4-unique search order for sitename information is as follows. The search
ends at the first file found:

1. The value of the environment variable X_SITE

The value of the environment variable is the name of the sitename information
file created by the TSO MAKESITE command.

2. /etc/hosts

Chapter 1. Configuration overview 31

|
|

|

|

|
|
|

|

|
|

|
|

|
|

|

|
|

|

|
|

|

|
|

|
|

|
|
|
|
|
|
|

|
|
|

|

|

|
|

|
|

|

|
|

|

3. userid.HOSTS.SITEINFO

userid is the user ID that is associated with the current security environment
(address space or task/thread).

4. hlq.HOSTS.SITEINFO

hlq represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); otherwise, hlq is TCPIP by default.

IPv4-unique search order for address information: The resolver uses the
IPv4-unique search order for address information when the resolver setup
statement NOCOMMONSEARCH is specified (or left to default), and either the
getnameinfo API is attempting to resolve an IPv4 address or the gethostbyaddr API
is invoked.

The resolver uses the IPv4-unique search order for address information
unconditionally for the setnetent, getnetent, endnetent, or getnetbyaddr APIs.

The IPv4-unique search order for address information is as follows. The search
ends at the first file found:

1. The value of the environment variable X_ADDR

The value of the environment variable is the name of the address information
file created by the TSO MAKESITE command.

2. /etc/hosts

3. userid.HOSTS.ADDRINFO

userid is the user ID that is associated with the current security environment
(address space or task/thread).

4. hlq.HOSTS.ADDRINFO

hlq represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); otherwise, hlq is TCPIP by default.

IPv6/common search order: The resolver uses the IPv6/common search order
when it determines that any of the following conditions exist:

v The resolver setup statement COMMONSEARCH is specified and the
getaddrinfo, gethostbyname, getnameinfo, gethostbyaddr, sethostent, gethostent,
or endhostent APIs are invoked.

v The resolver setup statement NOCOMMONSEARCH is specified (or left to
default), and the getaddrinfo API is attempting to locate an IPv6 address.

v The resolver setup statement NOCOMMONSEARCH is specified (or left to
default), and the getnameinfo API is attempting to resolve an IPv6 address.

Note: The IPv6/common search order is never used for the following API socket
calls:

v getnetbyname

v getnetbyaddr

v setnetent

v getnetent

v endnetent

The IPv6/common search order is as follows. The search ends at the first file found:

1. GLOBALIPNODES value

32 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|

|

|
|

|
|
|
|
|

|
|

|
|

|

|
|

|

|

|
|

|

|
|

|
|

|
|
|

|
|

|
|

|
|

|

|

|

|

|

|

|

If defined, the resolver GLOBALIPNODES setup statement value is used. For a
description of the GLOBALIPNODES statement, see “Understanding resolvers”
on page 12.

2. The value of the environment variable RESOLVER_IPNODES

3. userid.ETC.IPNODES

userid is the user ID that is associated with the current security environment
(address space or task/thread).

4. hlq.ETC.IPNODES

hlq represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); otherwise, hlq is TCPIP by default.

5. DEFAULTIPNODES

If defined, the resolver DEFAULTIPNODES setup statement value is used. For a
description of the DEFAULTIPNODES statement, see “Understanding resolvers”
on page 12.

6. /etc/ipnodes

Protocol information: The protocol information supplies protocol related
information for the socket calls listed in Table 3 on page 27.

The search order used to access this configuration file is as follows. The search
ends at the first file found:

1. /etc/protocol

2. userid.ETC.PROTO

userid is the user ID that is associated with the current security environment
(address space or task/thread).

3. hlq.ETC.PROTO

hlq represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); Otherwise, hlq is TCPIP by default.

Services information: The services information supplies the service information
for the socket calls listed in Table 3 on page 27.

The search order used to access this configuration file is as follows. The search
ends at the first file found:

1. /etc/services

2. userid.ETC.SERVICES

userid is the user ID that is associated with the current security environment
(address space or task/thread).

3. hlq.ETC.SERVICES

hlq represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); Otherwise, hlq is TCPIP by default.

Host alias table: The host alias table supplies hostname alias information for the
socket calls listed in Table 3 on page 27. The search order used to access this
configuration file consists only of the value of the environment variable
HOSTALIASES.

Search orders used in the native MVS environment
The native MVS environment socket functions utilize various type of TCP/IP data
sets, including:

v Base resolver configuration files

Chapter 1. Configuration overview 33

|
|
|

|

|

|
|

|

|
|

|

|
|
|

|

|
|

|
|

|

|

|
|

|

|
|

|
|

|
|

|

|

|
|

|

|
|

|
|
|
|

|
|
|

|

v Translate tables

v Local host tables

v Protocol information

v Services information

The particular file or table chosen depends on the resolver configuration settings
and the presence of given files on the system.

Note: A program’s first resolver service request initializes the resolver definitions
that will be used for all resolver requests. For long running programs, the
definitions can be modified by use of the MODIFY REFRESH operator
command. For command usage and syntax, see z/OS Communications
Server: IP System Administrator’s Commands.

Base resolver configuration files: The base resolver configuration file contains
TCPIP.DATA statements. In addition to resolver directives, it is referenced to
determine, among other things, the data set prefix (DATASETPREFIX statement’s
value) to be used when trying to access some of the configuration files specified in
this section.

The search order used to access the base resolver configuration file is as follows:

1. GLOBALTCPIPDATA.

If defined, the resolver GLOBALTCPIPDATA setup statement value is used. For
a description of the GLOBALTCPIPDATA statement, see “Understanding
resolvers” on page 12.

The search continues for an additional configuration file. The search ends with
the next file found.

2. //SYSTCPD DD card

The data set allocated to the DDname SYSTCPD is used.

3. userid/jobname.TCPIP.DATA

userid is the user ID that is associated with the current security environment
(address space or task/thread).

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

4. SYS1.TCPPARMS(TCPDATA)

5. DEFAULTTCPIPDATA

If defined, the resolver DEFAULTTCPIPDATA setup statement value is used. For
a description of the DEFAULTTCPIPDATA statement, see “Understanding
resolvers” on page 12.

6. TCPIP.TCPIP.DATA

Translate tables: The translate tables are referenced to determine the translate
data sets to be used.

The search order used to access this configuration file is as follows. The search
order ends at the first file found:

1. userid/jobname.STANDARD.TCPXLBIN

userid is the user ID that is associated with the current security environment
(address space or task/thread).

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

34 z/OS V1R4.0 CS: IP Configuration Guide

|

|

|

|

|
|

|
|
|
|
|

|
|
|
|
|

|

|

|
|
|

|
|

|

|

|

|
|

|
|

|

|

|
|
|

|

|
|

|
|

|

|
|

|
|

2. hlq.STANDARD.TCPXLBIN

hlq represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); otherwise, hlq is TCPIP by default.

3. If no table is found, the resolver uses a hardcoded default table that is identical
to the STANDARD member in the SEZATCPX data set.

Local host tables: The local host table supplies sitename information for, as one
example, resolving hostnames to host or network addresses. The local host table
can also supply address information, for example, for resolving addresses to
hostname or network names. There are different search orders used for selecting
the local host table for these different purposes. The search order to use is based
on certain resolver setup statements, the type of API invocation, and possibly the
type of host address (IPv4 versus IPv6) being requested or being resolved.

IPv4-unique search order for sitename information: The resolver uses the
IPv4-unique search order for sitename information when the resolver setup
statement NOCOMMONSEARCH is specified (or left to default), and either the:

v getaddrinfo API is attempting to locate an IPv4 address.

v gethostbyname, GetHostNumber, GetHostResol, IsLocalHost, Resolve,
sethostent, gethostent, or endhostent API is invoked.

The resolver uses the IPv4-unique search order for sitename information
unconditionally for getnetbyname API calls.

The IPv4-unique search order for sitename information is as follows. The search
ends at the first file found:

1. userid/jobname.HOSTS.SITEINFO

userid is the user ID that is associated with the current security environment
(address space or task/thread).

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

2. hlq.HOSTS.SITEINFO

hlq represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); otherwise, hlq is TCPIP by default.

IPv4-unique search order for address information: The resolver uses the
IPv4-unique search order for address information when the resolver setup
statement NOCOMMONSEARCH is specified (or left to default), and either the
getnameinfo API is attempting to resolve an IPv4 address or the gethostbyaddr or
GetHostString API is invoked.

The resolver uses the IPv4-unique search order for address information
unconditionally for the setnetent, getnetent, endnetent, or getnetbyaddr APIs.

The IPv4-unique search order for address information is as follows. The search
ends at the first file found:

1. userid/jobname.HOSTS.ADDRINFO

userid is the user ID that is associated with the current security environment
(address space or task/thread).

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

2. hlq.HOSTS.ADDRINFO

Chapter 1. Configuration overview 35

|

|
|

|
|

|
|
|
|
|
|
|

|
|
|

|

|
|

|
|

|
|

|

|
|

|
|

|

|
|

|
|
|
|
|

|
|

|
|

|

|
|

|
|

|

hlq represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); otherwise, hlq is TCPIP by default.

IPv6/common search order: The resolver uses the IPv6/common search order
when it determines that any of the following conditions exist:

v The resolver setup statement COMMONSEARCH is specified, and the
getaddrinfo, gethostbyname, getnameinfo, gethostbyaddr, GetHostNumber,
GetHostResol, GetHostString, IsLocalHost, Resolve, sethostent, gethostent, or
endhostent APIs are invoked.

v The resolver setup statement NOCOMMONSEARCH is specified (or left to
default), and the getaddrinfo API is attempting to locate an IPv6 address.

v The resolver setup statement NOCOMMONSEARCH is specified (or left to
default), and the getnameinfo or Resolve API is attempting to resolve an IPv6
address.

Note: The IPv6/common search order is never used for the following API socket
calls:

v getnetbyname

v getnetbyaddr

v setnetent

v getnetent

v endnetent

The IPv6/common search order is as follows. The search ends at the first file found:

1. GLOBALIPNODES value

If defined, the resolver GLOBALIPNODES setup statement value is used. For a
description of the GLOBALIPNODES statement, see “Understanding resolvers”
on page 12.

2. userid/jobname.ETC.IPNODES

userid is the user ID that is associated with the current security environment
(address space or task/thread).

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

3. hlq.ETC.IPNODES

hlq represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); otherwise, hlq is TCPIP by default.

4. DEFAULTIPNODES

If defined, the resolver DEFAULTIPNODES setup statement value is used. For a
description of the DEFAULTIPNODES statement, see “Understanding resolvers”
on page 12.

5. /etc/ipnodes

Protocol information: The protocol information supplies protocol related
information for the socket calls listed in Table 3 on page 27.

The search order used to access this configuration file is as follows. The search
ends at the first file found:

1. userid/jobname.ETC.PROTO

userid is the user ID that is associated with the current security environment
(address space or task/thread).

36 z/OS V1R4.0 CS: IP Configuration Guide

|
|

|
|

|
|
|
|

|
|

|
|
|

|
|

|

|

|

|

|

|

|

|
|
|

|

|
|

|
|

|

|
|

|

|
|
|

|

|
|

|
|

|

|
|

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

2. hlq.ETC.PROTO

hlq represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); Otherwise, hlq is TCPIP by default.

Services information: The services information supplies service information for
the socket calls listed in Table 3 on page 27.

The search order used to access this configuration file is as follows. The search
ends at the first file found:

1. //SERVICES DD card

The data set allocated to the DDname SERVICES is used.

2. userid/jobname.ETC.SERVICES

userid is the user ID that is associated with the current security environment
(address space or task/thread).

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

3. hlq.ETC.SERVICES

hlq represents the value of the DATASETPREFIX statement specified in the
base resolver configuration file (if found); Otherwise, hlq is TCPIP by default.

MVS-related considerations

MVS system symbols
Use of MVS system symbols in the PROFILE.TCPIP and OBEYFILE data sets is
automatically supported. This automatic support first tries to use hiperspace
memory files to perform the symbol translation, but if an error occurs, then a
temporary HFS file will be used. The temporary HFS file is created in either the
directory specified by the TMPDIR environment variable or, if the TMPDIR
environment variable is not defined, in the /tmp directory.

For MVS system symbols in other configuration files, such as TCPIP.DATA, use the
symbol translator utility, EZACFSM1, to translate the symbols before the files are
read by TCP/IP. EZACFSM1 reads an input file and writes to an output file,
translating any symbols in the process.

Note: The input file and output file can be MVS data sets or HFS files, but do not
specify the same file for both the input and output files (this results in a
return code of 45 and no translation is attempted).

For more information about the use of MVS system services, refer to z/OS MVS
Initialization and Tuning Guide.

Following is the symbol translator JCL, found in hlq.SEZAINST(CONVSYM), which
is used to start EZACFSM1:
//________ JOB (accounting,information),programmer.name,
// MSGLEVEL=(1,1),MSGCLASS=A,CLASS=A
//*
//* CS for OS/390 IP
//* SMP/E distribution name: EZACFCSY
//*
//* 5647-A01 (C) Copyright IBM Corp. 1998.
//* Licensed Materials - Property of IBM
//*

Chapter 1. Configuration overview 37

|
|

|

|
|

|
|

|
|

|

|

|

|
|

|
|

|

|
|

//* Function: System Symbols Translator JCL
//*
//* This JCL kicks off a utility that will read from
//* an input file that contains MVS System Symbols
//* and produce an output file which has those symbols
//* replaced with their substitution text, as defined
//* in the appropriate IEASYMxx PARMLIB data set; see MVS
//* Initializaton and Tuning Reference for rules about symbols.
//*
//* This JCL can be run against any of the TCP/IP configuration
//* files that contain MVS System Symbols. An example of how it
//* could be used is this; a customer could have one base TCPIP.DATA
//* file containing MVS System Symbols which they edit and maintain.
//* They would run this utility against this one file the various
//* MVS systems to produce the TCPIP.DATA file for each different
//* system.
//*
//STEP1 EXEC PGM=EZACFSM1,REGION=0K
//SYSIN DD DSN=TCP.DATA.INPUT,DISP=SHR
//*SYSIN DD PATH=’/tmp/tcp.data.input’
//* The input file can be either an MVS file or an HFS file.
//*
//*
//SYSOUT DD DSN=TCP.DATA.OUTPUT,DISP=SHR
//*SYSOUT DD PATH=’/tmp/tcp.data.output’,PATHOPTS=(OWRONLY,OCREAT),
//* PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//* The output file can be either an MVS file or an HFS file.
//*
//* The output file cannot be the same file as the input file-
//* doing so will result in a return code of 45.
//*
//* You can mix input and output file types (i.e., the input
//* can be an MVS file with the output an HFS file, or vice
//* versa).
//* Note: Other pathmodes for sysout may be used if needed.

The symbol translator utility can be used on any of the TCP/IP configuration files,
but because the PROFILE.TCPIP file is automatically translated during TCP/IP
initialization, there is no need to run the utility against that file.

Automatic restart manager (ARM)
Automatic restart manager is an MVS component that can automatically restart the
TCP/IP stack after an abnormal end (ABEND).

During initialization, TCP/IP automatically registers with the automatic restart
manager, using the following options:
REQUEST=REGISTER
ELEMENT=EZAsysclonetcpname

where:

v sysclone is a 1– or 2–character shorthand notation for the name of the MVS
system. Refer to z/OS MVS Initialization and Tuning Guide for a complete
description of the SYSCLONE static system symbol.

v tcpname is a 1– to 8–character name of the TCP/IP stack which registers with
the automatic restart manager. For example, if the SYSCLONE value is 02 and
the TCP/IP stack name is TCPCS, the resulting ELEMENT value is
EZA02TCPCS.

ELEMTYPE=SYSTCPIP
TERMTYPE=ELEMTERM

38 z/OS V1R4.0 CS: IP Configuration Guide

For more information about automatic restart manager, refer to z/OS MVS Setting
Up a Sysplex.

Logging of system messages
Syslog daemon (syslogd) is a server process that must be started as one of the first
processes in your z/OS UNIX environment. TCP/IP server applications and
components use syslogd for logging purposes and can also send trace information
to syslogd. Servers on the local system use AF_UNIX sockets to communicate with
syslogd; remote servers use AF_INET sockets. z/OS CS components use the
local1, daemon, mail, user, and auth facilities names.

Note: Each application activates and deactivates traces in a slightly different
manner. For details, refer to the chapter on the individual application in this
document.

The syslog daemon reads and logs system messages to the MVS console, log files,
SMF, other machines, or users as specified by the configuration file. If syslogd is
not started, log data from some applications will be displayed on the MVS console.
For more information on syslogd, refer to Chapter 3, “Customization” on page 101.

Note: /tmp/???.syslog is the file specified in the syslogd.conf file.

The syslogd facility uses a common mechanism for segregating messages. Table 4
on page 40 shows the facilities used by z/OS CS functions which write messages
to syslogd. The Primary syslog facility column shows the syslog facility used for
most messages logged by the application. Some applications use other facilities for
certain messages. Table 4 on page 40 also shows any additional facilities.

Remote
SyslogD

Remote
SyslogD

MVS Console

AF_INET socket

AF_UNIX socket

AF_UNIX socket

AF_INET socket

/etc/syslog.conf

/tmp/syslog.log

/tmp/???.syslog

/tmp/???.syslog

SyslogD process

Server
Process 2

Server
Process 1

UDP Port 514

Figure 2. syslogd operation

Chapter 1. Configuration overview 39

|

Table 4. syslogd facilities

Application syslogd record
identifications

Primary syslog
facility

Other syslog facility

OTELNETD telnetd local1 auth

SENDMAIL sendmail mail None

POPPER popper mail None

ORSHD rshd daemon auth

TCP/IP Configuration Config daemon None

FTP Server ftpd, ftps daemon None

Traffic Regulation
Management
Daemon (TRMD)

TRMD daemon None

ROUTED routed daemon None

NAMED named daemon None

Trap Forwarder
Daemon

trapfwd daemon None

OREXECD rexecd daemon auth

Policy Agent
(PAGENT)

Pagent daemon None

Service Level
Agreement SNMP
Subagent

PASubA daemon None

SNMP Agent
(OSNMPD)

snmpagent daemon None

PWCHANGE
Command

pwchange daemon None

PWTOKEY
Command

pwtokey daemon None

syslogd syslogd daemon None

DHCP Server dhcpsd user None

TIMED Daemon timed user None

TFTP Server tftpd user None

OMPROUTE omproute user None

OPORTMAP Server oportmap daemon None

Accounting - SMF records
Installations may use Systems Management Facilities (SMF) records for various
purposes such as:

Performance management
Performance management includes the tasks that are related to verifying
that defined service levels are met, and if not, identifying possible causes.

Aggregated information about delivered service, structured by organizational units
(for which service levels have been defined) is needed to perform these tasks.
These reports are typically time series with varying levels of time intervals, ranging
from weeks through days to a time interval that matches the SMF interval. Some
examples of potential reports related to performance management are:

40 z/OS V1R4.0 CS: IP Configuration Guide

||||

v TCP connection elapsed time per server port number per time of day (potentially
broken down on source IP address, or netmask)

v Number of TCP connections per server port number per time of day (potentially
broken down on source IP address, or netmask)

v Number of inbound/outbound bytes transferred in TCP connections per time of
day (potentially broken down in various ways: per destination or source port, per
destination IP address, netmask, or in total, etc.)

v TCP retransmission activity per time of day (potentially broken down per
destination IP address, or netmask)

v Number of outbound TCP connections per time of day (potentially broken down
per destination IP address, or netmask)

v Number of inbound/outbound UDP datagrams per time of day (potentially broken
down on server port number)

v Number of discards, error packets, and unknown protocol packets inbound and
outbound per time of day (potentially broken down per interface)

Capacity planning
Capacity planning includes tasks that are related to forecasting capacity in
terms of central processing power, memory, channel-based I/O subsystem,
network attachments, and network bandwidth. Such planning tasks are
based on analyzing trends for use of capacity during a preceding period
(typically one to two years), and applying forecasting metrics, along with
knowledge about planned launches of new applications or use of existing
applications, to this trend in order to predict capacity needs during the next
one to two year period. Some examples of potential reports related to
capacity planning are:

v Total number of TCP connections per reserved server port number per
day including analysis of average and variations around average during
daily peak periods

v Total number of UDP inbound/outbound UDP datagrams per reserved
server port number per day including average and variations around
average during daily peak periods

v Number of bytes and/or packets transferred inbound and outbound per
interface (LINK) per time of day (potentially broken down into unicasts,
broadcasts, and multicasts)

v Size of queue length per interface per time of day

Auditing
Auditing involves tasks that are related to identifying and proving that
individual events have taken place. Some examples of potential reports
related to auditing are:

v Detailed information about specific TCP connections or UDP sockets, IP
addresses, server/client identification, duration, number of bytes, etc.

v Details about activity that involves a specific client or server

v Details about a given application session based on server-specific SMF
recording, such as individual TN3270 sessions or FTP sessions

Accounting
Accounting involves tasks that are related to calculating how much each
individual user or organizational unit should be charged for use of the
shared central IS resources. Input to such calculations vary, but is often
based on CPU cycle use, data quantities, bandwidth usage, and memory
use. For TCP/IP additional metrics may be defined, such as type of service
used (FTP, LPD, Web server, etc), and TCP connection-related information

Chapter 1. Configuration overview 41

(number of connections, duration, byte transfer counts, etc). Some
examples of potential reports related to accounting are:

v Aggregated number of connections to a given server from a given source
in terms of a specific client IP address, or netmask

v Accumulated connect time to a given server from a given source in terms
of a specific client IP address, or netmask.

v Number of bytes transferred to or from a given source in terms of a
specific client IP address, or netmask.

v Application-level accounting information specific to each individual server,
for example:

– For FTP: number of transfer operations and bytes retrieved or stored
per user ID

– For TN3270: number of sessions and session-type
(TN3270/TN3270E/LINEMODE)

In general, SMF records are created for deferred processing and analysis. SMF
recording is generally not used for real-time monitoring purposes. In a TCP/IP
environment, real-time monitoring is implemented using the SNMP protocol and is
based on internal variables that are maintained by SNMP subagents, but on z/OS a
lot of the information that is written in SMF records is useful from a real-time
monitoring perspective, too.

As can be seen from the above, all disciplines require detailed data as input.
Depending on the discipline, certain levels of aggregation is performed on the raw
detailed data in order to perform the tasks of that discipline. The objective of the
TCP/IP product is to define and generate the lowest level of detail that is needed by
all disciplines. How to aggregate and the actual aggregation is performed by other
products, such as Performance Reporter for z/OS (PR), MVS Information Control
System (MICS), or SAS-based tools or, in many cases, customer-written programs.

TCP/IP– produced SMF records should not be viewed isolated. Other components
in MVS produce SMF records for the same purposes as those produced by TCP/IP.
An installation is likely to combine information from a series of subsystems in
performing detailed performance, or capacity planning. SMF records with
information about use of CPU resources and memory resources per address space
is, for example, produced by other components in MVS, and TCP/IP produced SMF
records should not duplicate that information.

The events that trigger SMF records to be written and the information included in
the SMF records must accommodate the intended purposes. There can be multiple
purposes for given SMF records.

SMF records can be cut at multiple levels in the TCP/IP protocol stack, and the type
of information that can be included depends on where the SMF record is created:

v At the IP and interface layer we know about ICMP activity, IP packet
fragmentation and reassembly activity, IP checksum errors, IGMP activity, and
ARP activity. At this layer, it is difficult to relate the information to specific users
(remote clients, local socket address spaces, and so on), so from an accounting
point of view, this information is not very interesting. From a performance and
capacity planning point of view, this information is of interest because it allows
the installation to aggregate network-layer activity to physical interfaces, which is
an important aspect of both performance and capacity management.

v At the transport protocol layer, we know about IP addresses, port numbers, and
host names. For TCP related work, we know about connections and information

42 z/OS V1R4.0 CS: IP Configuration Guide

that is related to TCP connections, such as byte counts, connection times,
reliability metrics, and performance metrics. For UDP related work, each UDP
datagram is a separate entity, and the only way we can aggregate information for
UDP is on a UDP socket-level, where we could cut SMF records every time a
UDP socket is closed.

v At the application layer, we know more details about what goes on, but every
application is different and it requires separate SMF record definitions and ability
to write the SMF records to implement application-layer SMF recording. We
currently do it for the stack Telnet server and the FTP server, but not for any
other servers.

SMF accounting issues (Record type 118)
Many installations rely on the MVS component SMF for job accounting and for
performance analysis. TCP/IP can create SMF type 118 records for certain events.
If you are running multiple stacks, SMF does not always allow you to distinguish
among them. Consider the following issues:

v There is no stack identity in SMF type 118 records. SMF records that are written
by the system address space or by standard servers may be identified as
belonging to one stack or another, based on address space naming conventions.

v SMF records written by client address spaces cannot be identified as belonging
to a single stack based on the address space naming conventions used in
standard servers.

v The only technique currently available to distinguish among records written by
various client address spaces is to assign unique SMF type 118 record subtype
intervals to each stack:

– FTP server: One or nine subtypes in FTP.DATA

– Telnet server: Two subtypes on TELNETPARMS

– API: Two subtypes on SMFPARMS

– FTP, Telnet client: One subtype on SMFPARMS

If you choose to assign subtypes, there will be an obvious impact on your local
accounting programs. SMF type 118 subtype changes and additions must be
coordinated with persons responsible for managing the use of SMF.

SMF type 118 records do not support IPv6 addresses. Thus, if you choose to
exploit IPv6 in your environment, migrate your SMF processing to use the SMF type
119 records, which do support IPv6 addresses.

An external mapping (EZASMF76 macro) is available for customers to parse the
SMF type 118 records that TCP/IP generates. EZASMF76 produces assembler level
DSECTs for the Telnet (server and client), FTP (server and client), and API SMF
records.

Note: If the BPX.SMF facility is defined and SMF records are to be written by
syslogd, the user ID with which syslogd runs must be permitted to BPX.SMF.

To create the Telnet SMF Record layout, code:
EZASMF76 TELNET=YES

To create the FTP SMF Record layout, code:
EZASMF76 FTP=YES

To create the API SMF Record layout, code:
EZASMF76 API=YES

Chapter 1. Configuration overview 43

|
|
|

SMF accounting issues (Record type 119)
SMF type 119 records contain unique stack identification sections designed to
eliminate the confusion of the type 118 records. They provide uniformity of date and
time (UTC), common record format (self-defining section and TCP/IP identification
section) and room to expand to IPv6 addresses and expanded field sizes (64 bit
versus 32 bit) for some counters. The kinds of SMF type 119 records available are:

v TCP connection initiation and termination

v UDP socket close

v TCP/IP, interface and server port statistics

v TCP/IP stack start/stop

v FTP server transfer completion

v FTP server logon failure

v FTP client transfer completion

v TN3270 server session initiation and termination

v Telnet client connection initiation and termination.

The SMF type 119 records utilize a common structure. Each record is organized as
follows:

v SMF header

v Self-defining section containing pointers to:

– TCP/IP identification section (identifies system, stack etc)

– Sections containing the data for the record

An external mapping (EZASMF77 macro) is available for customers to parse the
SMF type 119 records that TCP/IP generates.

For more detailed information refer to z/OS Communications Server: IP
Configuration Reference.

For more information about SMF, refer to z/OS MVS System Management Facilities
(SMF).

Security considerations
z/OS CS relies on a System Authorization Facility (SAF) to protect several
resources:

v Started tasks require access to a STARTED resource. This is documented in the
server information in the z/OS Communications Server: IP Configuration
Reference. Also, refer to SEZAINST(EZARACF) for SAF authorizations required
for the TCP/IP stack and servers started tasks.

v Restricting access to a network, subnetwork or particular IP address in the
network is provided by resources in the SERVAUTH class. Using NETACCESS
statements, z/OS CS can map networks, subnetworks and IP addresses to SAF
resource names. Users that are not permitted access to a particular SAF
resource are not allowed to communicate with the corresponding network,
subnetwork, or IP address. Refer to the NETACCESS statement in z/OS
Communications Server: IP Configuration Reference or “Setting up SAF Server
Access Authorization (SERVAUTH) (optional)” on page 143 for more information.

Restricting users’ ability to run applications that access specific TCP and UDP
ports is also provided by resources in the SERVAUTH class. z/OS CS provides a
one-to-one mapping between port numbers and SAF resource names. Refer to
the PORTACCESS statement in the z/OS Communications Server: IP

44 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|
|
|
|

|
|

Configuration Reference or “Setting up SAF Server Access Authorization
(SERVAUTH) (optional)” on page 143 for more information.

Also, similar to PORTACCESS, z/OS CS ensures a user attempting to connect to
a TN3270 secure port is allowed access to the port. This support is used in
conjunction with TN3270 SSL client authentication support. Refer to the
CLIENTAUTH statement in the z/OS Communications Server: IP Configuration
Reference or “Setting up SAF Server Access Authorization (SERVAUTH)
(optional)” on page 143 for more information.

Restricting access to the TCPIP stack is also controlled under z/OS CS by
defining a resource in the SERVAUTH class. Refer to “Setting up SAF Server
Access Authorization (SERVAUTH) (optional)” on page 143 for more information.

v Restricting access to operator commands is provided through the OPERCMDS
resource. z/OS CS verifies that users have access to specific OPERCMDS
resources before executing the operator command. Refer to the operator
commands information in the z/OS Communications Server: IP System
Administrator’s Commands or “Setting up SAF Server Access Authorization
(SERVAUTH) (optional)” on page 143 for more information about limiting access
to z/OS CS commands.

v Restricting access to the TSO and UNIX shell Netstat command is provided by
SERVAUTH resources. z/OS CS verifies that users have access to specific
SERVAUTH resources before executing the Netstat command. Refer to the
Netstat command information in the z/OS Communications Server: IP System
Administrator’s Commands for more information about limiting access to Netstat
command. The security product resource names in the SERVAUTH class do not
apply to DISPLAY TCPIP,,NETSTAT command. If you wish to restrict access to
DISPLAY TCPIP,,NETSTAT command, you can do so using standard operator
command restriction facility, OPERCMDS class profiles. Refer to z/OS MVS
Planning: Operations for more information.

UNIX System Services security considerations
This section describes some of the changes that have a product-wide effect. For
descriptions of changes that affect specific servers or components, see the sections
of this document that describe each server and component.

Requirement for an OMVS segment
Many TCP/IP Services components in z/OS CS now exploit z/OS UNIX services in
both the native MVS environment and in the z/OS UNIX environment. For example,
all TCP/IP socket APIs and TCP/IP applications (whether they are provided by z/OS
CS, OS/390, other IBM and non-IBM products, or written by users) now make use
of z/OS UNIX services.

Use of z/OS UNIX services requires a z/OS UNIX security context, referred to as an
OMVS segment, for the user ID associated with any unit of work requesting these
services. In other words, most user IDs requiring access to TCP/IP functions now
require an OMVS segment to be defined in Resource Access Control Facility
(RACF).

Note: The tasks, examples, and references in this section assume that you are
using the z/OS CS Security Server (RACF). If you are using a security
product from another vendor, read the documentation for that product for
instructions on task performance.

To satisfy the requirement for an OMVS segment in RACF, do one of the following:

Chapter 1. Configuration overview 45

|
|

|

v Identify all the users in your environment that use TCP/IP services and then
define OMVS RACF segments for the associated user IDs.

v Use the default OMVS segment support provided by RACF and z/OS UNIX for
users and groups.

The default OMVS segments reside in the USER profile and GROUP profile. The
names of these profiles are identified by the installation, using the
BPX.DEFAULT.USER facility class profile. The application data field in the class
profile contains the user ID, or the user ID/group ID, that is used to access the
default OMVS segments for users and groups, respectively.

Notes:

1. An HFS must be defined for the OMVS segment, and the home directory must
exist.

2. If you use a trusted or privileged started task in ICHRIN03 or the STARTED
class (especially a generic entry), be careful in assigning a default UID and GID
with facility class BPX.DEFAULT.USER. Whenever trusted or privileged is
specified, all default tasks have superuser authority.

To set up default OMVS segments, follow the steps in the Table 5.

Table 5. Setting up default of OMVS segment

Task Details

Define a Group ID (GID) to the system to be
used as an anchor for a default OMVS group
segment.

Use the following command:

ADDGROUP DEFGRP OMVS(GID(777777))

Make the GID unique so that it is easily identifiable. The GID can be
either very high or very low.

The other fields related to the GID are not likely to be used for
anything.

Define a user ID (UID) to be used as an
anchor for the default OMVS user segment.

Use the following commands:

ADDUSER DEFUSR DFLTGRP(DEFGRP) NAME(’DEFAULT USER’)
OMVS(UID(999999) HOME(’/’) PROGRAM(’/bin/sh’))

Note: To avoid giving superuser authority, do not use 0 as the UID.

When defining a UID, consider the following:

v UID should be unique so that it is easily identifiable. The number
can be very high or very low.

v HOME — Use one of the following options when defining the home
directory for the default user:

– Define the HOME directory as the root (/). The users do not
have write access. They do not need to update their home
directory.

– Define the HOME directory in the /tmp directory.

– Define a directory as you would for any other user. This directory
is then used concurrently by many users that do not have an
OMVS segment. (Not recommended)

v PROGRAM defines the default shell in this field.

The other fields related to this UID are not likely to be used for
anything.

46 z/OS V1R4.0 CS: IP Configuration Guide

|
|

|
|

|

|

|
|

Table 5. Setting up default of OMVS segment (continued)

Task Details

Set up a default for the USER OMVS
segment or set up a default UID and GID.

v To set up a default for the USER OMVS segment only, create a
facility class profile named BPX.DEFAULT.USER, and then specify
the default UID in the application data field. Use the following
commands:

RDEFINE FACILITY BPX.DEFAULT.USER APPLDATA(’DEFUSR’)
SETROPTS RACLIST(FACILITY) REFRESH

Note: You cannot set up a default GROUP OMVS segment alone.

v To set up a default UID and GID, create a facility class profile
named BPX.DEFAULT.USER, and then specify the default UID and
GID in the application data field. Use the following commands:

RDEFINE FACILITY BPX.DEFAULT.USER APPLDATA(’DEFUSR/DEFGRP’)
SETROPTS RACLIST(FACILITY) REFRESH

Be aware that the facility class must be activated. In addition, the
USER profile of the default UID and the GROUP profile of the default
GID must exist, and must contain OMVS segments with a UID and
GID, respectively.
Note: RACF does not check to ensure that the application data points
to a valid UID or UID and GID, or that the USER and GROUP profiles
contain OMVS segments with the required UID and GID.

The following process shows how the BPX.DEFAULT.USER facility class profile
works:

1. A user requests a UNIX service, which is serviced by the kernel.

2. The kernel calls the security product to extract the UID, GID, HOME, and
PROGRAM information.

3. The security product attempts to extract the OMVS segment associated with the
user. If the user is not defined, the security product attempts to extract and use
the OMVS segment for the default user that was listed in the
BPX.DEFAULT.USER profile.

A similar process is followed to obtain a GID when the user default group does not
have an OMVS segment.

Authorization of TCP/IP started task user ID
The TCP/IP address space operates as a transport provider for the INET physical
file system. For this to occur, the TCP/IP system address space must connect to
z/OS UNIX and become a z/OS UNIX process. Therefore, the started task UID that
is assigned to the TCP/IP system address space must have a valid OMVS
segment.

As a transport provider, the TCP/IP address space requires superuser privileges in
z/OS UNIX. Define the TCP/IP system address space started task UID as UID=0, or
define the TCP/IP system address space as a trusted environment in the RACF
started class profile for the TCP/IP system address space. Use the following
command to assign an OMVS segment to the TCP/IP started task user ID specified
as UID=0:
ALU tcpip_userid OMVS(UID(0) HOME(/) PGM(/bin/sh))

Chapter 1. Configuration overview 47

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|

Other user IDs requiring z/OS UNIX superuser authority
When a started procedure is used to start the following servers, daemons, and
agents, the user must be a superuser [UID(0)] or permitted to BPX.SUPERUSER
class profile.

v File transfer protocol (FTP) daemon

v Domain name system (DNS) server

v OROUTED server

v SNMP agent (OSNMPD)

v Network Print Facility (NPF) queue manager

The following daemons are managed by the inetd server, and the user specified in
file /etc/inetd.conf must be defined to RACF with UID(0). For details on inetd, refer
to z/OS UNIX System Services Planning. For details on individual daemons, refer to
the z/OS Communications Server: IP Configuration Reference.

v z/OS UNIX remote execution daemon (REXECD)

v z/OS UNIX remote shell daemon (RSHD)

v z/OS UNIX Telnet daemon

BPX.DAEMON facility class
Certain z/OS CS TCP/IP Services servers need to change the security environment
of the process in which they currently execute. For example, the FTPD daemon
creates a new z/OS UNIX process for every FTP client connecting to it. After the
new process is created, the daemon changes the security environment of the
process so that it is associated with the security context of the logged-in user. The
RACF facility class resource BPX.DAEMON is used for this purpose.

Table 6. BPX.DAEMON

Task Details

Decide if you want to activate the BPX.DAEMON level of
security by reviewing the section about BPX.DAEMON
authority in z/OS UNIX System Services Planning to
determine whether this level of security is appropriate for
your installation.

This is not required. It is recommended, however,
because it provides additional security in the z/OS UNIX
environment.

The following TCP/IP Services servers and daemons in
z/OS CS change the security environment of their
processes:

v z/OS UNIX TELNETD

v z/OS UNIX RSHD

v z/OS UNIX REXECD

v FTPD

Plan the time at which you define BPX.DAEMON
carefully.

As soon as you define the BPX.DAEMON resource, MVS
will not let programs change the security environment
unless the programs are retrieved from a
program-controlled library and unless the UID under
which the program executes has access to
BPX.DAEMON.

If you decide not to define the BPX.DAEMON facility
class, assign UID(0) for the UIDs associated with these
servers and daemons.

This is sufficient for processing. It is described in “Other
user IDs requiring z/OS UNIX superuser authority”.

48 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|

|

Table 6. BPX.DAEMON (continued)

Task Details

If you decide to define the BPX.DAEMON facility class,
grant READ access to this profile for the UIDs associated
with the listed daemons. Also, enable BPX.DAEMON
security by defining the BPX.DAEMON facility class
profile in RACF

To define the BPX.DAEMON facility class profile in RACF,
use the following command:

RDEFINE FACILITY BPX.DAEMON UACC(NONE)

Note: You must specify the name BPX.DAEMON in this
command. Substitutions for the name are not allowed.

If all the required conditions are not met, your server programs will fail as soon as
you define BPX.DAEMON. If the server programs fail, delete BPX.DAEMON, and
the setup reverts to its previous state. Check all your definitions, and make the
required corrections before trying to define BPX.DAEMON again.

If this is the first facility class profile that your installation is using, activate the
facility class using the following commands:
SETROPTS CLASSACT(FACILITY) GENERIC(FACILITY) AUDIT(FACILITY)
SETROPTS RACLIST(FACILITY)

If you start server programs using MVS start commands or from shell scripts that
execute after startup of z/OS UNIX, you must allow the UIDs access to the
BPX.DAEMON facility class resource. The following example shows the UID
(ftpd_user_ID) with which you can start the FTPD daemon:
PERMIT BPX.DAEMON CLASS(FACILITY) ID(ftpd_user_ID) ACCESS(READ)

Authorization to change the user security environment is granted only if both of the
following two conditions are true:

v The server program is executing under a UID that has READ permission to the
BPX.DAEMON facility class profile and a UID=0.

v All programs running in the address space have been retrieved from a controlled
library. Program control is discussed in the following section.

Program control
In a z/OS UNIX environment, there are additional security concerns related to the
HFS and the loading of programs that are considered trusted. Program control
facilities in RACF and z/OS UNIX provide a mechanism for ensuring that the z/OS
UNIX program loading process has the same security features that APF
authorization provides in the native MVS environment.

It is recommended that you enable program control in your installation. If you define
the BPX.DAEMON facility class, then you must enable program control for certain
z/OS CS load libraries. Review the section on program control in z/OS UNIX
System Services Planning to decide whether program control is appropriate for your
installation.

To enable program control, follow the tasks in the following table.

Table 7. Program control

Task Details

Activate program control. Use the following command:

SETROPTS WHEN(PROGRAM)

Chapter 1. Configuration overview 49

Table 7. Program control (continued)

Task Details

Set the universal access for
public library data sets (those in
LINKLSTxx) to READ. This
allows access to the controlled
programs and any other
program in those libraries. (MVS
opens the LNKLSTxx libraries
during IPL and makes these
programs public. However,
users cannot make changes.)

Use the following commands to create RACF data set profiles:

ADDSD ’cee.version.SCEERUN’ UACC(READ)
ADDSD ’SYS1.LINKLIB’ UACC(READ)
ADDSD ’TCPIP.SEZALOAD’ UACC(READ)
ADDSD ’TCPIP.SEZATCP’ UACC(READ)

Ensure all load modules that
are loaded by the
BPX.DAEMON servers into an
address space come from
controlled libraries.

If the MVS contents supervisor loads a module from a noncontrolled library, the
address space becomes dirty and loses its authorization. To prevent this from
happening, define all the libraries from which load modules can be loaded as
program controlled. At a minimum, this should include the C run-time library, the
TCP/IP Services SEZALOAD and SEZATCP libraries, SYS1.LINKLIB, and any load
libraries containing FTP security exits.

Use the following commands:

RDEFINE PROGRAM * ADDMEM(’SYS1.LINKLIB’/’volser’/NOPADCHK) UACC(READ)
RALTER PROGRAM * ADDMEM(’cee.version.SCEERUN’/’volser’/NOPADCHK) UACC(READ)
RALTER PROGRAM * ADDMEM(’TCPIP.SEZALOAD’/’volser’/NOPADCHK) UACC(READ)
RALTER PROGRAM * ADDMEM(’TCPIP.SEZATCP’/’volser’/NOPADCHK) UACC(READ)
RALTER PROGRAM * ADDMEM(’db2.DSNLOAD’/’volser’/NOPADCHK UACC(READ)
RALTER PROGRAM * ADDMEM(’db2.DSNEXIT’/’volser’/NPPADCHK UACC(READ)
RALTER PROGRAM * ADDMEM(’ftp.userexits’/’volser’/NOPADCHK UACC(READ)

Note: If you define the load libraries as controlled, do not specify a universal
access of NONE for the PROGRAM resources. If you do so for your
SYS1.LINKLIB programs, you cannot IPL your MVS system. Be aware also that in
, the volser specification is optional.

Activate RACF changes. Use the following command:

SETROPTS WHEN(PROGRAM) REFRESH

Defining TCP/IP as a UNIX System Services physical file system (PFS)
As described in z/OS Communications Server: IP Migration, the TCP/IP Services
stack in z/OS CS must be defined as a z/OS CS UNIX System Services PFS
before it can be started. This involves updating the BPXPRMxx parmlib member.
The following sample definition in BPXPRMxx defines TCP/IP as a z/OS CS UNIX
System Services PFS, where the network layer is IP Version 4 (IPv4) and
communication at the sockets layer is through the AF_INET family:
FILESYSTYPE TYPE(INET) ENTRYPOINT(EZBPFINI)

NETWORK DOMAINNAME(AF_INET)
DOMAINNUMBER(2)
MAXSOCKETS(60000)
TYPE(INET)

The sample definition above shows how to define a single TCP/IP stack as IPv4
only. To define a single TCPIP stack as both IPv4 and IPv6, add an additional
NETWORK statement in the BPXPRMxx member. The following sample definition in
BPXPRMxx defines TCP/IP as a z/OS CS UNIX System Services PFS, where the
network layer is IP Version 6 (IPv6) and communication at the sockets layer is
through the AF_INET6 family:

50 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|

|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

NETWORK DOMAINNAME(AF_INET6)
DOMAINNUMBER(19)
MAXSOCKETS(60000)
TYPE(INET)

The BPXPRMxx member contains additional z/OS CS UNIX System Services
parameters that are crucial to the proper operation of TCP/IP. Carefully examine
and specify these parameters:

v MAXPROCSYS — Specifies the maximum number of z/OS UNIX processes that
the system allows.

v MAXPROCUSER — Specifies the maximum number of processes associated
with a single z/OS CS UNIX System Services user ID.

v MAXUIDS — Specifies the maximum number of z/OS UNIX user IDs that can
operate concurrently.

v MAXFILEPROC — Specifies the maximum number of z/OS CS UNIX System
Services file descriptors a z/OS CS UNIX System Services process can allocate.
This includes access to both HFS files and z/OS CS UNIX System Services
socket descriptors. In z/OS CS, most TCP/IP applications access z/OS CS UNIX
System Services sockets, either directly or indirectly, using the TCP/IP socket
APIs. You should set the MAXFILEPROC value high enough to accommodate
the largest number of sockets a single TCP/IP application (or z/OS CS UNIX
System Services process) can allocate.

Be aware that the tn3270 Telnet server is exempt from the limit specified in this
parameter. The tn3270 Telnet server can obtain the maximum number of socket
connections for a single z/OS CS UNIX System Services process.

v MAXPTYS — Specifies the maximum number of pseudo-terminals for the
system.

v MAXTHREADTASKS — Specifies the maximum number of MVS tasks that a
single process can have concurrently active.

v MAXTHREADS — Specifies the maximum number of threads that a single
process can have concurrently active.

v MAXQUEUEDSIGS — The sum of MAXQUEUEDSIGS and MAXFILEPROC
multiplied by 2 is the system wide maximum for the total number of
asynchronous z/OS UNIX socket calls that can be outstanding. When specifying
this number, consider the following:

– For every TCP/IP connection that the TN3270 Telnet server has, there is an
asynchronous z/OS UNIX socket call outstanding. This is true for both
TN3270 and TN3270E clients.

– Any TCP/IP application, IBM or vendor supplied, that uses either the z/OS
UNIX Assembler Callable Services asyncio call or the TCPIP provided
Sockets Extended asynchronous API could have one or more outstanding
asynchronous socket calls.

The MAXSOCKETS() parameter specifies the total number of z/OS CS UNIX
System Services sockets that can be active at any one time. You must ensure that
this specification is large enough to accommodate your installation’s workload. For
example, each connection to your tn3270 Telnet server or FTP server requires one
z/OS CS UNIX System Services socket. Once the maximum number of sockets is
allocated, then no more Telnet sessions, FTP sessions, or other applications that
require z/OS CS UNIX System Services sockets can be started.

Note: If multiple NETWORK statements are defined, MAXSOCKETS can be
specified for each NETWORK statement and will be enforced separately.

Chapter 1. Configuration overview 51

|
|
|
|

|

|
|

References
For details on the BPXPRMxx member, please refer to the following guides:

v z/OS UNIX System Services Planning

v z/OS MVS Initialization and Tuning Reference

v z/OS UNIX System Services File System Interface Reference

Performance considerations
Follow the guidelines found in the z/OS MVS Initialization and Tuning Reference. If
your installation is running Workload Manager, follow the guidelines found in z/OS
MVS Planning: Workload Management.

It is necessary that VTAM, TCPIP and some associated server applications are able
to obtain cycles in order to maintain their network presences. In general, we
recommend VTAM and TCPIP have a higher dispatching priority than the
applications that use their services. Server applications such as OMPROUTE,
OROUTED and FTPD should be set at or just below TCPIP’s value. If running
WLM, these tasks should be assigned to the SYSSTC service class. Additionally,
making these tasks non-swappable will assure that they will be available during
periods of high CPU usage.

Fast path support
For applications that have extremely strict communications path-length
requirements, an optional extension has been provided to further reduce overhead
resulting from the z/OS UNIX-to-TCP/IP stack communications. This extension is
only available to applications using the UNIX System Services (USS) Callable
Services Socket API or the C/C++ socket API supported by the Language
Environment (LE). It is not available to applications using the native MVS socket
APIs (such as C/C++, EZASMI macro, EZASOKET, REXX, or CICS socket APIs)
provided by the Communications Server. Exploitation of this extension is entirely
optional.

This feature can be activated for an entire USS process using the z/OS UNIX
_BPXK_INET_FASTPATH environmental variable. The value of this variable
determines whether a socket application is marked fast path. A C/C++ LE
application can set the variable by invoking the setenv() service, or you can export
the variable to the z/OS UNIX shell environment before the socket application is
invoked. An application using the USS Callable Services APIs can set this variable
using the BPX1ENV service.

Note: z/OS UNIX environmental variables have a process-wide scope only—that is,
they usually affect a single MVS address space only. It is possible, however,
to have multiple UNIX processes within a single address space. In this
scenario, the setting of this environmental variable might vary for each
process within the address space. It is not a problem if some of your
applications exploit fast path services, while others do not. When a socket
application is marked as fast path, the communications overhead is reduced
on the following socket syscalls:

v - send()

v - recv()

v - sendto()

v - recvfrom()

52 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|

|

|

v - sendmsg()

v - recvmsg()

Although applications are more efficient when using the environmental variable,
they are not XPG compliant, and POSIX signals are not supported. Applications can
be interrupted only with the SIGKILL terminating signal, and they cannot be
debugged using the interactive z/OS UNIX dbx debugger. You can, however,
develop and test an application using the dbx debugger without setting the
environmental variable, and then execute the application in production with the
environmental variable set. Also, note that applications using the USS
asynchronous socket interface (BPX1AIO) to invoke synchronous socket operations
(that is, setting the AioSync bit in the AIOCB) cannot use the BPX1AIO service to
cancel outstanding synchronous calls on sockets that are marked as fast path.
Doing so will cause the cancel operation to hang.

For environments that do not use common INET, the value of this variable should
be set to the name specified on the FILESYSTYPE TYPE() parameter in the
BPXPRMxx parmlib member.

For common INET environments, the value used to set the environmental variable
depends on whether the application is using the TCP or UDP protocols. In a
common INET environment, the variable should be set as follows:

v For UDP applications, it should be set to the name of the TCP/IP stack as
specified on the SUBFILESYSTYPE NAME() parameter in the BPXPRMxx
parmlib member. The socket application is explicitly associated with the TCP/IP
stack named in the environmental variable (that is, the TCP/IP stack name). This
means that the socket application can communicate with partners that are
accessible only through the specific TCP/IP stack interfaces. For UDP, the
environmental variable effectively overrides the support provided by common
INET. You should take this contingency into account before activating fast path
for a UDP-based application.

Note that if the UDP application already establishes affinity to a specific TCP/IP
stack using other means, such as setting the
_BPXK_SETIBMOPT_TRANSPORT environment variable, using setibmopt(),
BPX1PCT, and so on, the setting of the fast path variable is ignored. As a result,
UDP applications that require fast path support and affinity to a specific TCP/IP
stack must do so using the _BPXK_INET_FASTPATH environmental variable.

v For TCP applications, the variable can be set to an asterisk (*), indicating that
any TCP/IP stack in the common INET configuration can be used. This allows all
TCP/IP stacks that support the fast path model to obtain the fast path
performance benefits automatically. TCP servers are not bound to a specific
TCP/IP stack, even if they specify a specific TCP/IP stack name on the
environmental variable; instead, they can listen for inbound connections across
all TCP/IP stacks. When a connection arrives from the TCP/IP stack named in
the environmental variable [at the time of the accept()], it is automatically marked
as fast path. Connections that arrive from TCP/IP stacks that are not named by
the current environmental variable value are not marked as fast path.

Note, however, that certain TCP/IP API functions, such as the resolver services
[that is, gethostbyname(), gethostbyaddr(), getaddrinfo(), and getnameinfo()] and
the network interface identification services [that is, if_nameindex(),
if_nametoindex(), and if_indextoname()] use UDP sockets internally to perform
their processing. Consequently, if a specific TCP/IP stack name is specified on
the environmental variable, these hidden UDP sockets will only be associated
with the named TCP/IP stack, which might have undesirable effects. For
example, any resolver API queries resulting in communications with a domain

Chapter 1. Configuration overview 53

|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

name server will occur only over the specified TCP/IP stack. As a result, it is
strongly recommended that TCP applications set the environmental variable to
the special asterisk (*) value. If the application requires affinity to a specific
TCP/IP stack, it should do so using any of the facilities that are provided by USS,
such as setibmopt(), BPX1PCT, and so on. For more details on establishing
affinity to a specific TCP/IP stack, refer to z/OS UNIX System Services Planning.

Applications can also enable fast path processing for a single socket by issuing the
Iocc#FastPath IOCTL for the socket, using the w_ioctl() or the BPX1IOC APIs. Note
that this IOCTL is only effective if it is issued against a socket that is already
associated with a specific TCP/IP stack. Sockets are considered associated with a
specific TCP/IP stack if they meet any of the following conditions:

v The application has explicit process affinity to a specific TCP/IP stack [that is, by
setting the _BPXK_SETIBMOPT_TRANSPORT environmental variable, using
setibmopt(), BPX1PCT, and so on].

v TCP/IP stack affinity has been explicitly established for this socket (that is, using
the SIOCSETRTTD IOCTL).

v A bind() has already been issued for the socket using a specific IP address (that
is, not INADDR_ANY).

v A TCP (that is, streams) socket that is connected. This includes TCP sockets that
are returned as a result of accept() or sockets that a connect() was issued for.

The Iocc#FastPath constant is defined in the BPXYIOCC. Note that this IOCTL
requires a 4-byte argument as input. This argument should be set to a nonzero
value to activate fast path, or a zero value to disable fast path on the specified
socket.

Considerations for multiple instances of TCP/IP
The z/OS Communications Server TCP/IP stack is a multiple-processor capable
stack, which means that it can concurrently exploit all available processors on a
system. Starting multiple stacks will not yield a significant increase in throughput.

In addition, running multiple z/OS Communications Server TCP/IP stacks requires
additional system resources, such as storage, CPU cycles, and DASD. It also adds
a significant level of complexity to the system administration tasks for TCP/IP.

For these reasons, it is suggested that in most cases you use the INET
configuration, which supports a single TCP/IP stack. However, there are some
special situations where running multiple stacks can provide a benefit. For example,
you might want to run two separate stacks for intranet and Internet traffic, or
AnyNet® Sockets over SNA in conjunction with one or more TCPIP stacks.

Common INET physical file system (CINET PFS)
If you wish to run multiple z/OS Communications Server TCP/IP stacks
concurrently, you must use the Common INET (CINET) configuration. In this
configuration, up to a maximum of eight TCP/IP stacks can be active at any time.

When the CINET configuration is used, the CINET PFS is inserted between the LFS
and the TCP/IP PFS for each stack. The CINET PFS maintains an internal copy of
each TCP/IP stack’s IP configuration, so that it can preroute a socket call to the
correct TCP/IP stack. This allows most socket programs to run with multiple stack

54 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

support with no change to the application. In addition, CINET supports IPv6, and is
capable of supporting underlying TCP/IP stacks in IPv4/IPv6 dual mode or in
IPv4-only mode.

You can specify your choice of INET (single stack) or CINET (multiple stack)
support on the NETWORK, DOMAINNAME, FILESYSTYPE, and
SUBFILESYSTYPE statements of SYS1.PARMLIB(BPXPRMxx). For more
information about the BPXPRMxx statements, refer to “Specifying BPXPRMxx
values for a CINET configuration” on page 64 and z/OS UNIX System Services
Planning.

Port management overview
When there is a single transport provider, and the relationship of server to transport
provider is 1:1, port management is relatively simple. Using the PORT statement,
the port number can be reserved for the server in the PROFILE.TCPIP for that
single transport provider.

Port management becomes more complex in a CINET environment where there are
multiple transport providers (multiple instances of TCP/IP) and a potential for
multiple combinations of the same server (for example, z/OS UNIX and
TN3270/TN3270E Telnet).

In a multiple transport provider environment, the following questions need to be
answered for each server in an installation:

v Is the server generic so that it can communicate with multiple TCP/IPs or does
the server have an affinity for one instance of the transport providers and can
only communicate with one TCP/IP?

v How can ports be reserved across multiple transport providers? When is the port
reservation determined by MVS rather than by the job name, procedure name, or
user ID?

v How can you synchronize between BPXPARMS and PORTRANGE for
ephemeral port reservation?

v How can TCP/IP distinguish between two different instances of Telnet (z/OS
UNIX Telnet and TN3270/TN3270E Telnet)?

Generic server versus server with affinity for a specific transport
provider
The following sections describe the differences between generic servers and
servers with affinities for specific transport providers.

Generic server: A generic server, a server without an affinity for a specific
transport provider, provides service to any client on the network. (See Figure 3 on
page 56.) FTP is an example of a generic server. The transport provider is merely a
connection linking client and server. The service File Transfer is not related to the
internal functioning of the transport provider, and the server can communicate
concurrently over any number of transport providers.

Chapter 1. Configuration overview 55

|
|
|

|
|
|
|
|
|

|

Server with an affinity for a specific transport provider: When the service is
related to the internal functioning of the transport provider (for example, Telnet,
OMPROUTE, OSNMPD, and the command, onetstat), there must be an explicit
binding of the server application to the chosen transport provider. (See Figure 4 on
page 57.) There must also be a way to specify the single transport to be chosen.

Figure 3. Generic server

56 z/OS V1R4.0 CS: IP Configuration Guide

With the exception of applications that use the socket API provided by TCP/IP, other
IBM-supplied applications that use the z/OS UNIX socket API and that must bind to
a specific transport provider use the z/OS UNIX socket call setibmopt() (refer to
z/OS C/C++ Run-Time Library Reference) to specify which TCP they have chosen.
A C function __iptcpn(), described in the z/OS C/C++ Run-Time Library Reference,
enables the application to search the TCPIP.DATA file to find the name of the
specific TCP/IP. (See Figure 5.) An application that uses the z/OS LE runtime can
also establish stack affinity by setting the environment variable
_BPXK_SETIBMOPT_TRANSPORT.

Figure 4. Server with affinity for a specific transport provider

Figure 5. Example of binding an application to a specific transport provider

Chapter 1. Configuration overview 57

|
|
|

Generic servers in a CINET environment
In z/OS CS, you can configure multiple TCP/IP stacks in a single MVS image using
the CINET feature. In a CINET configuration, an application using the z/OS UNIX
socket interface can get transparent access to all the TCP/IP protocol stacks
configured under CINET. For example, when an application coded to z/OS UNIX
sockets performs a SOCKET/BIND/LISTEN in a CINET environment, the request is
propagated by CINET to all the TCP/IP stacks. This application can then service
client requests that arrive into any of the configured TCP/IP stacks without having
any awareness of this fact. This type of application is often referred to as a generic
server or daemon.

The following servers or daemons shipped by z/OS CS are generic:

v FTPD

v z/OS UNIX RSHD

v z/OS UNIX REXECD

v z/OS UNIX TELNETD

v z/OS UNIX SENDMAIL

v z/OS UNIX POPPER

v TFTPD

v TIMED

v z/OS UNIX Portmap

z/OS UNIX RSHD, REXECD and TELNETD are usually started by the INETD
daemon, which is shipped as part of the z/OS UNIX. Because INETD is also a
generic daemon, any server processes started by INETD inherently become generic
servers as well.

If a server started by INETD (a generic server) requires affinity to a specific stack,
this affinity can be accomplished by use of the _BPXK_SETIBMOPT_TRANSPORT
environment variable. For more information about the
_BPXK_SETIBMOPT_TRANSPORT environment variable refer to z/OS UNIX
System Services Planning.

The _BPXK_SETIBMOPT_TRANSPORT environment variable, when set, has an
effect similar to the setibmopt() function call provided by the C/C++ compiler and
described in the z/OS C/C++ Run-Time Library Reference. This variable can be set
in the JCL for a started procedure or batch job that executes a z/OS UNIX C/C++
program to indicate which TCP/IP stack instance the application should bind to.
TCP/IP applications that require affinity to a specific TCP/IP stack, like OSNMPD
and OROUTED, use the setibmopt() function call directly. The
_BPXK_SETIBMOPT_TRANSPORT environment variable basically provides the
ability to bind a generic server type of application to a specific stack.

For example, if you had two TCP/IP stacks configured under CINET, one named
TCPIP and the other TCPIPOE, and you wanted to start an FTPD server instance
that was associated with TCPIPOE, you could modify the FTPD procedure as
follows:
//FTPD PROC MODULE=’FTPD’,PARMS=’TRACE’
//FTPD EXEC PGM=&MODULE,REGION=7M,TIME=NOLIMIT,
// PARM=(’POSIX(ON) ALL31(ON)’,
// ’ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIPOE")’,
// ’/&PARMS’)
//CEEDUMP DD SYSOUT=*
//SYSFTSX DD DISP=SHR,DSN=TCPV34.STANDARD.TCPXLBIN

58 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|

|

All the parameters specified prior to the slash (/) in the parameter statement are
processed by the C/C++ run time library. Parameters to be passed to the FTPD
program must appear after the slash (/). Also note how the parameters were split
over three lines in this example because they could not fit on a single line.

The following example uses JCL for the started procedure for INETD:
//INETD PROC
//**
//INETD EXEC PGM=BPXBATCH,
//* PARM=’PGM /usr/sbin/inetd -d /etc/inetd.conf’
// PARM=’PGM /usr/sbin/inetd //’’USER1.INETD.CONF’’’
//*
//STDERR DD PATH=’/tmp/inetd.debug.stderr’,
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//STDOUT DD PATH=’/tmp/inetd.debug.stdout’,
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//STDENV DD DISP=SHR,DSN=USER1.INETD.ENVIRON

The STDENV data set would contain the _BPX_SETIBMOPT_TRANSPORT
variable as follows:
_BPXK_SETIBMOPT_TRANSPORT=TCPIPOE

In the previous examples, INETD was also passed its configuration file as a
parameter. In our examples, this file is an MVS data set rather than an HFS file;
therefore, it requires the additional double slash (//) and quotes that the example
shows.

Multiple instances of INETD are not allowed, even if each instance is bound to a
different TCP/IP stack. This is an INETD restriction, not a TCP/IP restriction.
Therefore, if you decide to make INETD have affinity to a specific stack, then that is
the only INETD instance that you will be able to have running in that MVS image.

Notes:

1. The _BPXK_SETIBMOPT_TRANSPORT variable should be specified only for a
generic server type of application.

If specified for a non-generic server and/or non-z/OS UNIX application it will not
have any effect.

2. The name specified for _BPXK_SETIBMOPT_TRANSPORT must match the job
name associated with the TCP/IP stack.

If the name specified does not match the job name of any TCP/IP stacks
defined for CINET, the application will receive a z/OS UNIX return code of
X’3F3’ and a return value of X’005A’ and may be accompanied by the following
message:
EDC8011I A name of a PFS was specified that either is
not configured or is not a Sockets PFS.

If the name specified does not match the job name of any currently active
TCP/IP stack defined under CINET, the application will receive a z/OS UNIX
return code of X’70’ and a return value of X’0296’ and may be accompanied by
the following message:
EDC5112I Resource temporarily unavailable.

3. For more detailed information about requesting transport affinity, refer to z/OS
UNIX System Services Planning.

Chapter 1. Configuration overview 59

|

|

Port reservation across multiple transport providers
When there are multiple transport providers, be sure to synchronize the PORT
statements in each of the PROFILE.TCPIP files to ensure that the port reservations
for each stack match the port definitions for the servers that will be using that stack.

For more information about reserving ports with the PORT statement, see
Chapter 3, “Customization” on page 101.

Ephemeral ports: When running with multiple transport providers, just as it is
necessary to synchronize PORT reservations for specific applications across all
stacks, it is required to synchronize reservations for port numbers that will be
dynamically assigned across all stacks. These are the ephemeral ports above 1023,
which are assigned by the stack when none is specified on the application bind().
To reserve a group of ports in the PROFILE.TCPIP, use PORTRANGE. For more
information about PORTRANGE, see Chapter 3, “Customization” on page 101.
Specify the same PORTRANGE for every stack. In addition, you need to let the
z/OS UNIX CINET know which ports are guaranteed to be available on every stack.
The following is an example of reserving ports 4000 to 4999 in the two required
files:

v PROFILE.TCPIP

– PORTRANGE 4000 1000 TCP OMVS ; Reserved for OMVS

– PORTRANGE 4000 1000 UDP OMVS ; Reserved for OMVS

v BPXPRMxx parmlib member

– NETWORK DOMAINNAME(AF_INET)

– INADDRANYPORT(4000)

– INADDRANYCOUNT(1000)

Note: When IPv6 is configured and there are two NETWORK statements,
INADDRANYPORT and INADDRANYCOUNT only need to be specified for
the NETWORK statement for AF_INET and not for AF_INET6. If they are
specified for AF_INET6, they are ignored and the values from the
NETWORK statement for AF_INET are used if provided. Otherwise, the
default values are used.

Selecting a stack when running multiple instances of TCP/IP
Socket application programs in a multi-stack (CINET) environment must contend
with the following:

v How the socket program selects which TCP/IP stack to use for its socket
communication

v How the TCP/IP resolver code executing in the socket application address space
decides which TCP/IP resolver configuration data sets to allocate

Note: If a resolver GLOBALTCPIPDATA setup file is used, a local TCPIP.DATA
cannot override any explicit statements in the global file and cannot
override any resolver statements. Therefore, in a CINET environment, the
TCPIPJOBNAME statement should not be specified in the
GLOBALTCPIPDATA file. Also, using the GLOBALTCPIPDATA file with
CINET requires that the resolver TCPIP.DATA statements are able to be
used by all stacks. For example, the IP addresses specified by the
NameServer statement must be accessible from all stacks. If they are not,
then the GLOBALTCPIPDATA file should not be used and you should
continue with multiple TCPIP.DATA data sets. For details, see
“Understanding resolvers” on page 12.

60 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

To answer these questions, a distinction must be made between standard servers
and clients (those that come with the z/OS CS product), and other socket
application programs, including those you might have written yourself.

Standard servers and clients
The anchor configuration data set is the TCPIP.DATA data set. This is the base
resolver configuration data set with information on host name, domain origin, and so
on. It holds the TCPIPJOBNAME statement, which identifies the TCP/IP stack to
use, and the DATASETPREFIX statement, which is used by the resolver code and
other services when allocating configuration data sets. For more information on
these data sets, see “Configuration files for TCP/IP applications” on page 26.

The key to selecting both a specific stack and resolver configuration data sets is to
control which TCPIP.DATA data set a standard server or client address space
allocates. Applications that use the z/OS UNIX API can use Common INET to
determine which stack an application will use. But, it is important to ensure that the
search order and the contents of the resolver configuration data set are understood.

Native MVS servers and clients search for TCPIP.DATA in sequences as described
in “Search orders used in the native MVS environment” on page 33.

z/OS UNIX servers and clients will search for TCPIP.DATA in sequences as
described in “Search orders used in the z/OS UNIX environment” on page 28.

Nonstandard servers and clients
Nonstandard servers and clients (those that do not come with the z/OS CS product)
also use TCPIP.DATA to decide which resolver configuration data sets to allocate.
Depending on the socket API used, they might or might not use the
TCPIPJOBNAME parameter to select a stack.

If you run sockets programs from other products or vendors, you may want to know
which sockets API was used to develop the program, and which techniques, if any,
the program uses to specify the name of the TCP/IP system address space. As long
as application programs that use a TCP/IP socket library do not specify anything
specific on calls setibmopt(), Initialize, or INITAPI, the TCPIPJOBNAME from a
TCPIP.DATA data set will be used for finding a TCP/IP system address space
name.

Table 8 depicts the differences that prevail in stack selection depending on the
TCP/IP socket API under which you are running the socket program.

Table 8. How your own socket programs select a stack

C sockets Callable and Macro Pascal sockets REXX sockets

SETIBMOPT or
TCPIPJOBNAME from
TCPIP.DATA

TCPNAME on
INITAPI or
TCPIPJOBNAME
from TCPIP.DATA

TCPIPJOBNAME
from TCPIP.DATA

Service on Initialize
or TCPIPJOBNAME
from TCPIP.DATA

Callable and Macro programs might have a configuration option to specify the TCP/IP
system address space name, or might interrogate the available stacks via the getibmopt()
call.

A Callable or Macro program does not have to call INITAPI. If INITAPI is not called,
an implicit INITAPI is performed with the value taken from TCPIPJOBNAME in a

Chapter 1. Configuration overview 61

|

|
|
|
|

|

|

|

|
|
|

|
|

|

|

|
|
|

|

|

TCPIP.DATA data set. If INITAPI is called with the TCPNAME parameter specified
as a space, the TCP/IP system address space name results in the
TCPIPJOBNAME keyword value.

In a z/OS UNIX INET (single stack) environment, the socket application program is
always associated with the single TCP/IP stack. In the z/OS UNIX Common INET
(CINET) environment, your application will be associated with multiple TCP/IP
stacks unless the application specifically associates with a particular stack using the
z/OS UNIX socket call setibmopt(). For other ways of requesting stack affinity in a
CINET environment, refer to z/OS UNIX System Services Planning.

TCP/IP TSO clients
TSO client functions can be directed against any of a number of TCP/IP stacks.
Obviously, the client function must be able to find the TCPIP.DATA appropriate to
the stack of interest at any one time. Some TSO client commands provide a
parameter to specify the stack to be used. For those that do not, the following
methods are available for finding the relevant TCPIP.DATA:

v Add a SYSTCPD DD statement to your TSO logon procedure. The issue with this
approach is that a separate TSO logon procedure per stack is required, and
users have to log off TSO and log on again using another TSO logon procedure
in order to switch from one stack to another.

v Use one common TSO logon procedure without a SYSTCPD DD statement.
Before a TSO user starts any TCP/IP client programs, the user has to issue a
TSO ALLOC command wherein the user allocates a TCPIP.DATA data set to DD
name SYSTCPD. To switch from one stack to another, the user simply has to
deallocate the current SYSTCPD allocation (for example, TSO FREE command)
and allocate another TCPIP.DATA data set.

v Combine the first and second methods. Use one logon procedure to specify a
SYSTCPD DD for a default stack. To switch stacks, issue TSO ALLOC to allocate
a new SYSTCPD. To switch back, issue TSO ALLOC again with the name that
was on the SYSTCPD DD in the logon procedure. The disadvantage to this
approach is that the name that was on the SYSTCPD DD is hidden in the logon
procedure and needs to be retrieved or remembered.

The last method can be implemented by creating a small REXX program for every
TCP/IP stack on your MVS system. For each stack create a REXX program with
the name of the stack (for example, T18A or T18B). Whenever TSO users want to
use the T18A stack, they run the T18A REXX program. Any TCP/IP functions
invoked thereafter will use the T18A stack for socket communication. If users want
to switch to the T18B stack, they run the T18B REXX program. See Figure 6 on
page 63 for an example.

62 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|
|
|
|

|
|
|
|
|

Selecting configuration data sets
The resolver code and other services that execute as part of the socket program
address space to service calls such as gethostbyname(), getservbyname() and
getprotobyname() allocate one or more resolver configuration files to service these
calls. All socket programs, including standard servers and clients and homegrown
socket programs, need access to resolver configuration files. For information on
how the resolver configuration files are found and used, see “Configuration files for
TCP/IP applications” on page 26.

Sharing resolver configuration data sets
The general recommendation is to use separate DATASETPREFIX values for each
stack and create separate copies of the required configuration data sets; at the very
least, create separate copies of the resolver configuration data sets. For a test and
a production stack, however, you would probably use different DATASETPREFIX
values. However, if the stacks are functionally identical, you may share the same
DATASETPREFIX values and many of the same configuration data sets. You need
separate TCPIP.DATA data sets because of the two different TCPIPJOBNAMEs. On
the other hand, you may choose to share the resolver configuration data sets
between the stacks by using the same DATASETPREFIX value in each
TCPIP.DATA data set.

In addition to separate TCPIP.DATA data sets, separate /etc/resolv.conf files might
also be necessary. If this is the case, use the environment variable
RESOLVER_CONFIG to point to the appropriate resolver information.

Exercise caution if servers use DATASETPREFIX to allocate server-specific
configuration data sets. Try to use explicit allocation as far as possible in your
server JCL procedures. Most servers allow you to explicitly allocate their
configuration data sets using DD statements.

Some servers may use DATASETPREFIX to create new data sets. Servers that do
create new data sets allow you to specify an alternate data set prefix for the data
sets that are created. NPF creates new sequential data sets with captured print
data. NPF has a special keyword in NPF.DATA for this purpose; it is called

Figure 6. REXX program to switch TSO user to another TCP/IP stack

Chapter 1. Configuration overview 63

|

|
|
|

NPFPRINTPREFIX. If this keyword is specified, NPF will use that as the high-level
qualifier for newly created print data sets instead of taking the DATASETPREFIX
value from TCPIP.DATA. Another example of a server that creates new data sets is
the SMTP server.

Specifying BPXPRMxx values for a CINET configuration
For a detailed description of parameters in SYS1.PARMLIB(BPXPRMxx), refer to
z/OS UNIX System Services Planning and z/OS MVS Initialization and Tuning
Guide.

�1� CINET and BPXTCINT specify the use of CINET.

�2� The MAXSOCKETS operand specifies the maximum number of sockets that
can be obtained for the given file system type. It should be large enough for the
number of sockets needed for applications using z/OS CS. MAXSOCKETS is
enforced independently for AF_INET (IPv4 sockets) and AF_INET6 (IPv6 sockets).

�3� INADDRANYPORT and INADDRANYCOUNT specify the first ephemeral port
number and the range of ports for z/OS UNIX. These values have to match the
PORTRANGE definitions in your PROFILE data sets for both TCP/IP stacks.
INADDRANYPORT and INADDRANYCOUNT should not be specified in the
NETWORK statement for AF_INET6. If these parameters are specifed in the
NETWORK statement for AF_INET6, they are ignored. The INADDRANYPORT and
INADDRANYCOUNT values for AF_INET6 are set to the same values specifed for
AF_INET.

�4� This additional NETWORK statement is required if you want a TCP/IP stack to
also support IPv6. Omit this statement if you do not want the stack to support IPv6
(that is, the stack will support IPv4 only).

�5� A transport provider stack for CINET is specified with a SUBFILESYSTYPE
statement. The NAME field must match the address space name for the TCP/IP

/* AF_INET file system for sockets */
/* CINET support - BPXTCINT */

FILESYSTYPE TYPE(CINET)
ENTRYPOINT(BPXTCINT) �1�

NETWORK DOMAINNAME(AF_INET)
DOMAINNUMBER(2)
MAXSOCKETS(10000) �2� TYPE(CINET)
INADDRANYPORT(10000) �3�
INADDRANYCOUNT(2000)

NETWORK DOMAINNAME(AF_INET6)�4�
DOMAINNUMBER(19)
MAXSOCKETS(10000) �2� TYPE(CINET)

SUBFILESYSTYPE NAME(TCPIP1A) �5�
TYPE(CINET)
ENTRYPOINT(EZBPFINI) �6�
DEFAULT �7�

SUBFILESYSTYPE NAME(TCPIP1B) �5�
TYPE(CINET)
ENTRYPOINT(EZBPFINI)

Figure 7. SYS1.PARMLIB(BPXPRMxx) for CINET

64 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|

|

started task as well as the TCPIPJOBNAME parameter in TCPIP.DATA. In our
example, the name of the first stack is TCPIP1A and the name of the second stack
is TCPIP1B.

�6� EZBPFINI identifies a z/OS CS TCP/IP stack. For a z/OS CS TCP/IP stack, this
is the only valid value.

�7� Keyword DEFAULT specifies which transport provider stack is to be used as the
default stack for z/OS UNIX. If DEFAULT is not specified, the first active stack will
be used as the default stack. The sequence of SUBFILESYSTYPE statements is
arbitrary if one stack is identified with the keyword DEFAULT. TCPIP1A is the
default stack in Figure 7 on page 64.

Considerations for Enterprise Extender
The Enterprise Extender (EE) network connection is a simple set of extensions to
the existing open high-performance routing (HPR) technology. It performs an
efficient integration of the HPR frames using UDP/IP packets. To the HPR network,
the IP backbone is a logical link. To the IP network, the SNA traffic is UDP
datagrams that are routed without any hardware or software changes to the IP
backbone. Unlike gateways, there is no protocol transformation and unlike common
tunneling mechanisms, the integration is performed at the routing layers without the
overhead of additional transport functions. The advanced technology enables
efficient use of the intranet infrastructure for support of IP-based client accessing
SNA-based data (for example, TN3270 emulators or Web browsers using services
such as IBM’s Host On-Demand) as well as SNA clients using any of the SNA LU
types.

Enterprise Extender seamlessly routes packets through the network protocol edges,
eliminating the need to perform costly protocol translation and the store-and-forward
associated with transport-layer functions. Unlike Data Link Switching (DLSw), for
example, there are no TCP retransmit buffers and timers and no congestion control
logic in the router because it uses connectionless UDP and the congestion control
is provided end system to end system. Because of these savings, the edge routers
have less work to do and can perform the job they do best, which is forwarding
packets instead of incurring protocol translation overhead and maintaining many
TCP connections. Data center routers can handle larger networks and larger
volumes of network traffic, thus providing more capacity. For more information, refer
to the EE information in Migrating Subarea Networks to an IP Infrastructure,
SG24–5957–00 (an IBM Redbook) or the following Web site:
http://www-4.ibm.com/software/network/commserver/library/whitepapers/csos390.html

Considerations for VIPA
The Internet Protocol (IP) is a connectionless protocol. IP packets are routed from
the originator through a network of routers to the destination. All physical adapter
devices in such a network, including those for client and server hosts, are identified
by an IP Address which is unique within the network. The important point about IP
is that a failure of an intermediate router node or adapter will not prevent a packet
from moving from source to destination, as long as there is an alternate path
through the network.

TCP sets up a connection between two endpoints, identified by the respective IP
addresses and a port number on each. Unlike failures of an adapter in an
intermediate node, if one of the endpoint adapters (or the link leading to it) fails, all
connections through that adapter fail and must be reestablished. If the failure is on

Chapter 1. Configuration overview 65

|
|

http://www-4.ibm.com/software/network/commserver/library/whitepapers/csos390.html

a client workstation host, only the relatively few client connections are disrupted and
usually only one person is inconvenienced. However, an adapter failure on a server
means that hundreds or thousands of connections may be disrupted. On an S/390
or zSeries™ server with large capacity, the number may run to tens of thousands.

A Virtual IP Address, or VIPA in TCP/IP for z/OS , alleviates this situation. A VIPA is
configured in the same way as a normal IP address for a physical adapter, except
that it is not associated with any particular device. To an attached router, the TCP
on z/OS simply looks like another router. When the TCP receives a packet destined
for one of its VIPAs, the inbound IP function of the stack notes that the IP address
of the packet is in the stack’s Home list and passes the packet up the stack.
Assuming the stack has multiple adapters or paths to it (including XCF from other
TCP stacks in a sysplex), if a particular physical adapter fails, the attached routing
network will simply route VIPA-targeted packets to the stack via an alternate route.

While this removes hardware and associated transmission media as a single point
of failure for large numbers of connections, the connectivity of a server can still be
lost through a failure of a single stack or an MVS image. The VIPA can be
configured on another stack with a manual process, but this requires the presence
of an operator or programmed automation.

Dynamic VIPA Takeover enables Dynamic VIPAs to be moved without human
intervention or programmed automation to allow new connections to a server at the
same IP address as soon as possible. This can reduce downtime significantly. With
Dynamic VIPA Takeover you can configure one or more TCP/IP stacks to be
backups (VIPABACKUP statement) for a particular Dynamic VIPA. If the stack or
MVS image where the Dynamic VIPA is active is terminated, one of the backup
stacks automatically activates that Dynamic VIPA. The existing connections will be
terminated but can be quickly reestablished on the stack that is taking over.

Notes:

1. Because a VIPA is associated with a z/OS TCP/IP stack and is not associated
with a specific physical network attachment, it can be moved to a stack on any
image in the sysplex, or even to a z/OS TCP/IP stack not in the sysplex as long
as the address fits into the installation’s network configuration.

2. If using VIPA along with an intelligent bridge or switch, ensure that ’Port fast
mode’ (Cisco) is enabled. This helps to decrease the amount of time the VIPA is
unreachable in scenarios where there is dynamic movement of VIPA (dynamic
or static). For more information, see your bridge or switch manual.

You may also associate a particular Dynamic VIPA address with an application
using the IOCTL SIOCSVIPA command or by BINDing explicitly to the Dynamic
VIPA address. If the Dynamic VIPA address is within the VIPARANGE profile
statement, then this Dynamic VIPA address will be created dynamically. This type of
configuration enables a Dynamic VIPA to become an address of an application in a
sysplex.

With Sysplex Distributor you can spread connection requests destined for Dynamic
VIPAs to other stacks in the sysplex. You can use the VIPADISTRIBUTE profile
statement to designate up to 32 stacks where connections for a particular DVIPA
and up to 4 ports can be distributed, including the stack where the DVIPA is
defined. The distributing stack (the stack where the VIPADISTRIBUTE statement
was coded) might use either WLM or a combination of WLM and Quality of Service
(QoS) performance information to determine where to forward new connection

66 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|
|

requests. If the distributing stack/MVS image fails, connections forwarded to target
stacks can be preserved by having the Dynamic VIPA address backed up on
another stack.

Similarly, a stack can immediately take back a Dynamic VIPA address from another
stack. If the original stack VIPADEFINEd the address with the keyword MOVEABLE
IMMEDIATE (the default), then the Dynamic VIPA is moved as soon as the second
stack requests ownership. The second stack assumes responsibility for forwarding
packets for existing connections to the appropriate stack. If MOVEABLE
WHENIDLE was specified, ownership does not pass until all existing connections
on the current stack are closed.

For detailed information about VIPA, see Chapter 5, “Virtual IP Addressing” on
page 209.

Required steps before starting TCP/IP
The following sections describe the steps you must complete before starting TCP/IP.

Planning your installation and migration
It will be to your advantage to have studied thoroughly the following documentation
prior to the installation and customization of z/OS Communications Server:

v Program Directory for z/OS for CBPDO Installation and ServerPac Reference,
Program Number 5694-A01

v Preventive Service Planning (PSP) bucket

v z/OS Communications Server: IP Migration

v z/OS UNIX System Services Planning

v OS390CKL, an IBM MKTTOOLS document for the z/OS UNIX System Services
implementer

It is also recommended that you attend a z/OS UNIX System Services concepts
class and a class in using z/OS UNIX System Services prior to migrating to z/OS
Communications Server. If this is not possible, then you will want to ensure that the
z/OS UNIX System Services implementer and the RACF administrator work
together with you during the installation and customization process.

Planning for and installing z/OS Communications Server requires MVS, UNIX, and
networking skill. If your background is in traditional MVS programming or systems
programming, the z/OS UNIX System Services terminology might at first seem to be
somewhat confusing. If your background is in the UNIX environment, the terms
should be familiar to you.

In the past, MVS TCP/IP system programmers have needed a working knowledge
of the MVS or z/OS system. These programmers have been accustomed to working
closely with the RACF administrator and z/OS system programmer for
authorizations; the VTAM and NCP system programmers for SNALINK and NCP
connections; the IP address administrator for basic name and address assignments;
and the administrators of the router network and channel-attached peripherals for
connection definition and problem determination.

With the introduction of z/OS Communications Server, the TCP/IP system
programmer needs to develop an additional alliance with the z/OS UNIX System
Services system programmer. The TSO interfaces that have been traditionally
available in the host-based TCP/IP still stand at the system programmer’s disposal

Chapter 1. Configuration overview 67

|

|

|
|

|

|

and additional MVS console commands simplify some TCP/IP operations. However,
another user interface provided by the UNIX shell environment, either with the
OMVS shell or the ISPF SHELL, is a useful and sometimes necessary tool that the
TCP/IP system programmer will need to work with. Additionally, the tight coupling of
z/OS Communications Server with z/OS UNIX System Services means that the
TCP/IP system programmer needs more than a passing knowledge of UNIX
conventions, commands, and Hierarchical File System (HFS) concepts. Even if the
system programmer is familiar with other UNIX environments, work with the UNIX
shell requires more than basic familiarity.

In the first version of a full TCP/IP stack based on native MVS and on z/OS UNIX
System Services, few have all the requisite skills to successfully implement z/OS
Communications Server on their own. As more and more systems programmers
acquire skills in UNIX System Services and in TCP/IP, this will become less and
less the case. Working with the z/OS UNIX System Services implementer when
implementing z/OS Communications Server provides the most effective solution to
establishing a working z/OS Communications Server environment.

Additional assistance is available to the z/OS UNIX System Services implementor at
the z/OS wizards website, http:// www.ibm.com/eserver/zseries/zos/wizards/.
Wizards are interactive assistants that simplify tasks such as installation planning,
as well as configuration and customization.

If you are migrating to z/OS Communications Server, establish a migration process
to move all your existing applications, and after this, consider the use of new and
enhanced functions based on z/OS Communications Server: IP Migration. z/OS
Communications Server allows multiple copies of the TCP/IP protocol stack to
execute on the same MVS image. However, with all the performance enhancements
introduced in z/OS Communications Server, it is probably not necessary to
implement a multi-stack system for production purposes unless one is considering
building a system programming test stack.

You are now ready to move on to the following steps.

Step 1: Install z/OS CS
Before you begin the installation:

v Read z/OS and z/OS.e Planning for Installation to help you plan the installation
and migration of z/OS CS.

v Be sure you understand the data set naming conventions used in TCP/IP. You
can find this information in “Configuration data set naming conventions” on
page 19.

v Consult the z/OS Program Directory (Customization considerations for Wave 1D)
for current information about the material, procedures, and storage estimates of
the MVS image.

Install z/OS CS with other elements of z/OS. If you use the ServerPac method of
installation, see z/OS Installing Your Order; if you use the CBPDO method of
installation, refer to z/OS Program Directory. When appropriate, those two
documents will direct you back to this document to customize the TCP/IP data sets
and procedures and verify their configuration.

Verifying the initial installation
Both the z/OS Program Directory and z/OS Installing Your Order contain
step-by-step instructions that can be used to set up and verify a basic TCP/IP

68 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|

|
|

|
|
|
|

|

|
|

|

|

http:// www.ibm.com/eserver/zseries/zos/wizards/

configuration with only the loopback address and a few key servers. For more
information regarding these instructions, refer to the information about Wave 1D
customizations in the z/OS Program Directory or the information about verifying
your installation in z/OS Installing Your Order.

Step 2: Customize z/OS CS
To customize TCP/IP you need to update the cataloged procedures and
configuration data sets for the TCP/IP address space, its clients, and servers.

z/OS CS runs as a started task in its own address space. Each of the servers runs
in its own address space and is started with its own procedure. The TCP/IP address
space requires:

v A procedure in a system or recognized PROCLIB.

v A data set that provides configuration definitions for the TCP/IP address space
and includes statements affecting many of the servers. This data set is referred
to as PROFILE.TCPIP.

v A data set to provide the parameters that are common across all clients. This
data set is referred to as TCPIP.DATA.

Many of the servers also require other data sets for their specific functions.

Making SYS1.PARMLIB changes
You need to make certain changes to SYS1.PARMLIB. These changes depend on
which of the following installation methods you use:

ServerPac method
After the file system is restored (through the RESTFS job), you will see that
ServerPac has changed some of the PARMLIB members. Follow the
instructions to change the BPXPRMxx member of PARMLIB.

CBPDO method
Change the PARMLIB members according to the instructions listed in the
chapters that describe installation instructions for Wave 1. Tables describing
changes to PARMLIB and changes to BPXPRMxx member are included.

Note:

z/OS CS exploits z/OS UNIX services even for traditional MVS environments
and applications. Prior to utilizing TCP/IP services, therefore, a full-function
mode z/OS UNIX environment—including a Data Facility Storage
Management Subsystem (DFSMSdfp™), a Hierarchical File System (HFS),
and a security product (such as Resource Access Control Facility
(RACF))—needs to be defined and active before z/OS CS can be started
successfully.

Additional information about required TCP/IP definitions for the UNIX environment
can be found in “Defining TCP/IP as a UNIX System Services physical file system
(PFS)” on page 50 and “UNIX System Services security considerations” on page 45.

Common z/OS UNIX configuration problems: Following are some explanations
and possible solutions for common problems that you may encounter when
configuring the z/OS UNIX environment.

v TCP/IP initialization fails with the following messages:
EZZ4203I OPENEDITION-TCP/IP CONNECTION ERROR FOR TCPIP-BPX1SOC,

00000003,FFFFFFFF,00000070,112B00B6

Chapter 1. Configuration overview 69

|
|

|

|

These messages usually indicate that both INET and CINET FILESYSTYPE have
been specified. Only one should be specified; refer to the FILESYSTYPE section
in z/OS UNIX System Services Planning for additional information.

v TCP/IP initialization fails with the following messages:
EZZ4203I OPENEDITION-TCP/IP CONNECTION ERROR FOR TCPIP-BPX1SOC,

00000003,FFFFFFFF,0000006F,112B00B0

These messages indicate that the requester of the service is not privileged. The
service requested requires a privileged user. Check the documentation for the
service to understand what privilege is required.

v TCP/IP initialization fails with the following messages:
EZZ4203I OPENEDITION-TCP/IP CONNECTION ERROR

FOR TCPIPA-BPX1IOC,8008C981,FFFFFFFF,0000009E,12B2005A

EZZ4204I TCPIP INITIALIZATION FOR TCPIPA FAILED

These messages usually indicate that an incorrect jobname was specified in the
SUBFILESYSTYPE NAME() definition in the BPXPRMxx member for a common
INET environment. In this scenario, the NAME() must match TCPIPA.

v TCP/IP initialization fails with the following messages:
IEA8481 DUMP SUPPRESSED - ABDUMP MAY NOT DUMP STORAG FOR KEY 0-7 JOB TCPV34A
IEF4501 TCPIPA TCPIPA - ABEND=SEC6 U0000 REASON=0F01C008

These messages are usually an indicator that an OMVS RACF segment has not
been defined for the user ID associated with the TCP/IP started procedure.
Define an OMVS segment with a UID of 0 for the user ID associated with the
TCP/IP started procedure.

v TCP/IP initialization fails with the following messages:
IEF4031 TCPIPA - STARTED - TIME=16.01.25
EZZ42031 OPENEDITION-TCP/IP CONNECTION ERROR FOR TCPIPA-BPX11OC,

8008139A,FFFFFFFF,00000079,12D2025E
EZZ42041 TCPIP INITIALIZATION FOR TCPIPA FAILED.

==> The 0079 value is EINVAL - The parameter is incorrect
==> The 025E value is JRSocketCallParmError - A socket syscall

contains incorrect parameters

These messages usually indicate that an incorrect entry point name has been
specified in the SUBFILESYSTYPE ENTRYPOINT() definition. The correct value
is ENTRYPOINT(EZBPFINI).

v TCP/IP initialization fails with the following messages:
EZZ32031 OPENEDITION-TCP/IP CONNECTION ERROR FOR TCPIPA-BPX1SOC,

00000003,FFFFFFFF,0000045A,112B0000
EZZ4204I TCPIP INITIALIZATION FOR TCPIPA FAILED.

==> The 045A value is EAFNOSUPPORT - The address family is not supported

These messages indicate that AF_INET was not defined or did not initialize
properly. Check for any earlier z/OS UNIX messages and verify that the z/OS
UNIX NETWORK DOMAINNAME(AF_INET) statement is in your BPXPRMxx
member.

v After issuing a NETSTAT command from TSO, the following message is
displayed:
netstat
CEE5101C During initialization, the z/OS UNIX callable service

BPX1MSS failed. The system return code was 0000000156,
the reason code was 0507014D. The application will be

70 z/OS V1R4.0 CS: IP Configuration Guide

terminated.
NETSTAT ENDED DUE TO ERROR+
READY
?
USER ABEND CODE 4093 REASON CODE 00000090
READY

==> The 0156 value is EMVSINITIAL - Process initialization error
==> The 014D value is JRFsFailChdir - The dub failed, due to

an error with the initial home directory

These messages indicate that the user ID issuing the NETSTAT command does
not have an OMVS RACF segment defined for it. Define an OMVS segment for
this user ID or activate the default OMVS segment support. For details, see
“UNIX System Services security considerations” on page 45.

v Socket applications using the z/OS CS TCP/IP Services APIs fail with an ERRNO
of 156.

ERRNO 156 indicates a z/OS UNIX process initialization failure. This is usually
an indication that a proper OMVS RACF segment is not defined for the user ID
associated with the application. The RACF OMVS segment may not be defined
or may contain errors such as an improper HOME() directory specification. If the
OMVS segment is not defined, you may also receive the following message:
ICH4081 USER(USER8) GROUP(SYS1) NAME(TSO USERID USER8)

CL(PROCESS)
OMVS SEGMENT NOT DEFINED

In this example, USER8 is the user ID associated with the failing application. To
correct this problem, define a proper OMVS segment for the user ID associated
with the failing application. For details, see “UNIX System Services security
considerations” on page 45.

Completion of these steps ensures that the applications and resources on the target
system will function correctly at the new level.

The subsequent chapters in this document show you how to:

v Configure the TCP/IP address space by updating the samples provided in
hlq.SEZAINST(SAMPPROF) and hlq.SEZAINST(TCPIPROC).

v Configure the universal client parameters provided in hlq.SEZAINST(TCPDATA).

v Configure the site table, defined in hlq.HOSTS.LOCAL or hlq.ETC.IPNODES, to
identify the Internet names and addresses of your TCP/IP host.

v Customize the TCP/IP Component Trace parameters by updating the CTRACE
parameter in the PARM= field of the EXEC JCL statement in the TCP/IP started
procedure.

You can find a description of the MVS Component Trace support in the z/OS
Communications Server: IP Diagnosis.

v Specify the ENVAR parameter on the PARM=keyword to override the resolver
file. For more information on setting the environment variable
RESOLVER_CONFIG using the ENVAR parameter, see “Considerations for
multiple instances of TCP/IP” on page 54.

v Configure each of the servers you want to run. This might require:
– Modifying sample procedures and adding them in your PROCLIB
– Modifying the configuration data set, PROFILE.TCPIP
– Adding port numbers to hlq.ETC.SERVICES
– Modifying other data sets containing server-specific parameters

Chapter 1. Configuration overview 71

|
|

You can find the sample procedures and data sets in hlq.SEZAINST or the HFS.
Table 2 on page 21 provides additional reference information you can use as you
configure and customize each server.

You can find general information about starting, stopping, and dynamically
controlling the servers in z/OS Communications Server: IP System Administrator’s
Commands.

Step 3: Configure VMCF and TNF
The Pascal socket interface makes use of the IUCV/VMCF services for a limited set
of inter-address space communication flows. As a result, if you are using any
applications (provided by IBM or others) that use the Pascal socket API, you must
insure that the VMCF and TNF subsystems are active before the applications are
started. TCP/IP provides several applications and commands that exploit these
interfaces, such as the SMTP and LPD servers, and the TSO REXEC, RSH, and
remote printing commands; therefore, almost all installations will require setting up
VMCF and TNF.

The restartable VMCF must be started before TCP/IP if you want the VMCF node
name used as a default host name during TCP/IP initialization (in cases where no
other host name can be located).

Note: Host name is the value normally specified on the TCPIP.DATA HOSTNAME
statement.

Also note that the VMCF node name is used as a system name qualifier when
processing the TCPIP.DATA file and by the SMTP server as the NJE node name. It
is recommended that the MVS system name is used for the VMCF node name
specification and that the NJE node name is specified explicitly by using the
NJENODENAME statement in the SMTP configuration data set.

You can configure Virtual Machine Communication Facility (VMCF) and TNF in two
different ways: as restartable subsystems or as non-restartable subsystems.

Restartable subsystems
Configuring VMCF and TNF as restartable subsystems has the following
advantages:

v Error detection is provided when the subsystems do not seem to be initializing
properly.

v You can change the system name on the restart.

v Commands are available to remove users from internal tables, display current
users and to terminate the subsystem.

In summary, a restartable VMCF and TNF configuration provides better availability
and is therefore recommended.

If you choose to use restartable VMCF and TNF, follow these steps:

1. Update your IEFSSNxx member in SYS1.PARMLIB with the TNF and VMCF
subsystem statements required by TCP/IP. The specification can be in either the
IBM recommended keyword parameter form or the positional parameter form of
IEFSSNxx. For example:
* The keyword parameter form is:

SUBSYS SUBNAME(TNF)
SUBSYS SUBNAME(VMCF)

72 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|

* The positional parameter form is:
TNF
VMCF

2. Add procedure EZAZSSI to your system PROCLIB. A sample of this procedure
is located in the data set hlq.SEZAINST (where hlq is the high-level qualifier for
the TCP/IP product data sets in your installation).
//EZAZSSI PROC P=&SYSNAME.
//STARTVT EXEC PGM=EZAZSSI,PARM=&P,TIME=1440

3. Start VMCF and TNF using the procedure EZAZSSI before starting TCP/IP. If
your nodename is the same as the MVS system symbolic &SYSNAME, then
you can start VMCF and TNF with the following command:
S EZAZSSI

If your nodename is different than the MVS system symbolic &SYSNAME, start
VMCF and TNF as follows:
S EZAZSSI,P=nodename

Replace nodename with the SYSTEM NAME of your MVS system.

Non-restartable subsystems
If you will not be using restartable VMCF and TNF, you should update your
IEFSSNxx member in SYS1.PARMLIB with the following subsystem statements
required by TCP/IP. The specification can be in either the IBM recommended
keyword parameter form or the positional parameter form of IEFSSNxx. For
example:
* The keyword parameter form is:

SUBSYS SUBNAME(TNF) INITRTN(MVPTSSI)
SUBSYS SUBNAME(VMCF) INITRTN(MVPXSSI) INITPARM(nodename)

* The positional parameter form is:

TNF,MVPTSSI
VMCF,MVPXSSI,nodename

Do not use the sample SEZAINST (IEFSSN) as shipped, because the comments
are not valid in SYS1.PARMLIB. A modified form of the last two lines must be
placed in the IEFSSNxx PARMLIB member. Replace node name on the VMCF line
with the NJE node name of your MVS system.

VMCF commands
If you will be using restartable VMCF, the following VMCF commands let you
display the names of the current users of VMCF and TNF, and if necessary, remove
names from the name lists.

Note: Removing names from the name lists and stopping either subsystem can
have unpredictable results, if done hastily. Use the REMOVE and stop (P)
commands carefully and only as a last resort.

If you remove a user, the application is not canceled, nor is the connection
severed. In other words, the removed application may remain active in the
system, and may subsequently abend 0D6/0D4/0C4, or cause TCP/IP to
hang. A user that is removed from VMCF may still be a user of TNF and
even TCP/IP, and vice versa.

To terminate users and stop VMCF or TNF properly, follow these steps:

Chapter 1. Configuration overview 73

1. Display the current users of the subsystems, using one of the following:
F VMCF,DISPLAY,NAME=*

F TNF,DISPLAY,NAME=*

2. Terminate those users. If termination fails, use the REMOVE command as a last
resort to force them from the name list.

3. Stop the subsystem, using one of the following commands:
P VMCF

P TNF

If the P command fails, use one of the following commands:
FORCE ARM VMCF

FORCE ARM TNF

Following are descriptions of the commands:

F TNF,DISPLAY,NAME=[name│*]
Displays the named user [or all (*) users] of TNF, sorted by ASID.

F TNF,REMOVE,NAME=[name│*]
Removes either the named user [or all (*) users] from the TNF internal
tables.

P TNF Requests TNF to terminate.

F VMCF,DISPLAY,NAME=[name│*]
Displays the named user [or all (*) users] of VMCF, sorted by name.

F VMCF,REMOVE,NAME=[name│*]
Removes either the named user [or all (*) users] from the VMCF internal
tables.

P VMCF
Requests VMCF to terminate

Following are sample commands:
F TNF,DISPLAY,NAME=TCPV3
F VMCF,DISPLAY,NAME=*
F TNF,REMOVE,NAME=FTPSERV
F VMCF,REMOVE,NAME=*
P TNF

Common VMCF problems
Following are some common VMCF problems:

v VMCF or TNF fail to initialize with an 0C4 abend.

This is probably an installation problem; check the PPT entries for errors. Some
levels of MVS do not flag PPT syntax errors properly.

v Abends 0D5 and 0D6 after REMOVEing a user.

This is probably because the application is still running and using VMCF. It is not
recommended that users be removed from VMCF or TNF without first terminating
the affected user.

v VMCF or TNF do not respond to commands.

This is probably because one or both of the non-restartable versions of VMCF or
TNF are still active. To get them to respond to commands, stop all VMCF/TNF
users, FORCE ARM VMCF and TNF, then use EZAZSSI to restart.

v VMCF or TNF cannot be stopped.

74 z/OS V1R4.0 CS: IP Configuration Guide

This is probably because users still exist in the VMCF and TNF lists. Use the F
VMCF,DISPLAY,NAME=* and F TNF,DISPLAY,NAME=* commands to identify
those users who are still active. Then either cancel those users or remove them
from the lists using the F VMCF,REMOVE and F TNF,REMOVE commands.

IUCV/VMCF considerations
The IUCV/VMCF inter-address space communication API enables applications
running in the same MVS image to communicate with each other without requiring
the services of the TCP/IP protocol stack. The VMCF/TNF subsystems provide
these services, which are still available in z/OS CS. Several components of TCP/IP
in z/OS CS continue to make some use of these services for the purpose of
inter-address space communications. These include:

v The AF_IUCV domain sockets for the TCP/IP C socket interface. The AF_IUCV
domain enables applications executing in the same z/OS image and using the
TCP/IP C socket interface to communicate with each other using a socket API,
but without requiring the services of the TCP/IP protocol stack, as no network
flows result in these communications. This is quite different from the more
common AF_INET domain that enables socket communication over a TCP/IP
network. AF_IUCV sockets continue to be supported in z/OS CS.

An example of a TCP/IP-provided application that exploits AF_IUCV sockets is
the SNMP Query Engine component (SQESERVE). The z/OS UNIX socket
library provides a similar functionality to the AF_IUCV domain sockets with its
AF_UNIX domain. Users creating new applications should consider using
AF_UNIX domain sockets.

v The Pascal socket interface also makes use of the IUCV/VMCF services for a
limited set of inter-address space communication flows. As a result, any
applications (provided by IBM or others) that use the Pascal socket API also still
have a requirement for the VMCF/TNF subsystems. TCP/IP provides several
applications and commands that exploit these interfaces, such as the SMTP and
LPD servers, and the TSO TELNET, HOMETEST, TESTSITE, RSH, REXEC, and
LPR commands.

Therefore, in z/OS CS you must continue to configure and start the VMCF and TNF
subsystems as you did in TCP/IP V3R2. However, because the VMCF/TNF
subsystems are no longer used to communicate directly with the TCP/IP protocol
stack in z/OS CS, the amount of CPU they will consume will be significantly lower
than in the TCP/IP V3R2 environment.

Step 4: Update the VTAM application definitions
You must update the VTAM definitions for TN3270 Telnet and any other of these
applications that you configure on your system. You can find example VTAM
definitions for each of these applications in their respective chapters.
v SNALINK
v SNALINK LU6.2
v TN3270 Telnet
v X.25 NPSI Server

hlq.SEZAINST(VTAMLST) contains a sample of the VTAM definitions for TN3270
Telnet applications. You should copy this member, update it, and add it to the
ATCCONxx member of VTAMLST. This will ensure that the TN3270 Telnet
applications are activated when VTAM is started.

Because the TCP/IP LU code cannot handle multiple concurrent sessions, you must
code SESSLIM=YES for each TN3270 Telnet LU defined to VTAM. Otherwise, if

Chapter 1. Configuration overview 75

|
|
|
|

|

|

|

|

|

SESSLIM=NO, menu or session manager applications that use return session
processing might cause session termination.

Step 5: Verify that the resolver address space is active
The resolver address space must be started before the TCP/IP address space can
be started. For information on how the resolver can be started, see “Understanding
resolvers” on page 12. You can use the resolver’s MODIFY DISPLAY command to
check that the resolver is active and what resolver setup statements are being
used. For the syntax and usage of the command, see z/OS Communications
Server: IP System Administrator’s Commands.

Step 6: Start the TCP/IP address space
Enter the MVS START command from the operator’s console to start TCP/IP,
specifying the member name of your cataloged procedure. This will start the TCP/IP
address space and any of the servers you have defined in the AUTOLOG statement
in PROFILE.TCPIP. For example, if the procedure to start the TCP/IP address
space was called TCP1 in your PROCLIB, you would enter:
START TCP1

For information on updating the TCPIP cataloged procedure or configuration
statements used to configure the TCPIP address space, refer to z/OS
Communications Server: IP Configuration Reference.

Step 7: Set up cataloged procedures and configuration data sets
At this point in the configuration process, you can choose to either set up
procedures or you can do each one individually when you set up the appropriate
application, function, or server.

See the remaining chapters in this document for more information about setting up
the appropriate application, function, or server.

Step 8: Customize TCP/IP messages
The messages for every TCP/IP server program are compiled and linked with the
program and reside in an internal message repository. Some of the server programs
that are written in the C language also have their messages in external data sets.
You can edit these external message data sets to translate the messages to
another language or customize them to suit your installation.

How to access the message data sets
The procedures for these servers have a special DD statement that point to the
external message data set. If you are going to override the internal messages and
use external customized messages, you need to remove the comment from the
appropriate DD statement and ensure it points to the correct data set.

The following table shows the servers that have external messages, the DD
statement used, and the name of the message data set delivered with the system:

Server DD statement Data set

NCPROUTE //MESSAGE SEZAINST(EZBNRMSG)

SNMP Query Engine //MSSNMPMS SEZAINST(MSSNMP)

MISC Server //MSMISCSR SEZAINST(MSMISCSR)

76 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|
|
|
|

|
|
|

Message text
The message text might include special characters for the variable fields that are
converted when the message is printed or displayed and control characters that
affect the message format. The conversion characters start with a percent sign (%)
and the control characters start with a backslash (\). These are all standard
notations for the C language print function. The messages might also contain
comments which start with /* and end with */.

In the following simulated message, the control character \n forces a new line to
print and the string variables, represented by %s, are converted in the order they are
passed from the program.
29999 I Command %s received from user %s\n

Message format
The following diagram explains the syntax for TCP/IP message IDs on the host:

The product identifiers (ppp) for TCP/IP are EZA, EZB, EZY, and EZZ. The
number (nnnn) indicates a unique 4-digit numeric value assigned to the message
by product. The type (t) indicates the severity assigned to the message.

Rules for customizing the messages
The general rule for customizing or translating messages is to only change the text
portion of the message.

v Do not change the MARGIN, PRODUCT, and COMPONENT definitions at the
top of the data set. These are required definitions for the program. For example,
these entries at the top of the MISC server message data set should not be
changed:
MARGINS(1,72)
PRODUCT EZA
COMPONENT MSC

v Do not change the message numbers and the severity code. These parts of the
message have specific meaning; if you change them the program may not work
correctly.

v Do not change the conversion characters. These indicate that the program is
passing data, the type of data it is passing, and the appropriate way to display or
print this data. For example, do not change or delete %s and %d in the following
message:

ppp nnnn t

Product Identifier

Type Code

Number

(3 characters, alphabetic)

(1 character, alphabetic)

(4 numeric digits)

Figure 8. Syntax for TCP/IP message IDs

Chapter 1. Configuration overview 77

4858 W "Route from %s in unsupported address family %d\n"

v You can reorder the variables that are passed in the message. For example, you
can reverse the order of the two string variables that are passed when translating
a message by specifying the new order of the arguments in parentheses
following the message text:

Before: 29999I Command %s received from user %s\n

After: 29999I Utilisador %s envio instrucion %s\n (2, 1)

The result would be EZY9999I Utilisador MANNY envio instrucion FTP instead
of EZY9999I Command FTP received from user MANNY.

v Watch for any program parameters or keywords that might be in the message
text. In most cases, you should not translate them.

For example, in the following message, ’active’ is a keyword used in the
gateway definition and should not be translated:
4851 E "First two elements must be ’active’ for active gateway\n"

78 z/OS V1R4.0 CS: IP Configuration Guide

Chapter 2. Security

The z/OS Communications Server, along with other elements of z/OS, provide
numerous enterprise-strength security services to protect your mission-critical data.
This chapter provides an overview of these technologies and how they can be used
for a safe and secure z/OS TCP/IP deployment.

The Communications Server protects data and other resources on the system.
Communications Server applications use RACF services to ensure that users
requesting application access are identified and authenticated, and to protect data
and other system resources from unauthorized access. The Communications Server
safeguards the availability of the system by protecting against denial of service
attacks from the network.

The Communications Server protects data in the network by supporting a variety of
cryptographic-based network security protocols such as IPSec, SSL, and SNA
Session Level Encryption. These security protocols ensure that data received is
originated by the claimed sender (data origin authentication), that contents were
unchanged in transit (message integrity), and that sensitive data is concealed using
encryption (data privacy).

The Communications Server provides security event reporting to record potential
security violations. These services may help you identify potential sources of
subsequent attacks, respond more quickly to network attacks, and manage system
resources during periods of high network traffic for key applications.

Note: Some of the security features described in this chapter have not yet been
implemented for IPv6. To determine which functions are supported for IPv6,
see Table 1 on page 3.

System resource protection

Application security
The Communications Server protects data and other system resources accessed by
applications included in the Communications Server element. This protection

Internet

Intranet
Host

Enterprise Network
or Intranet

Enterprise Network
or Intranet

F
I
R
E
W
A
L
L

F
I
R
E
W
A
L
L

z/OS

z/OS CS
IDS

Network
IDS

Remote
Access

Business
partner

Secure protocols
(IPSec, SSL, SNA SLE)

with Strong 3DES Encryption

Secure Key Distribution
Mission-critical data

RACF for
– User I&A
– Access Ctl

Figure 9. Elements of a secure TCP/IP deployment

© Copyright IBM Corp. 2000, 2002 79

|
|
|

requires verification of the identity of the end user requesting access. This process
is called identification and authentication. In addition, access to resources must be
limited to those users with permission. This process is called access control.
Communications Server applications use RACF for identification and authentication,
and access control decisions. Authenticated users are granted access to RACF
resources only for which they have permission

Some applications allow anonymous access. Applications that allow anonymous
access include anonymous FTP, Remote Execution, and Trivial File Transfer
Program (TFTP). The Communications Server ensures that all anonymous access
can be controlled by the installation. If anonymous access is allowed, the resources
accessed can be limited in several ways:

v The application can be configured to limit resources for which access will be
attempted.

v The application can be configured to use a RACF user ID to represent the
anonymous user. In this case, access is allowed for those resources specifically
permitted for the anonymous RACF user ID and for those resources that are
universally accessible.

Most Communications Server applications must be configured specifically to allow
anonymous access. One exception is TFTP. TFTP allows anonymous read access
only. TFTP can be configured to control those directories that contain files that can
be downloaded.

The following chart depicts a representative set of Communications Server
applications, whether end user identification is required, and the security credentials
under which resource access is made. For more information on specific application
considerations, refer to the individual chapters for each application.

(1) All optionals are installation controlled and can all be configured to require
full end user identification.

(2) Files accessible can be configured on a server basis to limit access.

Server End User Identification Resource Access

FTP Optional (1) End user ID or configured
anonymous user ID (2)
End user ID or configured
anonymous user ID (2)

Server ID or end
user ID

Server user ID (2)

End user ID

Surrogate user ID or end
user ID

End user ID

End user ID or Server
user ID(exit routine to
verify request)

End user ID

Optional (1)

No

Required

Required

Required

Required (password
optional) (1)

Required (password
optional) (1)

LPD

TFTP

MVS REXECD

MVS RSHD

UNIX RSHD

UNIX REXECD

UNIX SHELL (telnet/rlogin)

Figure 10. User identification, authentication, and access control for z/OS Communications
Server applications

80 z/OS V1R4.0 CS: IP Configuration Guide

TCP/IP resource protection
The Communications Server uses the System Authorization Facility (SAF) to protect
TCP/IP resources from unauthorized access. These resources are represented by
resource profiles defined in the SERVAUTH class. The use of SERVAUTH is
optional. The installation can choose to use any combination of the protections
provided by SERVAUTH.

In addition to the use of SERVAUTH protection, other functions provide further
resource protection such as Intrusion Detection Services (IDS), syslogd isolation
and IP filtering. These topics are discussed in more detail later in the chapter.

Local user access control to TCP/IP resources using the SAF
The SAF can control the ability of users executing on z/OS to access select TCP/IP
resources. These functions protect against unauthorized user access to:

v The TCP/IP stack

v TCP and UDP ports

v The IP network or specific hosts in an IP network

v Netstat command output

v Webserver page caching services in the TCP/IP stack

With this solution, the administrator defines the above TCP/IP resources as SAF
resources. The resource profiles are defined as part of the SERVAUTH class. The
Communications Server allows the local user access to these resources based on
the user or group permissions associated with the SAF resource.

Stack Access Control
Stack Access Control allows control of access to a TCP/IP stack using the SAF. It
provides a way to generally allow or disallow users or groups of users access to a
TCP/IP stack. The function controls the ability of a user to open an AF_INET
socket. The TCP/IP stack to be protected is represented with a SERVAUTH profile
name EZB.STACKACCESS.sysname.tcpname. Access to the stack is allowed if the
user is permitted to this resource. There are no new TCP definitions required. The
function is enabled if the SERVAUTH class is active and the stack access resource
is defined. If it is not defined, the stack access check is not made.

Note: Some security products do not distinguish between a resource profile not
defined and a user not permitted to that resource. If your product does not
make this distinction, then you must define the stack access resource profile
and permit users to it whenever the SERVAUTH class is active.

The following example provides an overview of Stack Access Control. sysname
refers to the MVS system variable sysname. tcpname refers to the TCP/IP job
name. As shown in the example below, user Tom has permission to access both
Stack1 and Stack2, Joe does not have permission to access any stack, and Bob
has permission to access Stack2 but not Stack1.

Chapter 2. Security 81

|

|

|

|

|

|

|

|
|
|
|
|

|
|
|
|

Port Access Control
Port Access Control uses the PORT and PORTRANGE statements to protect
against unauthorized use of non-ephemeral ports. It allows control of an
application’s ability to bind to specific TCP and UDP ports or port ranges using the
SAF. The port access support is enabled if the keyword, SAF, is specified on the
PORT or PORTRANGE statement. The SAF keyword value specifies a portion of
the resource name that represents the port. The user ID associated with the
application at the time of the bind request must be permitted to the resource before
the application is allowed to bind to the port. The port is represented by a
SERVAUTH profile name of EZB.PORTACCESS.sysname.tcpname.SAFkeyword.
SAFkeyword is the value specified on the SAF keyword on the PORT and
PORTRANGE statement.

The following example provides an overview of Port Access Control. As shown in
the example below, z/OS user WEBSERV is permitted to bind to port 80. User Bob
is not permitted to bind to port 80.

IP
Network

IP
Network

Tom

z/OS CS
TCP/IP Stack1

z/OS CS
TCP/IP Stack2

Joe Bob
RACF

SERVAUTH SAF profiles protect a TCP/IP stack:

EZB.STACKACCESS.sysname.stackname

Define the stack resources with UACC(NONE) and permit
groups or individual users to allow them to use the
TCP/IP stack (open a socket).

Figure 11. Stack Access Control overview

82 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|

Port Access Control also augments the job name reservation method. The PORT or
PORTRANGE may be reserved with a job name, a wildcard job name (*), or the
special job name of RESERVED. If job name is specified, the port is reserved for
an application with the specified job name. If the wildcard job name is specified, the
port is not reserved for any particular job name. For both of these cases, the SAF
keyword, if specified, still verifies that the userid associated with the application at
the time of the bind to the port is permitted access to the port. The RESERVED job
name shuts down the use of a port or range of ports for any application.

The IPCONFIG, UDPCONFIG, and TCPCONFIG RESTRICTLOWPORTS
statements specify that all applications binding to a low port (1–1024) must be
APF-authorized or superuser, unless the SAF keyword is specified and the user ID
binding to the port is permitted to the SAF resource. z/OS CS client applications
that need to bind to a low port are shipped as APF-authorized.

Network Access Control
Network Access Control gives system administrators the ability to assign permission
for z/OS users to access certain networks and hosts. With this function the ability of
users to send or receive data between z/OS and certain networks can be controlled
at the z/OS. Network Access Control provides an additional layer of security to any
authentication and authorization security that is used in the network or at the peer
system by disallowing the unauthorized user to communicate with the peer network
resource.

Essential elements of this function are as follows:

v The IP network is considered the resource to be protected.

v IP addresses are classified into security zones, in which each zone has a certain
level of security sensitivity. A default security zone exists for interfaces that are
not explicitly associated with a specific security zone. Security zones consist of

IP
Network

FTP
server

Web
server

z/OS CS
TCP/IP Stack

Bob RACF

On the port reservation statement, the SAF keyword ties
a SAF resource to the reserved port number:

PORT 80 TCP * SAF WEBSRV

A SERVAUTH resource is created:

Universal access is set to NONE, and the started task user
ID of the WEB server task is permitted READ access to the
resource. Only this user ID can bind to the specified port
number

EZB.PORTACCESS.sysname.stackname.WEBSERV

.

IP Router

Router

Port 21 Port 80

Figure 12. Port Access Control overview

Chapter 2. Security 83

|
|
|
|
|
|
|

|
|
|

one or more, perhaps discontiguous, IP address ranges that have the same
security sensitivity and are identified by a specific zone name.

v The SAF is used to check permission of users or groups of users to access the
security zone.

v The installation defines a network access resource for each security zone and
permits users or groups of users access to the resource. The security zone is
represented by an SAF SERVAUTH profile name of
EZB.NETACCESS.sysname.tcpname.zonename.

v TCP/IP keeps a mapping of network resources by IP address to security zones.
This mapping is consulted on certain inbound and outbound operations to
determine the corresponding resource zone name for the most specific network
defined. Then the current user’s access to that resource is queried using the
SAF, and the operation will be allowed or denied completion accordingly. This
mapping is also consulted when the security ioctl is issued to extract the port of
entry zone name of a socket’s current peer.

v Network Access Control is used to control z/OS user access to an IP network via
a sockets application. Resource access checks will occur when an application
explicitly binds a socket to a local address, including the address INADDRANY
(0.0.0.0/32). Resource access checks will occur at connection setup or
acceptance time for TCP, peer identification time for UDP and RAW, and on the
first and potentially subsequent sends or receives (TCP, UDP, or RAW) to a
particular destination in a socket’s lifetime. Additionally, there is no user concept
when dealing with packets that are being forwarded through the stack and hence
no checks will be made. Network Access Control security checks are made at the
transport layer (TCP, UDP, and RAW). Other IP specific packets generated by the
stack are not covered under this function (such as ICMP echo replies, for
example).

v Network Access Control for outbound and inbound can be individually enabled or
disabled.

v TCP/IP caches security information following Network Access Control checks.
The NetAccess zone table in the TCPIP PROFILE must be rebuilt to cause
TCP/IP to recognize changes to the SERVAUTH class profiles for existing
sockets.

The following example provides an overview of Network Access Control. As shown
in the example below, z/OS user Bob is permitted access to Security Zone A but not
Security Zone B. An outbound connect from Bob is permitted to Security Zone A,
but not Security Zone B. Bob is permitted to accept connections from Security Zone
A but not Security Zone B.

84 z/OS V1R4.0 CS: IP Configuration Guide

|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

Netstat Access Control
Netstat Access Control allows control of access to Netstat command output from
the TSO or UNIX System Services shell environments using the SAF. The Netstat
command output is considered the resource to be protected and is represented with
a resource profile in the SERVAUTH class named
EZB.NETSTAT.sysname.tcpname.netstatoption. Access to the Netstat output is
allowed if the user is permitted to this resource. There are no new TCP definitions
required. The function is enabled if the SERVAUTH class is active and the netstat
option resource is defined. If it is not defined, the check is not made.

Note: Some security products do not distinguish between a resource profile not
defined and a user not permitted to that resource. If your product does not
make this distinction, then you must define the netstat resource profiles and
permit users to them whenever the SERVAUTH class is active.

An installation can implement a security policy that indicates which users have
authorization to selected Netstat options. The level of granularity for this security
policy can be either by individual or all Netstat options.

Fast Response Cache Accelerator Access Control
Fast Response Cache Accelerator Access Control allows control of application
access to Fast Response Cache Accelerator (FRCA) services. The FRCA
configuration ioctl is considered the resource to be protected and is represented
with a resource profile in the SERVAUTH class named
EZB.FRCAACCESS.sysname.tcpname. Access to FRCA services is allowed if the
Web server user is permitted to this resource. There are no new TCP definitions

FTP
server

Telnet
server

z/OS CS
TCP/IP Stack

BobJoe

RACF

TCP/IP Profile definitions:

NETACCESS INBOUND OUTBOUND
9.67.40.0 255.255.248.0 ZONEB
9.67.0.0 255.255.0.0 ZONEA
Default WORLD

ENDNETACCESS

SERVAUTH resources:

EZB.NETACCESS.sysname.tcpname.ZONEA
EZB.NETACCESS.sysname.tcpname.ZONEB
EZB.NETACCESS.sysname.tcpname.WORLD

IP Router

Firewall

Port 21 Port 23 Port 1021 Port 4000

Connect
from Bob

Connect
to Bob

Connect
to Bob

Connect
from Bob

Security
Zone B

Security
Zone A

IP addresses
9.67.0.0 -

9.67.255.255

IP addresses
9.67.40.0 -
9.67.47.255

Figure 13. Network Access Control example

Chapter 2. Security 85

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|

required. The function is enabled if the SERVAUTH class is active and the FRCA
access resource is defined. If it is not defined, the check is not made.

Note: Some security products do not distinguish between a resource profile not
defined and a user not permitted to that resource. If your product does not
make this distinction, then you must define the FRCA access resource profile
and permit users to it whenever the SERVAUTH class is active.

Syslogd isolation
Syslogd isolation provides a capability for the installation to control which user IDs
and job names can write syslogd records to specified syslogd facilities. This
function enables the installation to segregate system and application syslogd
records, and to segregate syslogd records from different applications. This function
prevents an application level process from flooding a syslogd facility intended for
system use, possibly causing system syslogd records to be lost. This function is
enabled when user ID and/or job name are specified as additional criteria along
with existing facility and priority criteria to select a syslogd repository.

In addition, the user ID and job name associated with the syslogd record writer can
optionally be stored in a syslogd record based on a syslogd command-line
parameter. This capability is useful when syslogd records for multiple jobs or users
are recording in the same syslogd facility. This function enables positive
identification of the creator of the syslogd records and ensures that the syslogd
record, if spoofed, can be identified.

Syslogd isolation also provides a capability to disable reception of syslogd
messages from other hosts in the network. This capability is provided by a syslogd
command-line parameter. This parameter disables reception of syslogd messages
from all hosts. If an installation wants to allow certain hosts in the network access to
syslogd, IP Filtering can be used instead to specify which hosts are permitted to
access the syslogd UDP port.

IP filtering
The Security Server can configure the Communications Server to perform packet
filtering at the IP layer. IP filters are rules defined to either discard or permit
packets. IP filtering matches a filter rule to data traffic based on any combination of
IP source or destination address (or masked address), protocol, source or
destination port, direction of flow, or time. IP filtering can control traffic being routed,
or control access at the host that has the communication endpoint. Even when an
external firewall is providing filtering protection for the host, Communications Server
IP filtering can provide a secondary line of defense.

86 z/OS V1R4.0 CS: IP Configuration Guide

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

Protecting data in the network

Network security principals

Cryptography: The foundation of good security
The foundation of good security methods begins with cryptography. Cryptography
keeps your data and communications secure using techniques such as encryption,
authentication, and data integrity. Encryption services protect sensitive data from
being read by other than the intended receiver. Cryptographic authentication and
data integrity services allow communicating hosts to detect if data is altered in
transit. Public key cryptography can identify and authenticate hosts or users. Public
key cryptography can also be used in the secure creation of symmetric session
keys for both security endpoints. Once a secure session is created, successful data
authentication and decryption occur only if both hosts have the correct session
keys.

End to end security
Cryptographic security solutions can be applied to a portion of the data path or end
to end, whichever is appropriate for your security policy. Generally, the greatest
degree of security is provided when cryptographic methods are used end to end.
However, if only portions of the data path are considered untrusted by an enterprise
(such as the Internet) it may be adequate to protect only the untrusted portion with
cryptography. z/OS offers security protocols that can be configured to protect
portions of the data path or the entire data path.

Workload-based security deployment
In making a security protocol selection, an important consideration is the application
workload to be protected. In order to illustrate this concept, it is helpful to
understand where various protocols are implemented from a protocol layering
perspective.

z/OS

Applications

Sockets

z/OS CS

Permit

TCP

Data Link

IP Filter Deny

Figure 14. IP filtering at the z/OS communication endpoint

Chapter 2. Security 87

|

|
|
||
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

Existing workload: The network layer is the lowest layer in the protocol stack
where end to end security over multiple hops can be applied. Network layer security
protocols provide blanket protection for upper-layer application data without
requiring modification to the application. IPSec is implemented at the network layer
and provides authentication, integrity, and data privacy between any two IP entities.
IPSec can protect a segment of the data path (e.g., between two routers), or it can
secure the data path end to end. Because IPSec is applied at the IP layer, it is a
connectionless security protocol and is applied on a per packet basis.

Secure Sockets Layer (SSL) is another popular security protocol implemented
above the transport layer at the application interface layer. TCP applications must
be modified to use SSL. SSL requires a reliable transport layer and is therefore not
used for UDP applications. SSL provides authentication, integrity, and data privacy.
SSL, originally used to secure traffic between a Web browser and Web server, can
also secure other applications. SSL is a connection-oriented security protocol and
protects all data on a connection or session.

The Communications Server has an SSL-enabled TN3270 server, thus allowing
secure access to existing SNA applications being accessed over an IP network.
Serving as a protocol gateway between the IP network and the SNA network, the
SSL-enabled TN3270 server protects the data path in the IP network from the
TN3270 client all the way to the z/OS TN3270 server. If the TN3270 Server resides
on a different host from the target SNA application, SNA Session Level Encryption
can be used to secure the SNA portion of the data path. SNA application data can
be protected without modification to the SNA applications.

New workload: For new applications, security can be built-in. One method of
building security into the application on z/OS is to use z/OS System SSL and
Kerberos.

Newer versions of network services such as SNMPv3 and Secure DNS, which are
supported by the Communications Server, have security built into the application
protocol using standards-based specifications for secure interoperability.

Applications

TCP/UDP

IP/ICMP

Data Link

TCP/UDP

IP/ICMP

Data Link

SSL
Kerberos
APIs

SSL
Kerberos
APIs

Secure
Network
Services

IPSec

Applications

Network

Sockets API

SSL,KRB,GSSAPI

Sockets API

SSL,KRB,GSSAPI

Figure 15. Security protocols from a protocol layering perspective

88 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

Network security protocols

IPSec and VPNs
For more information about IPSec and VPNs, refer to z/OS Security Server Firewall
Technologies.

The IPSec solution: IPSec is defined by the IPSec Working Group of the IETF. It
provides authentication, integrity, and data privacy between any two IP entities.
Management of cryptographic keys and security associations can be either manual
or automated via an IETF defined key management protocol called Internet Key
Exchange (IKE).

IPSec uses IP filtering to determine which traffic should be protected by IPSec. A
type of permit rule specifies permit with IPSec. The IP filters represent IP security
policy to the stack by specifying the traffic that requires IPSec. The filters are also
used in locating the outbound IPSec security association, and for verifying that
inbound traffic was received using the correct security association.

IP filtering can be used to avoid the overhead of multiple security protocols when
alternate security protocols are used to secure specific applications. For example,
you might want to exclude Web traffic (based on the well-known secure port of the
Web server - port 443) from IPSec coverage because you would like to use SSL.

IPSec provides the flexible building blocks that can support a variety of
configurations. Because an IPSec security association can exist between any two
IP entities, it can protect a segment of the path or the entire path.

IPSec allows the creation of Virtual Private Networks (VPN). A VPN enables an
enterprise to extend its network across a public network such as the Internet
through a secure tunnel (or security association). IPSec and VPN enable the secure
transfer of data over the public Internet for same-business and business-to-business
communications, and protect sensitive data within the enterprise’s internal network.
The figure below shows some of the typical IPSec configurations. In this figure,
IPSec security associations are shown between two firewalls, between client and
firewall, and between client and zSeries server.

IPSec concepts and components:

Security Associations: The concept of a Security Association (SA) is fundamental
to IPSec. An SA is a logical connection between any two IPSec systems. The SA
defines the security services for traffic that it carries. The scope of protection of an

zSeries

Internet

Enterprise Network
or Intranet

Enterprise Network
or Intranet

F
I
R
E
W
A
L
L

F
I
R
E
W
A
L
L

Remote
Access

Intranet
Host

Business
Partner

IPSec
Security

Associations

Figure 16. e-business scenarios with Virtual Private Networks

Chapter 2. Security 89

|

|
|
|

|

|
|
|

SA can vary. It can be wide, which means that the SA protects traffic for multiple
connections (e.g., all traffic between two hosts). It can be narrow, which means that
the SA protects traffic for a single connection.

An SA setup must occur before data is sent over a network. This setup can be
accomplished by either configuring the SA manually, or creating the SA dynamically
using the IKE protocols.

An SA can be in either of two modes:

v Transport mode is used by a host in cases where the data endpoint addresses
are the same as the SA endpoint addresses. In this mode, the IPSec protocol
header is inserted after the IP header and before the payload of the original IP
datagram.

v Tunnel mode must be used whenever the SA endpoint addresses differ from the
connection endpoint addresses. For this reason, SAs that start or end in firewalls
that do not own the connection endpoint address are always tunnel mode. In this
mode, the original IP datagram is made the payload of a newly constructed
datagram.

IPSec has three major components:

v IP Authentication Header (AH)

v IP Encapsulating Security Protocol (ESP)

v Internet Key Exchange (IKE)

IP Authentication Header (AH): AH provides data integrity, data origin
authentication, and an optional replay protection service. Data integrity is ensured
by using a message digest generated by an algorithm such as HMAC-MD5 or
HMAC-SHA. Data origin authentication is ensured by using a shared secret key to
create the message digest. Replay protection is provided by using a sequence
number field with the AH header. AH authenticates IP headers and their payloads
with the exception of certain header fields that can be legitimately changed in transit
such as the Time To Live (TTL) field. The following diagram shows the additional
headers added as the result of AH processing and the scope of the authentication.

SRC@,DST@,..

SRC@,DST@,..

SRC@,DST@...

Payload

Payload

Payload

New IP Hdr
AH
Hdr

AH
Hdr

AH-Tunnel:

Original Datagram

AH-Transport:

Authenticated1

Authenticated1

1. Except for changeable header items

Figure 17. IPSec AH protocol header formats and security coverage

90 z/OS V1R4.0 CS: IP Configuration Guide

|

IP Encapsulating Security Protocol (ESP): ESP provides data confidentiality
(encryption) and authentication (data integrity, data origin authentication, and replay
protection). ESP can be used with confidentiality only, authentication only, or both
confidentiality and authentication. When ESP provides authentication functions it
uses the same algorithms as AH, but, the coverage is different. The following
diagram shows the additional headers added as the result of ESP processing and
the scope of the authentication and encryption.

Internet Key Exchange (IKE): IKE supports automated negotiation of SAs and
automated generation and refreshing of cryptographic keys. The secure exchange
of keys is the most critical factor in establishing a secure communications
environment.

IKE operates at the application layer. It negotiates with its IKE peer to create two
types of security associations called Phase 1 and Phase 2. IKE uses Phase 1 SAs
to protect IKE flows. IPSec uses Phase 2 SAs to protect data transmissions. Once
a Phase 2 SA is negotiated, IKE installs the Phase 2 SA into the stack so IPSec
can use the SA to protect IP packets.

There are several methods by which IKE hosts can authenticate their IKE peers.
Two of these methods are Pre-shared Key and RSA Signature. With Pre-shared
Key, each IKE host is initially set up with a key that is used for authentication. RSA
Signature uses a digital X.509 certificate for authentication. RSA Signature is a
more scalable solution. Pre-shared Key requires that each host be keyed with every
potential IKE partner key. With RSA Signature, each host is configured with its own
host certificate and a certificate for the mutually trusted certificate authority that
signed the host certificate.

SRC@,DST@,..

SRC@,DST@,..

SRC@,DST@...

Payload

Payload

Payload

New IP Hdr
ESP

Trailer
ESP

Trailer
ESP
Auth

ESP
Auth

ESP
Auth

ESP
Trailer

ESP-Tunnel:

Original Datagram

ESP-Transport:
Authenticated

Encrypted

Encrypted

Authenticated

Figure 18. IPSec ESP protocol header formats and security coverage

Chapter 2. Security 91

Since the IKE protocols deal with initializing keys, they must be capable of running
over links where no security can be assumed to exist. IKE addresses the problem
of secure key distribution by automatically deriving the keying material using a
Diffie-Hellman exchange during the Phase 1 IKE negotiation. This automatic
creation and distribution of the key during Phase 1 eliminate the need to manually
distribute the session key between remote sites. Besides the obvious administrative
advantage of IKE, the manual method of key distribution is prone to key
compromise.

In addition, IKE non-disruptively refreshes the session keys based on the security
policy of the installation. IKE specifies that this can be based on time (lifetime)
and/or bytes transmitted (lifesize). IKE provides a property called Perfect Forward
Secrecy (PFS). If PFS is used, each Phase 2 key is derived independently through
a separate Diffie-Hellman exchange. With PFS, if a single key is compromised, the
integrity of subsequently generated keys is not affected. Manual IPSec has no key
refresh capabilities unless the security associations are deactivated, reconfigured
with the new key, and then reactivated. Because of the disruptive nature of key
refresh with manual IPSec, key lifetimes are defined as much larger values thus,
increasing the security exposure.

z/OS IPSec and VPN support: The Communications Server provides z/OS IPSec
support. The Security Server provides Internet Key Exchange (IKE) support and
Virtual Private Network (VPN) configuration. Together these z/OS elements combine
to provide VPN support for z/OS.

z/OS provides support for the latest IETF RFCs (2401-2406, 2409, 2410) including
Triple DES for strong encryption. A crypto coprocessor provides hardware assist for
IPSec encryption and decryption. Both IPSec transport and tunnel modes are
supported. IKE supports both pre-shared key and RSA Signature (which uses
host-based X.509 certificates) methods of authentication. The z/OS IKE certificate is
stored in RACF.

Configuration considerations for IPSec: In order to enable this support, you must
specify the FIREWALL option on the IPCONFIG statement.

IKE

Sockets API

TCP/UDP

IP/ICMP

Data Link

Sockets API

TCP/UDP

IP/ICMP

Data Link

1. Negotiate phase I Security Association (Get a
master key)

2. Negotiate Security Associations (phase II)
3. Generate session keys, refresh keys and SAs

IPSec Security Association(s)

IKE

Host Certificate
stored locally

Host Certificate
stored locally

Install SAs and
filters into IP
stack

Figure 19. IPSec and IKE overview

92 z/OS V1R4.0 CS: IP Configuration Guide

When you configure a mixture of secure and nonsecure adapters for z/OS CS and
filter rules in your IPSec policy do not have an interface value of BOTH, you should
ensure that all routes to the destinations in a single filter rule go through adapters
with the same security level (for example, either secure or nonsecure).

For more information on using IPSec with Dynamic VIPAs, see “Sysplex Wide
Security Associations” on page 228.

SSL and TLS
The SSL protocol provides data encryption, data origin authentication, and message
integrity. It also provides server and client authentication using X.509 certificates.
SSL begins with a handshake during which the server is authenticated to the client
using X.509 certificates. Also, the client can optionally be authenticated to the
server. During the handshake, security session parameters, such as cryptographic
algorithms, are negotiated and session keys are created. After the handshake, the
data is protected during transmission with data origin authentication and optional
encryption using the session keys.

The cryptographic algorithms that are used for the SSL session are based on the
algorithms the server and client are willing to use. During the SSL handshake, the
client and server exchange a list of algorithms. The algorithm selected is based on
the best match between the client’s list and the server’s list. The selectable
algorithms can be limited by configuring a subset of allowable algorithms at the
server. Servers can support encryption using Triple DES as well as other encryption
algorithms (RC2, RC4, and DES). A hardware crypto coprocessor, if available, is
used for DES and Triple DES encryption.

SSL requires a server X.509 certificate, which is stored in its certificate keyring. The
certificate is used as part of the SSL handshake server authentication process. The
client validates the server certificate. SSL optionally uses a client X.509 certificate
that is used as part of the SSL handshake client authentication process. In order to
use client authentication, the client must have a client X.509 certificate. Successful
client authentication requires that the Certificate Authority (CA) that signed the client
certificate be considered trusted by the server. To be considered trusted, the
certificate of the CA must be in the keyring of the server.

Refer to “Transport layer security” on page 320 for detailed information on obtaining
certificates.

SSL is not defined by the IETF. TLS is based on SSL and is defined by the IETF as
RFC 2246.

TN3270 SSL: The Communications Server provides an SSL-enabled TN3270
server that protects the data path in the IP network to the z/OS TN3270 server
using the SSL protocol. IBM Host On Demand and PCOMM provides a TN3270
client that is enabled for SSL.

Chapter 2. Security 93

|

|
|

The Communications Server TN3270 SSL support provides several extensions for
RACF-based access control to the TN3270 server. These extensions prevent a
client from seeing the USSMSG (log on screen) unless the client is authorized. In
order to use this support, the client certificate must be defined to RACF using
RACF digital certificate services. The first level of authorization checking verifies
that the RACF userid represented by the client certificate is defined to RACF. The
next level of authorization requires that this RACF userid be permitted to access the
TN3270 server port. In this case, the TN3270 server port is represented as a RACF
resource using the SERVAUTH class.

Multiple port support: One method of enabling a mix of SSL and non-SSL traffic is
to use TN3270 multiple port support. Using the multiple port support, separate ports
can be defined with one port being dedicated to non-SSL traffic and another port
dedicated to SSL traffic. Ports designated as SECUREPORT are capable of using
SSL. The following diagram illustrates the use of multiple ports. In this case,
intranet clients are not required to use SSL. These clients connect to the BASIC
port (port 23 in this example). All clients connecting from the Internet are required to
use SSL. These clients use the SECUREPORT (port 1023 in this example). Packet
filtering is used at the firewall that separates the intranet and the Internet to control
access to the TN3270 ports. In order to prevent Internet access to the BASIC port,
port 23 is blocked at the firewall. The SECUREPORT, port 1023, is permitted at the
firewall. In this scenario, the best security is achieved when SSL client
authentication with the TN3270 RACF extensions is used. This support ensures that
the client has authority to attempt to log on to SNA applications through TN3270.

Other Intranet
Servers

TN3270
Server

TCP/IP SNA

Internet

zSeries
Enterprise
Servers

RACF

SSL
Protection
from client to
server

Server
Certificate

Client
Certificate

TN3270
Client

TN3270 SSL
Client (e.g. HOD)

TN3270
Client

Firewall

Figure 20. TN3270 SSL overview

94 z/OS V1R4.0 CS: IP Configuration Guide

Regardless of the method of authentication used, the SNA application should
identify and authenticate the end user using RACF before any application access is
granted. SSL encryption services, if used, would encrypt the user ID and password.

This next diagram illustrates how IPSec and SSL can be combined to provide a
more secure remote access from the Internet to SNA applications than is depicted
in the previous diagram. In this scenario, IPSec AH protocol is used between the
user’s PC and the firewall for authentication. The firewall is open for port 1023 for
traffic that is authenticated with IPSec only. The firewall would discard traffic for port
1023 that cannot be authenticated by IPSec. The additional security provided by
IPSec protects the zSeries from unauthorized access attempts and denial of service
attacks by hosts outside the VPN.

TN3270 use of single port for SSL and non-SSL connections: A single port can be
used to support a mix of SSL and non-SSL traffic. In this case the port is
designated as SECUREPORT. In order to support the configuration of various SSL
security policies for a single port, the SECUREPORT designation defines the port to
be capable of using SSL, rather than the port must use SSL. The PARMSGROUP
and BEGINVTAM blocks are used to specify the connection type (CONNTYPE)
associated with a subset of the port’s connections. A PARMSMAP statement is used
to associate the PARMSGROUP information with specific IP address, hostname, or
linkname. CONNTYPE specifies the SSL policy for the connections that are
associated with it.

The TN3270 server supports both negotiated and non-negotiated SSL. TN3270
negotiated SSL is an IETF defined extension to the TN3270 protocol. With TN3270
negotiated SSL, the decision to use SSL for a connection is based on the outcome
of a negotiation between the TN3270 client and server using TN3270 protocols.

Internet
Enterprise Network
or Intranet

Separate Ports

RACF TN3270
Protection

2nd Secure Port
Port 1023

Port 23Port 23
permitted

Port 23
not allowed

Firewall

SSL

Figure 21. Using multiple TN3270 ports to separate SSL and non-SSL traffic

Internet

Enterprise Network
or Intranet

Separate Ports with IPSec

2nd Secure Port
Port 1023

Port 23Port 1023
permitted

if
IPSec

Port 23
not

allowed

Firewall

RACF TN3270
Protection

IPSec
Authentication

SSL

Figure 22. Combining TN3270 SSL with IPSec client-to-firewall authentication

Chapter 2. Security 95

This negotiation is performed after the TN3270 connection is established, and if
SSL is negotiated, the SSL handshake is performed. With non-negotiated SSL, an
SSL handshake is required immediately after connection establishment. Concurrent
use of both TN3270 negotiated and non-negotiated SSL connections are allowed for
a single port.

The following diagram illustrates the use of a single TN3270 port that allows a mix
of SSL and non-SSL traffic. In this case, intranet clients are not required to use
SSL. All clients connecting from the Internet are required to use SSL. Both intranet
and Internet clients connect to the SECUREPORT (port 23 in this example). In this
scenario, IPSec AH protocol is used between the user’s PC and the firewall for
authentication. The firewall is open for port 23 for traffic that is authenticated with
IPSec only. The firewall would discard traffic for port 23 that IPSec cannot
authenticate. In this scenario, packet filtering without IPSec cannot be used at the
firewall that separates the intranet and the Internet to control access on the basis of
port since only one port is used. Without IPSec AH, all access control checks are
deferred to the TN3270 Server. The additional security provided by IPSec at the
firewall protects the zSeries from unauthorized access attempts and denial of
service attacks by hosts outside the VPN.

Express Logon Feature (ELF): With emulator products, the traditional method of
authenticating the user is through user ID and password which is kept in sync with
the host access control facility (RACF, ACF/2, AS/400® user management, etc.).
The Express Logon Feature simplifies user ID and password administration for
users signing on to SNA applications using TN3270. ELF allows an end user to use
an SSL-authenticated X.509 certificate for authentication to the SNA application
instead of using a user ID and password. ELF requires IBM Host Integration
software. The Host Integration requirements depend on the configuration.

There are two network designs available; a two-tier or a three-tier approach. Both
are discussed in Appendix C, “Express Logon Feature (ELF)” on page 749.

TLS-enabled FTP: The Communications Server FTP server and client support
Transport Layer Security (TLS). This support enables secure file transfer by
providing data privacy, message authentication, and message integrity services for
data sent and received using the FTP control and data connections.

Internet

Enterprise Network
or Intranet

RACF TN3270
Protection

Port 23Port 23
permitted

Firewall

SSL

IPSec
Authentication

Enterprise
Security
Policy

Figure 23. TN3270 SSL and non-SSL traffic using a single TN3270 port

96 z/OS V1R4.0 CS: IP Configuration Guide

The TLS-enabled FTP server can be configured to run in two modes. Conditional
mode allows an installation to use a single port for both TLS and non-TLS FTP
control connections. In conditional mode, the FTP client and server negotiate the
use of TLS based on a subset of the FTP security negotiation functions
documented in RFC 2228. Once the use of TLS is negotiated, the TLS handshake
is performed which establishes the TLS session and negotiates security parameters
and session keys. Unconditional mode allows an installation to use a separate port
for all TLS traffic. Port 990 is the port designated for control connections for
unconditional TLS mode. With unconditional mode, it is assumed that TLS is
required, and after the FTP control connection is made, the TLS handshake is
performed.

TLS secures the control connection and optionally the data connection. TLS for the
data connection requires a TLS session for the control connection. FTP server
configuration controls whether the FTP server requires TLS for the control and data
connections. This TLS protection by connection type is negotiated during the FTP
RFC 2228 negotiation that precedes the TLS handshake. During the lifetime of the
control connection, the use of TLS or no TLS for the data connection can be
requested by the FTP client using the FTP RFC 2228 commands.

FTP TLS optionally authenticates the client during the TLS handshake using a client
X.509 certificate. FTP server configuration specifies whether TLS client
authentication is required and what type of validation of the certificate is required.
For example, the FTP server can be configured to map the client certificate to a
RACF userid and then verify that the userid associated with the certificate matches
the userid entered by the end user.

Configuration to control TLS capabilities and options for both FTP client and server
TLS are stored in the FTP.DATA data set.

Kerberos
Kerberos is a network authentication protocol that is designed to provide strong
authentication for client/server applications using secret-key cryptography. The
Kerberos network authentication protocol assumes that services and workstations
communicate over an insecure network. It allows clients and servers to do either
one way, or two way (mutual) authentication. It allows for data encryption and
prevents passwords from having to be retyped to access networked services and

z/OS TSO
Unix Shell-based
Clients

or

Control connection

Data connection

FTP ServerFTP Client

Client and
trusted CA’s
Certificate

FTP.DATA FTP.DATA

RACF RACF

Client configuration
for TLS

Server configuration
for TLS

Server and
trusted CA’s
Certificate

Client certificate
to RACF use mapping

Figure 24. FTP client and server TLS overview

Chapter 2. Security 97

also prevents their transmission in plain text over the network. This feature can help
reduce the need to manage multiple passwords.

z/OS CS no longer ships Kerberos V4. z/OS Security Server ships a different
Kerberos, Version 5. Because Security Server Kerberos does not require DCE login
and eliminates the need for multiple registries, it is recommended that new
applications be written to Kerberos Version 5 and use z/OS Security Server.

The following Communication Server IP applications now include support for
Kerberos Version 5 security protocol:

v The UNIX System Services Telnet Server now allows clients supporting Kerberos
Version 5 (as described in RFC 1416) to log in to the shell environment using
Kerberos as the authentication protocol.

v The FTP client and Server now support connections to or from other clients and
servers supporting Kerberos Version 5 authentication for the FTP protocol (as
described in RFC 2228).

v The UNIX System Services RSH server can now also be configured to support
client authentication using Kerberos from RSH clients supporting Kerberos
Version 5.

OSPF authentication
Communications Server OSPF (Open Shortest Path First) dynamic routing protocol
supports message authentication and message integrity of OSPF routing messages
through the use of the OSPF MD5 Authentication security protocol as defined by
RFC 2328. OSPF MD5 Authentication ensures that an unauthorized IP resource
cannot inject OSPF routing messages into the network without detection, thus
ensuring the integrity of the routing tables in the OSPF routing network.

OMPROUTE computes a secure MAC for the routing message using the MD5
algorithm. This MAC is sent with the routing message so that the message can be
authenticated by the receiver.

Secure DNS
The Communications Server supports DNS at the Version 9.1 of BIND. This level of
DNS has built-in security features, DNSSEC and TSIG.

DNSSEC: DNSSEC ensures that DNS query results are not spoofed and in fact
originate from a trusted DNS. DNSSEC defines extensions to DNS that provide
data integrity and authentication to security aware resolvers and applications
through the use of cryptographic digital signatures. DNSSEC is defined by the IETF
in RFC 2535.

TSIG: TSIG is a protocol for Secret Key Transaction Signatures for DNS. This
protocol allows for transaction level authentication using shared secrets and one
way hashing. It authenticates dynamic updates as coming from an approved client,
or responses as coming from an approved recursive name server.

SNMPv3
z/OS CS SNMP supports SNMPv3. The legacy community-based protocols
SNMPv1 and SNMPv2 are also supported. SNMPv3, defined in RFCs 2570 through
2575 is the standards-based solution for SNMP security. It is categorized as a
User-based Security Model (USM) which provides different levels of security based
on the user accessing the managed information. To support this security level, the
SNMPv3 framework defines several security functions, such as USM for
authentication and privacy, and view-based access control model (VACM) which
provides the ability to limit access to different MIB objects on a per-user basis, and

98 z/OS V1R4.0 CS: IP Configuration Guide

the use of authentication and data encryption for privacy. However, SNMP is not
just enhanced security. It defines an architecture for SNMP management
frameworks, with the intent that pieces of the architecture can advance over time
without requiring the entire structure to be rewritten. For that reason, three major
subsystems are defined:

v Message processing subsystem

v Security subsystem

v Access control subsystem

The framework is structured so that multiple models can be supported concurrently
and replaced over time. For example, although there is a new message format for
SNMPv3, messages created with the SNMPv1 and SNMPv2 formats can still be
supported. Similarly, the user-based security model can be supported concurrently
with the community-based security models previously used.

Security Event Reporting

Integrated Intrusion Detection Services (IDS)
Intrusion is a broad term encompassing many undesirable activities. The objective
of an intrusion may be to acquire information that a person is not authorized to
have (information theft). It may be to cause business harm by rendering a network,
system or application unusable (denial of service). Or it may be to gain
unauthorized use of a system as a stepping stone for further intrusions elsewhere.
Most intrusions follow a pattern of information gathering, attempted access and then
destructive attacks. Some attacks can be detected and neutralized by the target
system. Other attacks cannot be effectively neutralized by the target system. Many
of the attacks also make use of spoofed packets which are not easily traceable to
their true origin. Many attacks now make use of unwitting accomplices - machines
or networks that are used without authorization to hide the identity of the attacker.
For these reasons, detecting information gathering, access attempts and attack
accomplice behaviors is a vital part of intrusion detection.

Attacks can be initiated from outside the internal network or from inside the internal
network. Particularly vulnerable is an open system such as a public Web server or
any machine that is placed in service to serve those outside the internal network. A
firewall can provide some level of protection against attacks from outside. However,
it cannot prevent attacks once the firewall has authorized an external host to
communicate with hosts in the internal network, nor can it provide protection in the
case where the attack is initiated from inside the network. In addition, end to end
encryption limits the types of attacks that can be detected by an intermediate device
such as a firewall.

An Intrusion Detection System can provide detection of some types of attacks.
Common intrusion detection system types currently deployed are network sniffers or
sensors and vulnerability scanners. Sniffers, placed at strategic points in the
network (in front or behind a firewall, in the network, or in front of a host), operate in
promiscuous mode, examining traffic real-time that passes through on the local
network. Sniffers use pattern matching to try to match a packet against a known
attack which is expressed as an attack signature. Sniffers work best against single
packet attacks. Limitations are that they cannot deflect the attacking packet, and
they cannot evaluate against encrypted data. Scanners do not detect intrusions in
real-time. They examine a system periodically looking for vulnerabilities or evidence
of intrusion. Some scanners evaluate historical data and can identify behavioral
anomalies and patterns associated with intrusions.

Chapter 2. Security 99

The z/OS Communications Server provides Intrusion Detection Services (IDS)
which enable the detection of attacks and the application of defensive mechanisms
on the z/OS server. The focus of IDS is self-protection. IDS can be used alone or in
combination with an external network-based Intrusion Detection System. The IDS is
integrated into the z/OS Communications Server stack and can provide the
following functions unavailable from an external Intrusion Detection System.

v z/OS CS IDS evaluates data that has been encrypted by IPSec end to end after
decryption on the target server system.

v z/OS CS IDS avoids the overhead of per packet examination against a table of
signatures for many known attacks. This is accomplished by integrating the
attack detection probes into existing error detection logic. This detection is done
in real-time. IDS policy is examined when an attack is detected to determine the
action to be taken.

v z/OS CS IDS detects statistical anomalies real-time. Real-time detection is
achieved since it is easier for the target system to keep stateful data/internal
thresholds and counters.

v z/OS CS IDS implements prevention type of policies that are executed on the
system that is the target of the attack. Prevention policies include packet discard
and connection limiting.

The IDS is policy driven and the policies are kept in LDAP. These policies
determine what actions to take for various IDS events. IDS events detected include
scans, single packet attacks against the TCP/IP stack, and flooding. Actions include
packet discard, connection limiting, and reporting. IDS events can be recorded in
syslog files and/or the console. IDS statistics can be recorded in syslog. Packet
traces can be taken to document suspicious activities. The TRMDSTAT command
provides summary and detailed reporting of IDS events and statistics.

The following figure shows the z/OS CS IDS architecture.

Download policy

Download
policy

Install
IDS Policy
in stack

Event messages
to local console

Trace suspicious
activity

IDS Policy Repository

LDAPLDAP

Syslog

Traces

Policy TRMD

TCP/UDP

IP/ICMP
Data Link

Intrusion
Event

z/OS

Download policy

Agent

Log Events
and Statistics

Attack

Administration

LDAP Server

Sockets API

Figure 25. Intrusion Detection Services overview

100 z/OS V1R4.0 CS: IP Configuration Guide

Chapter 3. Customization

Before you begin customizing, it is assumed that you know what configuration data
sets are used by the TCP/IP address space, their search order, and considerations
for what type of TCP/IP stack you will be running in your environment (for example,
Enterprise Extender (EE) and multiple stacks). See Chapter 1, “Configuration
overview” on page 3 for this information.

After reading this chapter, you will know how to configure and start syslogd and the
TCP/IP stack. You should understand the relationships of TCP/IP configuration files
as they apply to the TCP/IP address space. The four main configuration files that
you will be working with are:

v TCPIP.DATA

v PROFILE.TCPIP

v HOSTS.LOCAL

v ETC.IPNODES

You should be able to use the following commands to verify customization:

TSO PING, z/OS UNIX oping, and z/OS UNIX ping
Sends IP datagrams to a specified destination host, requesting a reply, and
measures the round trip time. This helps you to verify the interfaces defined
to the TCP/IP address space.

TSO NETSTAT, z/OS UNIX onetstat, and z/OS UNIX netstat
Queries TCP/IP about the network status of the local host. With NETSTAT,
you can verify most TCP/IP customization values that can be set from the
PROFILE.TCPIP.

TSO HOMETEST
Verifies your host name and address configuration.

TSO TRACERTE, z/OS UNIX otracert, and z/OS UNIX traceroute
Displays the route that a packet takes to reach a requested destination.

Configuring the syslog daemon (syslogd)

Configuration statements
The syslogd processing is controlled by a configuration file called /etc/syslog.conf
(see the following sample file) in which you define logging rules and output
destinations for error messages, authorization violation messages, and trace data.
Logging rules are defined using a facility name, a priority code, and the user ID and
job name of the program that generated the message. The facility name and priority
code are passed on the logging request from an application when it wants to log a
message. The user ID and job name are provided by the system. Refer to z/OS
Communications Server: IP Configuration Reference for more information about
logging rules.

As shown in the following sample /etc/syslog.conf file, comments can be added to
the configuration file by placing the # character in column one of the comment line.
Everything following the # character is treated as a comment. This sample is
available in /usr/lpp/tcpip/samples/syslog.conf in the HFS.
Licensed Materials - Property of IBM
5694-A01
(C) Copyright IBM Corp. 1992, 2002

© Copyright IBM Corp. 2000, 2002 101

|

|

|

|

|

|

|
|
|

Status = CSV1R4
#
/etc/syslog.conf - control output of syslogd
#
The # sign begins a comment which extends to the end of the line.
#
Blank lines are ignored.
#
Rules in this file specify types of messages which syslogd will
store, and where syslogd will store it.
#
See IP Configuration Reference for detailed information about
the syntax. These comments are meant to provide only a general
overview.
#
Four criteria can be used to select messages for processing:
#
1) user ID associated with application generating the message
#
* can be specified for the user ID if the user ID is not
important.
#
2) job name of application generating the message
#
* can be specified for the job name if the job name is not
important.
#
3) facility of the message, as specified by the application
#
This is user, mail, news, uucp, daemon, auth, cron, lpr, or
local0-local7. Consult the documentation for the application
to determine which facility the application specifies.
#
A special facility, mark, specifies that syslogd should log
mark messages on a regular basis. These can be used to verify
that syslogd was operational during a specific time interval.
#
4) priority of the message, as specified by the application
#
This is emerg, panic, alert, crit, err, error, warn, warning,
notice, info, or debug.
#
A special priority, none, specifies that messages with the
specified user ID, job name, or facility should not be
selected.
#
These criteria are specified together as
#
userid.jobname.facility.priority
#
or, if user ID and job name are both *, as
#
facility.priority
#
This can be combined in a series as
#
userid.jobname.facility.priority;userid.jobname.facility.priority
#
The criteria for selecting messages for processing are combined
with a destination, which tells syslogd what to do with selected
messages.
#
criteria destination
#
The destination can be a file, one or more user IDs, SMF, syslogd
at a remote host, or all logged-in users.
#

102 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The following example stores messages with facility daemon or
local1 in the file /directory/logfile.
#
daemon.*;local1.* /directory/logfile
#
The directory structure used in this sample configuration is
expected to be created automatically by syslogd, with a new
directory of log files for each day. This requires two types
of configurations outside of the scope of this configuration
file:
#
1) syslogd command-line option
#
The syslogd -c command-line option should be enabled, causing
syslogd to create log files and directories if they do not
already exist.
#
2) cron job
#
A cron job should be utilized to wake up syslogd at the
beginning of each day to switch to new log files in a new
directory. Here is the cron job definition:
#
1 0 * * * kill -HUP `cat /etc/syslog.pid`
#
This job should be defined for a user ID with UID zero so that
it has permissions to send the signal to syslogd.
#
See UNIX System Services Planning and UNIX System Services
Command Reference for more information about cron.
#
A sample shell script is provided for removing log files which are
a specifed number of days old. It assumes the same directory
structure which is used in this sample configuration.
#
All example rules except for the last one are commented-out. Some
or all of the example rules will need to be changed for your
environment. Each example rule contains an explanation of changes
which may be required.
#
###
#
Write all messages with priority crit or higher to the MVS operator
console. See the UNIX System Services Planning manual for more
information about the /dev/console special file.
#
*.crit /dev/console
#
###
#
Write all messages from syslogd itself to the file
/var/log/YYYY/MM/DD/syslogd.log and to the system console.
#
Notes:
#
a) If syslogd is invoked as a started task with job name
SYSLOGD, the name of the long-running syslogd job is
SYSLOGD1. If syslogd is invoked from a shell script
(e.g., /etc/rc) with job name SYSLOGD, the name of the
long-running syslogd job is SYSLOGD followed by a
digit.
#
If syslogd runs with a different job name on your system, the
rule will have to be changed accordingly.
#
b) During initialization, syslogd writes messages to
/dev/console. These rules cover messages during steady-

Chapter 3. Customization 103

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

state.
#
.SYSLOGD.*.* /var/log/%Y/%m/%d/syslogd
.SYSLOGD.*.* /dev/console
#
###
#
Write all messages from inetd to the log file inetd and to the
console.
#
Notes:
#
a) If inetd is invoked as a started task with job name INETD, the
name of the long-running inetd job is INETD1. If inetd is
invoked from a shell script (e.g., /etc/rc) with job name INETD,
the name of the long-running inetd job is INETD followed by a
digit.
#
If inetd runs with a different job name on your system, the rule
will have to be changed accordingly.
#
.INETD.*.* /var/log/%Y/%m/%d/inetd
.INETD.*.* /dev/console
#
###
#
Write all messages with priority err or higher from applications
which specify facility "daemon" to the log file daemon.
Because we chose to log messages from syslogd and inetd separately,
we’ll filter out those messages from this rule using special
priority none.
#
Notes:
#
a) In this example, SYSLOGD followed by some other character is the
job name of syslogd. If it is different on your system, change
the rule.
b) In this example, INETD followed by some other character is the
job name of inetd. If it is different on your system, change the
rule.
#
daemon.err;*.SYSLOGD*.*.none;*.INETD*.*.none /var/log/%Y/%m/%d/daemon
#
###
#
Write all messages from applications which specify facility "auth"
to the log file auth.
#
auth.* /var/log/%Y/%m/%d/auth
#
###
#
Write all messages from applications which specify facility "mail"
to the log file mail.
#
mail.* /var/log/%Y/%m/%d/mail
#
###
#
Write all messages with priority err and higher from otelnetd and
other applications which specify facility "local1" to the log file
local1.
#
local1.err /var/log/%Y/%m/%d/local1
#
###
#

104 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Write all messages from otelnetd and other applications which
specify facility "local1" when running as user SMITH to the log file
local1.smith. This could be useful if, for example, otelnetd traces
need to be collected for a problem which user SMITH is experiencing
and you do not wish to collect otelnetd traces from all user IDs.
#
SmITh.*.local1.* /var/log/%Y/%m/%d/local1.smith
#
###
#
Write all messages with priority err and higher to SMF. These will
be stored in SMF record type 109. SMF must be active and
configured to accept record type 109. The user ID associated with
syslogd must have read access to BPX.SMF. See UNIX System Services
Planning for more information about BPX.SMF.
#
*.err $SMF
#
###
#
Write all messages with priority crit and higher to the syslogd on
host 192.168.1.9. The host may be specified by IPv4 address or by
a name that resolves to an IPv4 address.
#
*.crit @192.168.1.9
#
###
#
Write all messages with priority err and higher to log file errors.
#
THIS EXAMPLE STATEMENT IS UNCOMMENTED.
#
*.err /var/log/%Y/%m/%d/errors
#

Starting and stopping syslogd
Following is the syntax for the syslogd command:

syslogd [−f conffile] [−i][−u[−c[−d][−m markinterval] [−p logpath]

syslogd recognizes the following options:

-f Configuration file name.

-i Do not receive messages from the IP network.

-u For records received over the AF_UNIX socket (most messages generated
on the local system), include the user ID and job name in the record. In this
case, a forward slash, the user ID, and the job name will follow the local
host name for messages received over the AF_UNIX socket. The forward
slash, which immediately follows the local host name, can be used to
determine whether or not the user ID and job name is being recorded. If not
recorded, a blank immediately follows the local host name. When user ID or
job name is not available, N/A will be written in the corresponding field.

-c Create log files and directories automatically.

-d Run syslogd in debugging mode (see “Diagnosing syslogd configuration
problems” on page 108 for more information).

-m Number of minutes between mark messages. The default value is 20
minutes. The following rule must be coded for each logfile that you want a
mark record recorded in: mark.info.

Chapter 3. Customization 105

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

-p Path name of z/OS UNIX character device for the datagram socket. The
default value is /dev/log.

Note: This option is not used frequently. If you selected the -p option,
syslogd will not function properly.

To specify the job name and pass the appropriate environment variables to the
syslogd process, start syslogd using a shell script such as the following:
#
Start the syslog daemon
#

export _BPX_JOBNAME=’syslogd’
/usr/sbin/syslogd -f /etc/syslog.conf &

You can execute this shell script directly from the /etc/rc file to start syslogd at z/OS
UNIX initialization.

If an incorrect argument or number of arguments is entered, syslogd exits and the
return code is 1. In all other situations in which syslogd exits, the return code is 0.

To terminate syslogd, send a SIGTERM signal.
kill -s SIGTERM <PID>

To force syslogd to reread its configuration file and activate any modified
parameters without stopping, send a SIGHUP signal. syslogd will continue to
append log messages to the files you specify in /etc/syslog.conf.
kill -s SIGHUP <PID>

The syslog daemon stores its process ID in the /etc/syslog.pid file so that it may be
used to terminate or reconfigure the daemon. For syslogd to successfully create this
file, you must define the syslogd user ID as UID=0.

Note: If the BPX.SMF facility is defined and SMF records are to be written by
syslogd, the user ID with which syslogd runs must also be permitted to SAF
resource BPX.SMF. See SEZAINST(EZARACF) for more information.

Messages are read from the UNIX domain datagram socket and, unless the -i
command line option is specified, the IPv4 Internet domain (AF_INET) datagram
socket. AF_INET6 sockets are not supported. Kernel messages are not logged by
syslogd in z/OS UNIX.

Note: For more information about the facilities used by z/OS CS functions, see
Table 4 on page 40.

Offloading log files
z/OS CS includes a syslogd configuration file in /usr/lpp/tcpip/samples/syslog.conf, a
REXX program for removing old log files in /usr/lpp/tcpip/samples/rmoldlogs, and a
JCL procedure for starting syslogd in SEZAINST(syslogd). These are intended to be
used together, though each may need to be customized for your installation.

The sample syslogd configuration file is installed in
/usr/lpp/tcpip/samples/syslog.conf. It can be copied to /etc/syslog.conf after
customization. If it is copied somewhere else, the syslogd -f command-line option
must be used to tell syslogd where to find the configuration file.

106 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|

The sample REXX program for removing old log files is installed in
/usr/lpp/tcpip/samples/ezaslrol. It can be copied to an installation-defined directory
after customization. The sample JCL procedure can be copied to an
installation-defined library after customization.

The sample configuration uses date stamps in the names of directories of log files
to organize log files by year (%Y), month (%m), and day (%d) as follows:
*.err /var/log/%Y/%m/%d/errors

Log files for February 14, 2001, for example, would be stored in directory
/var/log/2001/02/14. Variable substitution occurs using the LE C function strftime().
Variables are case sensitive. For more information and a complete list of variables,
refer to z/OS C/C++ Run-Time Library Reference.

A cron job should be used to send the SIGHUP signal to syslogd every day at
midnight so that it switches to a new set of files. The cron job should be created for
a user ID with UID 0. The definition of the cron job is:
0 0 * * * kill -HUP `cat /etc/syslog.pid`

The log file names vary based on the day, so sending SIGHUP to syslogd after the
day changes causes syslogd to create new files.

Because some messages sent just after midnight may be logged by syslogd before
it processes the SIGHUP signal, it is possible that a few messages sent after
midnight will be stored in the log files for the previous day.

The sample REXX program can be run daily to remove all log files older than the
number of days specified in the program. Comments in the REXX program describe
how to configure the number of days. The definition of a cron job to run the REXX
program every day at 1:00 A.M. is:
0 1 * * * localdir/ezaslrol

localdir is the name of the installation-defined directory where the customized
version of /usr/lpp/tcpip/sample/ezaslrol was copied.

Using syslogd for z/OS UNIX application programs
You can use the logging facilities of the syslogd server with your z/OS UNIX
application programs. Include the syslog.h header file with C programs so that they
can open a log facility, send log messages to syslogd, and close the facility:
#include <syslog.h>

�1� openlog("oec", LOG_PID, LOG_LOCAL0);
�2� syslog(LOG_INFO, "Hello from oec");
�3� closelog();

�1� Open a log facility with the name of local0. Prefix each line in the log file with
the program name (oec) and the process ID.

�2� Log an info priority message with the specified content.

�3� Close the log facility name.

The preceding statements created the following line in the log file:
May 26 11:27:51 mvs18oe oec[3014660]: Hello from oec

Chapter 3. Customization 107

|
|

|

|
|
|
|

For more information about the syslog function, refer to Advanced Programming in
the UNIX Environment, published by Addison-Wesley or z/OS C/C++ Run-Time
Library Reference.

Usage notes
v syslogd can be started only by a task or user with superuser authority.

v syslogd can be terminated using the SIGTERM signal.

v If you want syslogd to receive log data from remote syslogd servers, ensure that
syslogd can bind to UDP port 514 by reserving that port for the syslogd job in
your PROFILE.TCPIP data set. Ensure that the syslog service is defined in your
services file or data set (for example, /etc/services). The following example port
reservation in PROFILE.TCPIP assumes that syslogd runs as job syslogd1:
PORT
...
514 UDP syslogd1 ;syslogd daemon
...

The following example shows the services file or data set file entry:
syslog 514/udp

v If there is no TCP/IP transport active when syslogd starts or if TCP/IP is recycled,
syslogd will establish or reestablish communication with TCP/IP when it becomes
available.

v Configuration file errors are written to the operator console because initialization
is not complete until the entire configuration file has been read.

v Facility mark is not affected by the *.priority usage. Mark messages are written
only to the destinations of rules that specify mark.info.

v If a mark interval of zero minutes is specified, mark messages will be written
every thirty seconds.

Diagnosing syslogd configuration problems
syslogd supports a debug mode, which is selected using the -d command-line
option. In this debug mode, syslogd does not run as a daemon, but instead runs in
the foreground and writes a large number of trace messages to STDOUT. These
messages can be used to diagnose problems in the syslogd configuration or to
collect documentation when reporting a syslogd problem to IBM support.

Note: Do not use the -d option for normal operations.

If you are running syslogd in batch with -d, debug output is written to SYSPRINT,
SYSTERM, or SYSERR, whichever is found first. The sample syslogd procedure
SEZAINST(syslogd) defines SYSPRINT so that debug messages are stored in the
job output.

Use caution using -d when syslogd is started from /etc/rc. If -d is used in this way,
the shell and operator must be used to run syslogd in the background. Otherwise,
/etc/rc does not end and UNIX System Services initialization does not complete.

Also, use caution when using -d along with a port reservation statement for the
syslogd port (UDP port 514) in the TCP/IP profile. The job name of syslogd might
differ based on whether or not the -d option was specified. If a port reservation
statement is coded based on the job name that syslogd uses without the -d option,
syslogd might not be able to bind to the port when run with -d. When using debug

108 z/OS V1R4.0 CS: IP Configuration Guide

mode with a port reservation statement for the wrong job name, the bind() error can
be ignored or the -i command-line option can be specified along with -d so that
syslogd will not get a UDP socket.

Configuring TCPIP.DATA

Use of TCPIP.DATA and /etc/resolv.conf
The TCPIP.DATA configuration data set is the anchor configuration data set for the
TCP/IP stack and all TCP/IP servers and clients running in z/OS. In z/OS IP, you
can define the TCPIP.DATA parameters in an HFS file or in an MVS data set. The
TCPIP.DATA configuration data set is read during initialization of all TCP/IP server
and client functions. All functions must access this data set in order to find basic
configuration information, such as the name of the TCP/IP address space, the
TCP/IP host name, and the data set prefix to use when searching for other
configuration data sets.

The TCPIP.DATA data set is also known as one of the resolver configuration data
sets. In fact, this name is now more commonly used to refer to this important file in
the UNIX System Services environment because the socket library contains a
component called the resolver. In a UNIX system, you use the /etc/resolv.conf file
for the same purpose as you use TCPIP.DATA in your MVS system.

TCPIP.DATA specifies the name of the TCP/IP address space. Because the data set
search order can vary, your installation will determine which data set you can use.
See Chapter 1, “Configuration overview” on page 3 for search order, data set, and
file retrieval information and “Resolver configuration files” on page 27.

If you use TCPIP.DATA, it can be shared between multiple systems with a system
name. But, if TCPIP.DATA is allocated via SYSTCPD DD and an application forks,
any allocations from the parent of SYSTCPD are lost to the child process.

In z/OS UNIX System Services, each application can have its own environment
variable, RESOLVER_CONFIG=’xxx’. There are no concerns for forked child
processes; however, this means that you cannot share the same data set or file
among multiple systems.

Creating TCPIP.DATA
Create a TCPIP.DATA file by copying the sample provided in SEZAINST(TCPDATA)
and modifying it to suit your local conditions.

Allocate this data set with either sequential (PS) or partitioned (PO) organization, a
fixed (F) or fixed block format (FB), a logical record length (LRECL) between 80
and 256, and any valid block size for a fixed block. This file can also be the HFS
file /etc/resolv.conf, or an HFS file that is pointed to by either the environment
variable RESOLVER_CONFIG or the SYSTCPD DD in a JCL procedure. If you
have an HFS file, the maximum line length can be 256. The environment variable
RESOLVER_CONFIG can also point to an MVS data set or PDS.

You can use any name for the TCPIP.DATA data set if you access it using the
//SYSTCPD DD statement, or use ENVAR to set RESOLVER_CONFIG, in the JCL
for all the servers, logon procedures, and batch jobs that execute TCP/IP functions.
If you are not using the //SYSTCPD DD statement, the environment variable, or
/etc/resolv.conf, then the data set name must conform to the conventions described
in “Configuration files for the TCP/IP stack” on page 25. Another alternative is to use

Chapter 3. Customization 109

the well-known data set name SYS1.TCPPARMS(TCPDATA). You will issue the
HOMETEST command with TRACE RESOLVER activated to verify the actual data
set name the system finds for TCPIP.DATA later in this chapter. However, because
HOMETEST is an MVS sockets application, it does not use RESOLVER_CONFIG
or /etc/resolv.conf in its search order. For this reason, it is recommended that
/etc/resolv.conf and TCPIP.DATA contain exactly the same information or consider
using the resolver GLOBALTCPIPDATA setup statement.

TCPIP.DATA statements
Each configuration statement can be preceded by an optional system_name. This
permits configuration information for multiple systems to be specified in a single
hlq.TCPIP.DATA data set. The system_name is matched against the name of the
system on which you are running. The name of the system is taken from the name
in the IEFSSNxx member of parmlib, which is the third parameter of the VMCF line.

The statements are processed in the order they appear in the data set. The
following rules apply to this processing:

v If the system_name does not match the name of the system, the configuration
statement is ignored.

v If system_name is blank, the configuration statement is in effect on every system.

v If the system_name matches the host’s name, the configuration statement that
follows it is in effect.

v The last statement that matches is effective.

For example, if you have the following three TCPIPJOBNAME statements, MVS6
would look for a TCP/IP cataloged procedure named TCPBTA2, MVSA would look
for TCPV3, and all other systems would look for TCPMCWN.

TCPIPJOBNAME TCPMCWN
MVS6: TCPIPJOBNAME TCPBTA2
MVSA: TCPIPJOBNAME TCPV3

But if you reversed the order, all systems would try to find the procedure named
TCPMCWN.
MVS6: TCPIPJOBNAME TCPBTA2
MVSA: TCPIPJOBNAME TCPV3

TCPIPJOBNAME TCPMCWN

A sample TCPIP.DATA data set (TCPDATA) can be found in SEZAINST. For
detailed information on each of the statements, refer to the z/OS Communications
Server: IP Configuration Reference.

Configuring PROFILE.TCPIP
During TCP/IP address space initialization, a configuration profile data set
(PROFILE.TCPIP) is read that contains system operation and configuration
parameters. A sample data set, SEZAINST(SAMPPROF), can be copied and
modified for use as your default configuration profile.

If you are not familiar with the search order for this data set, see “PROFILE.TCPIP
search order” on page 25 for information about understanding data set search
orders. Refer to z/OS Communications Server: IP Configuration Reference for the
complete statement syntax and descriptions of the configuration statements.

For ease of management when configuring a complex environment, you can use
one of the following PROFILE.TCPIP data set features:

110 z/OS V1R4.0 CS: IP Configuration Guide

|

v Group related statements into separate files and use the INCLUDE statement in
PROFILE.TCPIP to include them in your configuration.

v Use MVS system symbols (such as &SYSCLONE, &SYSNAME, and
&SYSPLEX). Because TCP/IP translates these symbols as it reads this file, this
feature reduces the number of PROFILE.TCPIP data sets that must be
maintained in a multi-TCP/IP environment.

Note: For detailed information about symbols and how to define them, refer to
z/OS MVS Initialization and Tuning Reference.

The PROFILE data set contains the following major groups of configuration
parameters:

v TCP/IP operating characteristics

v TCP/IP physical characteristics

v TCP/IP reserved port number definitions (application configuration)

v TCP/IP network routing definitions

v TCP/IP diagnostic data statements

This chapter discusses the first three areas of configuration. For routing
configuration information, see Chapter 4, “Routing” on page 155. For information
about configuring diagnostic statements, see z/OS Communications Server: IP
Diagnosis.

Changing configuration information
If you want to change the TCP/IP configuration without stopping and starting the
TCP/IP address space, you can dynamically change many of the TCP/IP
configuration options established by the PROFILE.TCPIP data set. To do this, put
the changed configuration statements in a separate data set and process it with the
VARY TCPIP,,OBEYFILE command.

For more information about VARY TCPIP, refer to z/OS Communications Server: IP
System Administrator’s Commands. Also, see the Modifying section in each
configuration statement in z/OS Communications Server: IP Configuration
Reference for a description of how to dynamically change the information for that
configuration statement.

Note: If you attempt to edit PROFILE.TCPIP while TCPIP is active, and
PROFILE.TCPIP is defined in the TCPIP PROC as a sequential data set (for
example, //PROFILE DD DISP=SHR,DSNAME=TCPIP.PROFILE.TCPIP), the
Dataset in use message might be displayed. To avoid this, specify
FREE=CLOSE, as follows:
//PROFILE DD DISP=SHR,DSNAME=TCPIP.PROFILE.TCPIP,FREE=CLOSE

This allows you to edit the profile while TCP/IP is active. Typically, when
TCP/IP starts, it keeps the PROFILE allocated and does not release the
allocation until the end of the step (in this case, the end of the job). If you
specify FREE=CLOSE, the release occurs once the data set is read. MVS
releases the enqueue on the PROFILE, which allows you to edit it.

If the PROFILE is a member of a PDS, [for example,
SYS1.TCPPARMS(PROFILE)], FREE=CLOSE is not needed.

Chapter 3. Customization 111

|
|
|
|
|

|

|
|
|
|
|

|
|

Setting up TCP/IP operating characteristics in PROFILE.TCPIP
Figure 26 shows a portion of the sample configuration file for the TCP/IP address
space, PROFILE.TCPIP. This sample can be copied from SEZAINST(SAMPPROF).
Figure 26 includes the portion of the sample that shows how to set up TCP/IP
operating characteristics. Descriptions for the statements follow Figure 26. For more
information about any of these statements, refer to z/OS Communications Server:
IP Configuration Reference. For information specific to IPv6 support, refer to z/OS
Communications Server: IPv6 Network and Application Design Guide.

; ==
; General TCP/IP address space configuration
; ==
;
; ARPAGE: Specifies the number of minutes between creation or
; revalidation of an LCS ARP table entry and the deletion of the
; entry.
;
ARPAGE 20
;
;
; GLOBALCONFIG: Provides settings for the entire TCP/IP stack
;
GLOBALCONFIG NOTCPIPSTATISTICS
;
; IPCONFIG: Provides settings for the IPv4 IP layer of TCP/IP.
;
; Example IPCONFIG for single stack/single system:
;
IPCONFIG DATAGRAMFWD VARSUBNETTING SYSPLEXROUTING
;
; Example IPCONFIG for automatic activation of inter-stack dynamic XCF
; and Same Host (IUTSAMEH) links
;
; IPCONFIG DYNAMICXCF 201.1.10.10 255.255.255.0 2
;
; IPCONFIG6: Provides settings for the IPv6 IP layer of TCP/IP.
;
; IPCONFIG6 DATAGRAMFWD SOURCEVIPA
;
; SOMAXCONN: Specifies maximum length for the connection request queue
; created by the socket call listen().
;
SOMAXCONN 10
;
;
; TCPCONFIG: Provides settings for the TCP layer of TCP/IP.
; RESTRICTLOWPORTS limits access to ports below 1024
; to authorized applications. Applications can be
; authorized to low ports in three ways:
; - via PORT or PORTRANGE with the appropriate jobname
; or wildcard jobname
; - APF authorized
; - superuser
;
TCPCONFIG TCPSENDBFRSIZE 16K TCPRCVBUFRSIZE 16K SENDGARBAGE FALSE
TCPCONFIG RESTRICTLOWPORTS
;
;
; UDPCONFIG: Provides settings for the UDP layer of TCP/IP
; RESTRICTLOWPORTS limits access to ports below 1024
; to authorized applications. Applications can be

Figure 26. Example of TCP/IP operating characteristics in PROFILE.TCPIP

112 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

; authorized to low ports in three ways:
; - via PORT or PORTRANGE with the appropriate jobname
; or wildcard jobname
; - APF authorized
; - superuser
;
UDPCONFIG RESTRICTLOWPORTS
;

The following section explains the grouping of statements shown in Figure 26 on
page 112.

ARPAGE
Use ARPAGE to set the number of minutes between a revalidation and
deletion of ARP table entries for LCS devices. An installation that wants to
describe this value in seconds versus minutes should use the IPCONFIG
ARPTO statement.

Note: The ATM ARP requests are controlled via the ATMLIS statement,
and the MPCIPA and MPCOSA ARP requests are not controlled by
the TCP/IP address space.

GLOBALCONFIG
Use GLOBALCONFIG to print out several counters in text format. These
counters include number of TCP retransmissions and total number of TCP
segments sent from the TCPIP system. Most installations will use the SMF
facility of MVS to collect these counters in a more standard way. Use the
ECSALIMIT parameter on the GLOBALCONFIG statement to limit TCP/IP’s
use of common storage. The POOLLIMIT parameter can be used to limit
TCP/IP’s use of private storage pools.

IPCONFIG
Use IPCONFIG to configure various settings of the IP layer of TCP/IP. Use
ARPTO to specify the ARP time out value in seconds for LCS devices. See
page 113 for more information.

Use CLAWUSEDOUBLENOP on vendor devices that document the need
for double NOPs on each CCW.

Use DATAGRAMFWD if this TCP/IP is to be a router and needs to forward
datagrams to other routers. Use IGNOREREDIRECT when a dynamic
routing program is used and ICMP redirect packets are to be ignored by the
TCP/IP address space. MULTIPATH is used to inform TCP/IP how to
distribute traffic across equal cost routes. VARSUBNETTING allows the
TCP/IP routing table to have address routes within the same subnet that
have differing subnet masks.

Use FIREWALL to restrict this host to be a network firewall. To make IPSEC
tunnels associated with Dynamic VIPA addresses eligible for distribution, if
the VIPA addresses are being distributed and are eligible to be moved
during VIPA takeover or giveback, add the DVIPSEC keyword to
FIREWALL.

SOURCEVIPA enables interface fault tolerance for z/OS clients that
establish outbound connections. When SOURCEVIPA is set, outbound
datagrams use the corresponding virtual IP address (VIPA) in the HOME list
instead of the physical interfaces IP address. SOURCEVIPA has no effect
on RIP servers such as OROUTED, NCPROUTE, or OMPROUTE.

TCPSTACKSOURCEVIPA allows z/OS clients to specify a sysplex wide
source IP address for TCP connections. When TCPSTACKSOURCEVIPA is

Chapter 3. Customization 113

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

set, outbound TCP datagrams use the IP address specified in the
TCPSTACKSOURCEVIPA statement instead of static VIPA addresses or
physical interface addresses.

Use SYSPLEXRouting to communicate interface changes within a sysplex
domain to the workload manager (WLM). DYNAMICXCF allows the cross
communication facility within a sysplex to dynamically generate connections
within a sysplex domain. If DYNAMICXCF is used with a routing program
like OMPROUTE or OROUTED, then the BSDROUTINGPARMS and the
OMPROUTE configuration files need to be updated with subnet mask and
cost information. For more information on additional configuration
parameters required, see the usage notes related to the DYNAMICXCF
parameter under the IPCONFIG statement in z/OS Communications Server:
IP Configuration Reference.

Use REASSEMBLYTIMEOUT to specify the TCP/IP reassemble timeout
value in seconds, and the TTL specifies the TCP/IP time to live or hop
count value.

Use PATHMTUDISCOVERY to indicate to TCP/IP that it is to dynamically
discover the path MTU, which is the minimum of MTUs of each hop in the
path.

Use STOPONCLAWERROR to indicate to the TCP/IP stack to stop channel
programs (HALTIO and HALTSIO) when a device error is detected.

IPCONFIG6
Use IPCONFIG6 to update the IP layer of TCP/IP with information that
pertains to IPv6. Use DATAGRAMFWD to enable the transfer of data
between networks.

SOMAXCONN
Use SOMAXCON to specify the maximum number of sockets queued on a
listener.

TCPCONFIG
Use TCPCONFIG to configure various settings of the TCP protocol layer. If
a keep-alive value other than 120 minutes is needed by an installation, use
the INTERVAL statement to change the default keep-alive value.
FINWAIT2TIME can be used to specify a different timeout value for a TCP
Connection which is in a FINWAIT2 state. SENDGARBAGE will cause the
keep-alive packet to contain one byte of random data and an incorrect
sequence number, assuring that the data is not accepted by the remote
TCP. The TCPTIMESTAMP option can be used to choose whether or not to
participate in timestamp negotiation.

The behavior of acknowledgments and delaying their transmission can be
altered by using the DELAYACKS statement.

If RESTRICTLOWPORTS is specified, only applications that meet at least
one of the following criteria are allowed to bind to low ports (1–1023):

v The port is reserved for the application via the PORT or PORTRANGE
statement.

v The application runs with APF authorization.

v The application runs with effective POSIX UID zero.

If an installation wants to control TCP buffering (to limit storage usage or to
manage large bandwidth devices), use the TCPSENDBFRSIZE,
TCPRCVBUFRSIZE, and TCPMAXRCVBUFRSIZE parameters.

114 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|

|
|
|
|

|
|
|
|

|

UDPCONFIG
Use UDPCONFIG to configure various settings of the UDP protocol layer.
NOUDPCHKSUM can be used to eliminate check summing overhead for
IPv4 UDP packets. This option is ignored for UDP datagrams flowing over
an IPv6 network, as UDP Checksum is a required function on an IPv6
network.

If RESTRICTLOWPORTS is specified, only applications that meet at least
one of the following criteria are allowed to bind to low ports (1–1023):

v The port is reserved for the application via the PORT or PORTRANGE
statement.

v The application runs with APF authorization.

v The application runs with effective POSIX UID zero.

If an installation wants to control UDP buffering (to limit storage usage or to
manage large bandwidth devices), use the UDPSENDBFRSIZE and
UDPRCVBUFRSIZE parameters. UDPQUEUELIMIT can be used to set a
queue limit for UDP. This is useful for installations that want to limit the size
of the queue of UDP datagrams that an application can have waiting before
the TCP/IP address space starts discarding them.

Setting up physical characteristics in PROFILE.TCPIP
Figure 27 shows the sample configuration file for the TCP/IP address space,
PROFILE.TCPIP. This sample can be copied from SEZAINST(SAMPPROF).
Following Figure 27, several of the statements that are used to set up physical
characteristics in PROFILE.TCPIP are described. For more information about any of
these statements, or information on statements not described, refer to z/OS
Communications Server: IP Configuration Reference. For information specific to
IPv6 support, refer to z/OS Communications Server: IPv6 Network and Application
Design Guide.

;
; PROFILE.TCPIP
; =============
;
; This is a sample configuration file for the TCPIP address space
;
; SMP/E name: EZAEB025, alias SAMPPROF in target library SEZAINST
;
; COPYRIGHT = NONE
;
; Notes:
;
; - The device configuration, home and routing statements MUST be
; changed to match your hardware and software configuration.
; Likewise, the BEGINVTAM section MUST be changed to match your
; VTAM configuration.
;
; - Lines beginning with semi-colons are comments. To use a line
; for your configuration, remove the semi-colon.
;
; - For more information about this file, see the IP Configuration Guide
;
; ==
; General TCP/IP address space configuration
; ==
;
; ARPAGE: Specifies the number of minutes between creation or
; revalidation of an LCS ARP table entry and the deletion of the
; entry.

Figure 27. Example of physical characteristics in PROFILE.TCPIP

Chapter 3. Customization 115

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

;
ARPAGE 20
;
;
; GLOBALCONFIG: Provides settings for the entire TCP/IP stack
;
GLOBALCONFIG NOTCPIPSTATISTICS
;
; IPCONFIG: Provides settings for the IPv4 IP layer of TCP/IP.
;
; Example IPCONFIG for single stack/single system:
;
IPCONFIG DATAGRAMFWD VARSUBNETTING SYSPLEXROUTING
;
; Example IPCONFIG for automatic activation of inter-stack dynamic XCF
; and Same Host (IUTSAMEH) links
;
; IPCONFIG DYNAMICXCF 201.1.10.10 255.255.255.0 2
;
; IPCONFIG6: Provides settings for the IPv6 IP layer of TCP/IP.
;
; IPCONFIG6 DATAGRAMFWD SOURCEVIPA
;
; SOMAXCONN: Specifies maximum length for the connection request queue
; created by the socket call listen().
;
SOMAXCONN 10
;
;
; TCPCONFIG: Provides settings for the TCP layer of TCP/IP.
; RESTRICTLOWPORTS limits access to ports below 1024
; to authorized applications. Applications can be
; authorized to low ports in three ways:
; - via PORT or PORTRANGE with the appropriate jobname
; or wildcard jobname
; - APF authorized
; - superuser
;
TCPCONFIG TCPSENDBFRSIZE 16K TCPRCVBUFRSIZE 16K SENDGARBAGE FALSE
TCPCONFIG RESTRICTLOWPORTS
;
;
; UDPCONFIG: Provides settings for the UDP layer of TCP/IP
; RESTRICTLOWPORTS limits access to ports below 1024
; to authorized applications. Applications can be
; authorized to low ports in three ways:
; - via PORT or PORTRANGE with the appropriate jobname
; or wildcard jobname
; - APF authorized
; - superuser
;
UDPCONFIG RESTRICTLOWPORTS
;
;
; ==
; Hardware definitions
; ==
;
; DEVICE: Defines name (and sometimes device number) for various types
; of network devices for IPv4 only
; LINK: Defines a network interface to be associated with a particular
; device. For IPv4 only.
; INTERFACE: Defines an IPv6 interface.
;
;
; DEVICE and LINK for CTC devices
;
;DEVICE CTC1 CTC D00 AUTORESTART
;LINK CTCD00 CTC 0 CTC1
;
; DEVICE and LINK for HYPERchannel A220 devices:
;
;DEVICE HCH1 HCH E00 AUTORESTART
;LINK HCHE00 HCH 1 HCH1
;
; DEVICE and LINK for LAN Channel Station and OSA devices:

116 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

; DEVICE: Defines name and hexadecimal device number for an IBM 8232
; LAN channel station (LCS) device, and IBM 3172 Interconnect
; Controller, an IBM 2216 Multiaccess Connector Model 400,
; an IBM FDDI, Ethernet, or Token Ring OSA, or an IBM ATM OSA-2
; in LAN emulation mode
; LINK: Defines a network interface link associated with an LCS
; device; may be for Ethernet Network, Token-Ring Network or
; PC Network, or FDDI.
;
; Example: LCS1 is a 3172 model 1 with a Token Ring and Ethernet
; adapter
;
;DEVICE LCS1 LCS BA0 AUTORESTART
;LINK TR1 IBMTR 0 LCS1
;LINK ETH1 ETHERNET 1 LCS1
;
; Example: LCS2 is a 3172 model 2 with a FDDI adapter
;
;DEVICE LCS2 LCS BE0 AUTORESTART
;LINK FDDI1 FDDI 0 LCS2
;
; DEVICE and LINK for MPCIPA QDIO Devices:
;
; Example: MPCIPA1 is either an IBM OSA-Express Gigabit Ethernet
; or QDIO Fast Ethernet adapter
;
;DEVICE MPCIPA1 MPCIPA NONROUTER AUTORESTART
;LINK MPCIPALINK1 IPAQENET MPCIPA1
;
; Example: MPCIPA2 is either an IBM OSA-Express Gigabit Ethernet
; or QDIO Fast Ethernet adapter, configured as the PRIMARY router
;
;DEVICE MPCIPA2 MPCIPA PRIROUTER AUTORESTART
;LINK MPCIPALINK2 IPAQENET MPCIPA2
;
; DEVICE and LINK for MPCPTP devices:
;
;DEVICE MPCPTP1 MPCPTP AUTORESTART
;LINK MPCPTPLINK MPCPTP MPCPTP1
;
; DEVICE and LINK for CLAW devices:
;
;DEVICE RS6K CLAW 6B2 HOST PSCA NONE 26 26 AUTORESTART
;LINK IPLINK1 IP 0 RS6K
;
; DEVICE and LINK for SNA LU0 links:
;
;DEVICE SNALU0 SNAIUCV SNALINK LU000000 SNALINK AUTORESTART
;LINK SNA1 SAMEHOST 1 SNALU0
;
; DEVICE and LINK for SNA LU 6.2 links:
;
;DEVICE SNALU621 SNALU62 SNAPROC AUTORESTART
;LINK SNA2 SAMEHOST 1 SNALU621
;
; DEVICE and LINK for X.25 NPSI connections:
;
;DEVICE X25DEV X25NPSI TCPIPX25 AUTORESTART
;LINK X25LINK SAMEHOST 1 X25DEV
;
; DEVICE and LINK for 3745/46 Channel DLC Devices:
;
;DEVICE CDLC1 CDLC C00 AUTORESTART
;LINK CDLCLINK CDLC 1 CDLC1
;
; DEVICE and LINK for MPC OSA Fast Ethernet Devices:
;
;DEVICE MENET1 MPCOSA AUTORESTART
;LINK ENETLINK OSAENET 0 MENET1
;
; DEVICE and LINK for MPC OSA FDDI Devices:
;
;DEVICE MFDDI1 MPCOSA AUTORESTART
;LINK FDDILINK OSAFDDI 0 MFDDI1
;
; --

Chapter 3. Customization 117

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

; Virtual device definitions
; --
;
; DEVICE and LINK for Virtual Devices (VIPA):
;
; DEVICE VDEV1 VIRTUAL 0
; LINK VLINK1 VIRTUAL 0 VDEV1
;
; Dynamic Virtual Devices can be defined on this system. This system
; can serve as backup for Dynamic Virtual Devices on other systems.
; A predefined range will allow Dynamic Virtual Devices to be defined
; by IOCTL or Bind requests.
;
; VIPADYNAMIC
; Define two dynamic VIPAs on this stack:
; VIPADEFINE 255.255.255.192 201.2.10.11 201.2.10.12
;
; Define this stack as backup for these dynamic VIPAs on
; other TCP/IP stacks:
; VIPABACKUP 100 201.2.10.13 201.2.10.14
; VIPABACKUP 80 201.2.10.21 201.2.10.22
; VIPABACKUP 60 201.2.10.31 201.2.10.33
; VIPABACKUP 40 201.2.10.32 201.2.10.34
;
; VIPARANGE DEFINE 255.255.255.192 201.2.10.192
; ENDVIPADYNAMIC
;
; --
; ATM hardware definitions
; --
;
; ATMLIS: Describes characteristics of an ATM logical IP subnet (LIS).
;
; DEVICE and LINK for ATM devices: (See below)
;
; ATMPVC: Describes a permanent virtual circuit (PVC) to be used by an
; ATM link.
;
; ATMARPSV: Designates the ATMARP server that will resolve ATMARP
; requests for a logical IP subnet (LIS).
;
; ATMLIS LIS1 9.67.100.0 255.255.255.0
; DEVICE OSA1 ATM PORTNAME PORT1
; LINK LINK1 ATM OSA1 LIS LIS1
; ATMPVC PVC1 LINK1
; ATMARPSV ARPSV1 LIS1 PVC PVC1
;
;
; --
; IPv6 INTERFACE statements
; --
; Virtual interface definitions
; IPADDR keyword is required for Virtual interfaces
; Multiple IP addresses can be defined to one interface
; The prefixes of the IPv6 VIPA addresses should be
; different than the prefixes used for addresses
; configured or autoconfigured for real interfaces.
; --
; INTERFACE VIPAV6 DEFINE
; VIRTUAL6
; IPADDR FEC0:0:0:A:9:67:115:66 ; (Site-Local Address)
; 50C9:C2D4:0:A:9:67:115:66 ; (Global Address)
; --
; To use autoconfiguration, the IPADDR cannot be specified.
; To manally define address(es), use the IPADDR keyword.
; To assign a VIPA address for an interface, use SOURCEVIPAINT
; To have IPv4 and IPv6 share a physical device, define IPv4
; using DEVICE/LINK/HOME and IPv6 using INTERFACE
; --
; INTERFACE OSAQDIO26 ; OSA QDIO (Fast Ethernet)
; DEFINE IPAQENET6
; PORTNAME OSAQDIO2
; SOURCEVIPAINT VIPAV6
; IPADDR FEC0:0:0:1:9:67:115:66 ; (Site-Local Address)
; 50C9:C2D4:0:1:9:67:115:66 ; (Global Address)
; --

118 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

; To define other Ipv6 Loopback addresses:
; --
; INTERFACE LOOPBACK6 ADDADDR ::0014:0
; --
; Other device statements
; --
;
;
; TRANSLATE: Indicates a relationship between an internet address and
; the network address on a specified link. Only applicable for IPv4
; devices.
;
; TRANSLATE
; 9.67.43.110 FDDI FF0000006702 FDDI1
; 9.37.84.49 HCH FF0000005555 HCHE00
;
;
; ==
; HOME addresses
; ==
;
; HOME: Provides the list of home IP addresses and associated link names
; for IPv4
;
; - The LOOPBACK statement of 14.0.0.0 should only be used if the
; installation has applications that require this old loopback
; address. The current stack uses 127.0.0.1 as the loopback
; address.
;
; HOME
; 14.0.0.0 LOOPBACK
; 130.50.75.1 TR1
; 193.5.2.1 ETH1
; 9.67.43.110 FDDI1
; 193.7.2.1 SNA1
; 9.67.113.80 CTCD00
; 9.37.84.49 HCHE00
; 9.67.113.81 MPCIPALINK1
; 9.67.113.82 MPCPTPLINK
; 9.67.113.83 MPCIPALINK2
; 9.67.114.02 IPLINK1
; 9.67.43.03 SNA2
; 9.67.115.85 X25LINK
; 9.67.116.86 VLINK1
; 9.67.117.87 CDLCLINK
; 9.67.100.80 LINK1
; 9.37.112.13 ENETLINK
; 9.37.112.14 FDDILINK
;
;
; PRIMARYINTERFACE: Specifies which link is designated as the default
; local host for use by the GETHOSTID() function. Only applicable
; for IPv4 devices.
;
; - If PRIMARYINTERFACE is not specified, then the first link in
; the HOME statement is the primary interface, as usual.
;
; PRIMARYINTERFACE TR1
;
; ==
; Routing configuration
; ==
; --
; Static routing
; --
;
; BEGINRoutes: Defines static routes to the IP route table for IPv4
; and IPv6
;
BEGINRoutes
;
; Direct Routes - Routes that are directly connected to my interfaces.
;
; Destination Subnet Mask First Hop Link Name Packet Size
;
;ROUTE 130.50.75.0 255.255.255.0 = TR1 MTU 2000

Chapter 3. Customization 119

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

;ROUTE 193.5.2.0/24 = ETH1 MTU 1500
;ROUTE 9.67.43.0 255.255.255.0 = FDDI1 MTU 4000
;ROUTE 193.7.2.2 HOST = SNA1 MTU 2000
;
; Destination Subnet Mask First Hop Interface Packet Size
;
; ROUTE FE80::1:2:3:4/128 = OSAQDIO26 MTU 2000
; ROUTE FEC0::1/128 = OSAQDIO26 MTU 2000
;
;
; Indirect Routes - Routes that are reachable through routers on my
; network.
;
; Destination Subnet Mask First Hop Link Name Packet Size
;
;ROUTE 193.12.2.0 255.255.255.0 130.50.75.10 TR1 MTU 2000
;ROUTE 10.5.6.4 HOST 193.5.2.10 ETH1 MTU 1500
;
; Destination Subnet Mask First Hop Interface Packet Size
;
; ROUTE FEC8::/64 FE80::1:2:3:4 OSAQDIO26 MTU 2000
;
; Default Route - All packets to an unknown destination are routed
; through this route.
;
; Destination First Hop Link Name Packet Size
;
;ROUTE DEFAULT 9.67.43.99 FDDI1 MTU DEFAULTSIZE
;
; Destination Subnet Mask First Hop Interface Packet Size
;
; ROUTE DEFAULT6 FE80::1:2:3:4 OSAQDIO26 MTU DEFAULTSIZE
ENDRoutes
;
; --
; Dynamic routing
; Only support for IPv4 at this time.
; --
;
; BSDROUTINGPARMS: Defines the characteristics of each link defined at
; the host over which OROUTED will send routing information to
; adjacent routers running the RIP protocl and which NCPROUTE will
; send transport PDUs to client NCPs.
;
; - OMPROUTE is the recommended routing daemon. It does not use
; BSDROUTINGPARMS.
;
; - OROUTED users must define BSDROUTINGPARMS.
;
; - Use of the BEGINROUTES statement (static routes) with the
; OMPROUTE or OROUTED routing daemons is not recommended.
;
; BSDROUTINGPARMS TRUE
; Link name MTU Cost metric Subnet Mask Dest address
; TR1 2000 0 255.255.255.0 0
; ETH1 1500 0 255.255.255.0 0
; FDDI1 4000 0 255.255.255.0 0
; VLINK1 DEFAULTSIZE 0 255.255.255.0 0
; CTCD00 65527 0 255.255.255.0 9.67.113.90
; ENDBSDROUTINGPARMS
;
;
; ==
; Application configuration
; ==
;
;
; AUTOLOG: Supplies TCPIP with the procedure names to start and the
; time value to wait at TCP start up for any of those procedures
; to terminate if they are active.
;
; AUTOLOG 5
; FTPD JOBNAME FTPD1 ; FTP Server
; LPSERVE ; LPD Server
; NAMED ; Domain Name Server
; NCPROUT ; NCPROUTE Server

120 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

; OROUTED ; OROUTED Server
; OSNMPD ; SNMP Agent Server
; PORTMAP ; Portmap Server (SUN 3.9)
; PORTMAP JOBNAME PORTMAP1 ; USS Portmap Server (SUN 4.0)
; RXSERVE ; Remote Execution Server
; SMTP ; SMTP Server
; SNMPQE ; SNMP Client
; TCPIPX25 ; X25 Server
; ENDAUTOLOG
;
;
; PORT: Reserves a port for specified job names
;
; - A port that is not reserved in this list can be used by any user.
; If you have TCP/IP hosts in your network that reserve ports
; in the range 1-1023 for privileged applications, you should
; reserve them here to prevent users from using them.
; The RESTRICTLOWPORTS option on TCPCONFIG and UDPCONFIG will also
; prevent unauthorized applications from accessing unreserved
; ports in the 1-1023 range.
;
; - A PORT statement with the optional keyword SAF followed by a
; 1-8 character name can be used to reserve a PORT and control
; access to the PORT with a security product such as RACF.
; For port access control, the full resource name for the security
; product authorization check is constructed as follows:
; EZB.PORTACCESS.sysname.tcpname.safname
; where:
; EZB.PORTACCESS is a constant
; sysname is the MVS system name (substitute your sysname)
; tcpname is the TCPIP jobname (substitute your jobname)
; safname is the 1-8 character name following the SAF keyword
;
; When PORT access control is used, the TCP/IP application
; requiring access to the reserved PORT must be running under a
; USERID that is authorized to the resource. The resources
; are defined in the SERVAUTH class.
;
; For an example of how the SAF keyword can be used to enhance
; security, see the definition below for the FTP data PORT 20
; with the SAF keyword. This definition reserves TCP PORT 20 for
; any jobname (the *) but requires that the FTP user be permitted
; by the security product to the resource:
; EZB.PORTACCESS.sysname.tcpname.FTPDATA in the SERVAUTH class.
;
; - The BIND keyword is used to force a generic server (one that
; binds to INADDR_ANY) to bind to the specific IP address that
; is specified following the BIND keyword. This capability could
; be used, for example, to allow z/OS UNIX telnet and telnet
; 3270 servers to both bind to TCP port 23.
; The IP address that follows bind must be in IPv4 dotted
; decimal format and may be any valid address for the host
; including VIPA and dynamic VIPA addresses.
;
; The special jobname of OMVS indicates that the PORT is reserved
; for any application with the exception of those that use the Pascal
; API.
;
; The special jobname of * indicates that the PORT is reserved
; for any application, including Pascal API socket applications.
;
; The special jobname of RESERVED indicates that the PORT is
; blocked. It will not be available to any application.
;
; The special jobname of INTCLIEN indicates that the PORT is
; reserved for internal stack use.
;
;
PORT

7 UDP MISCSERV ; Miscellaneous Server - echo
7 TCP MISCSERV ; Miscellaneous Server - echo
9 UDP MISCSERV ; Miscellaneous Server - discard
9 TCP MISCSERV ; Miscellaneous Server - discard
19 UDP MISCSERV ; Miscellaneous Server - chargen
19 TCP MISCSERV ; Miscellaneous Server - chargen
20 TCP * NOAUTOLOG ; FTP Server

Chapter 3. Customization 121

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

; 20 TCP * NOAUTOLOG SAF FTPDATA ; FTP Server
21 TCP FTPD1 ; FTP Server

; 21 TCP FTPD2 BIND FEC9:C2D4:1:0000:0009:0067:0115:0066 ; FTP IPv6
23 TCP INTCLIEN ; Telnet 3270 Server

; 23 TCP INETD1 BIND 9.67.113.3 ; z/OS UNIX Telnet server
25 TCP SMTP ; SMTP Server
53 TCP NAMED ; Domain Name Server
53 UDP NAMED ; Domain Name Server
111 TCP PORTMAP ; Portmap Server (SUN 3.9)
111 UDP PORTMAP ; Portmap Server (SUN 3.9)

; 111 TCP PORTMAP1 ; Unix Portmap Server (SUN 4.0)
; 111 UDP PORTMAP1 ; Unix Portmap Server (SUN 4.0)

123 UDP SNTPD ; Simple Network Time Protocol Server
135 UDP LLBD ; NCS Location Broker
161 UDP OSNMPD ; SNMP Agent
162 UDP SNMPQE ; SNMP Query Engine
389 TCP LDAPSRV ; LDAP Server
443 TCP HTTPS ; http protocol over TLS/SSL
443 UDP HTTPS ; http protocol over TLS/SSL
512 TCP RXSERVE ; Remote Execution Server
514 TCP RXSERVE ; Remote Execution Server

; 512 TCP * SAF OREXECD ; z/OS UNIX Remote Execution Server
; 514 TCP * SAF ORSHELLD ; z/OS UNIX Remote Shell Server

515 TCP LPSERVE ; LPD Server
520 UDP OROUTED ; OROUTED Server
580 UDP NCPROUT ; NCPROUTE Server
750 TCP MVSKERB ; Kerberos
750 UDP MVSKERB ; Kerberos
751 TCP ADM@SRV ; Kerberos Admin Server
751 UDP ADM@SRV ; Kerberos Admin Server
1933 TCP ILMTSRVR ; IBM LM MT Agent
1934 TCP ILMTSRVR ; IBM LM Appl Agent
3000 TCP CICSTCP ; CICS Socket
3389 TCP MSYSLDAP ; LDAP Server for Msys

;
;
; PORTRANGE: Reserves a range of ports for specified jobnames.
;
; In a common INET (CINET) environment, the port range indicated by
; the INADDRANYPORT and INADDRANYCOUNT in your BPXPRMxx parmlib member
; should be reserved for OMVS.
;
; The special jobname of OMVS indicates that the PORTRANGE is reserved
; for ANY z/OS UNIX socket application.
;
; The special jobname of * indicates that the PORTRANGE is reserved
; for any socket application, including Pascal API socket
; applications.
;
; The special jobname of RESERVED indicates that the PORTRANGE is
; blocked. It will not be available to any application.
;
; The SAF keyword is used to restrict access to the PORTRANGE to
; authorized users. See the use of SAF on the PORT statement above.
;
;
; PORTRANGE 4000 1000 TCP OMVS
; PORTRANGE 4000 1000 UDP OMVS
; PORTRANGE 2000 3000 TCP RESERVED
; PORTRANGE 5000 6000 TCP * SAF RANGE1
;
; SACONFIG: Configures the TCP/IP SNMP subagent
;
SACONFIG ENABLED COMMUNITY public AGENT 161
;
;
; --
; Configure Telnet
; --
;
; TELNETPARMS: Configure the Telnet Server
;
; - TN3270(E) server port 23 options
;
TelnetParms
Port 23 ; Port number 23 (std.)

122 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

TELNETDEVICE 3278-3-E NSX32703 ; 32 line screen -
; default of NSX32702 is 24

TELNETDEVICE 3279-3-E NSX32703 ; 32 line screen -
; default of NSX32702 is 24

TELNETDEVICE 3278-4-E NSX32704 ; 48 line screen -
; default of NSX32702 is 24

TELNETDEVICE 3279-4-E NSX32704 ; 48 line screen -
; default of NSX32702 is 24

TELNETDEVICE 3278-5-E NSX32705 ; 132 column screen-
; default of NSX32702 is 80

TELNETDEVICE 3279-5-E NSX32705 ; 132 column screen -
; default of NSX32702 is 80

LUSESSIONPEND ; On termination of a Telnet server connection,
; the user will revert to the DEFAULTAPPL
; instead of having the connection dropped

MSG07 ; Sends a USS error message to the client if an
; error occurs during session establishment
; instead of dropping the connection

CodePage ISO8859-1 IBM-1047 ; Linemode ASCII, EBCDIC code pages
Inactive 0 ; Let connections stay around
PrtInactive 0 ; Let connections stay around
TimeMark 600
ScanInterval 120

; SMFinit std
; SMFterm std
WLMClusterName
TN3270E

EndWLMClusterName
; Define logon mode tables to be the defaults shipped with the
; latest level of VTAM

EndTelnetParms
;
; TelnetParms
; Secureport 992 Keyring HFS /tmp/telnet.kdb
; EndTelnetParms
;
; BEGINVTAM: Defines the VTAM parameters required for the Telnet server.
;
BeginVTAM
Port 23 ; 992
; Define the LUs to be used for general users.
DEFAULTLUS
TCPABC01..TCPABC99..FFFFFFNN

ENDDEFAULTLUS
DEFAULTAPPL TSO ; Set the default application for all TN3270(E)

; Telnet sessions to TSO

LINEMODEAPPL TSO ; Send all line-mode terminals directly to TSO.

; ALLOWAPPL SAMON QSESSION ; SAMON appl does CLSDST Pass to next appl

ALLOWAPPL TSO* DISCONNECTABLE ; Allow all users access to TSO
; applications.
; TSO is multiple applications all beginning with TSO,
; so use the * to get them all. If a session is closed,
; disconnect the user rather than log off the user.

ALLOWAPPL * ; Allow all applications that have not been
; previously specified to be accessed.

RESTRICTAPPL IMS ; Only 3 users can use IMS.
USER USER1 ; Allow user1 access.
LU TCPIMS01 ; Assign USER1 LU TCPIMS01.

USER USER2 ; Allow user2 access from the default LU pool.
USER USER3 ; Allow user3 access from 3 Telnet sessions,

; each with a different reserved LU.
LU TCPIMS31 LU TCPIMS32 LU TCPIMS33

; Map Telnet sessions from IP address 130.50.10.1 to display the
; USSMSG10 screen from USS table USSAPC.

; USSTCP USSAPC 130.50.10.1

; Map Telnet sessions from the SNA1 link to display the USSMSG10

Chapter 3. Customization 123

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

; screen from USS table USSCBA.

; USSTCP USSCBA SNA1

; LUGROUP LUGRP1
; TCPM0001..TCPM0999
; TCPM1001
; ENDLUGROUP

; LUGROUP LUGRP2
; TCPM2001 TCPM2003 TCPM2004
; TCPM0AAA..TCPM0ZZZ
; ENDLUGROUP

; Define groups of host names
; HNGROUP HNGRP1
; TEST1.TCP.RALEIGH.IBM.COM
; TEST2.TCP.RALEIGH.IBM.COM
; *.*.RALEIGH.IBM.COM
; ENDHNGROUP

; HNGROUP HNGRPALL
; **.COM
; ENDHNGROUP

; Map LUs to groups for host names
; LUMAP LUGRP1 HNGRP1
; LUMAP LUGRP2 HNGRPALL
; LUMAP TCPM5000 SPECIAL.TCP.RALEIGH.IBM.COM
EndVTAM
;
;
; --
; Configure Network Access Control
; --
; Network access contol can be used to restrict the destinations
; that TCP/IP users are allowed to communicate with.
;
; The NETACCESS group contains optional flags that control whether
; checking is done on inbound paths (accept and all read variants)
; and outbound paths (connect and all write variants). If no flags
; are specified, checking is only performed on outbound paths.
; NOINBOUND and NOOUTBOUND disable checking in that direction.
;
; The NETACCESS group also contains a list of IP addresses
; that may be subnetworks or specific hosts. The subnetwork mask
; can be specified as a number of significant bits or in dotted
; decimal notation. The mask must be contiguous bits.
;
; The special IP address DEFAULT with a mask of 0 includes all
; IPv4 addresses not otherwise specified.
;
; A 1-8 character name follows the IP address and subnet mask and
; is used as the right-most qualifier in the security product
; resource name.
;
; For network access control, the full resource name for the
; security product authorization check is constructed as follows:
;
; EZB.NETACCESS.sysname.tcpname.resname
; where:
; EZB.NETACCESS is a constant
; sysname is the MVS system name (substitute your sysname)
; tcpname is the TCPIP jobname (substitute your jobname)
; resname is the 1-8 character name following the subnet mask.
;
; When network access control is used, the TCP/IP application
; requiring access to the restricted subnet or host must be running
; under a USERID that is authorized to the resource. The resources
; are defined in the SERVAUTH class. See the EZARACF sample for
; examples of the RACF definitions.
;
;NETACCESS INBOUND OUTBOUND ; check both ways
; 192.168.0.0/16 CORPNET ; Net address
; 192.168.113.19/32 HOST1 ; Specific host address
; 192.168.113.0 255.255.255.0 SUBNET1 ; Subnet address

124 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

; 192.168.112.0 255.255.248.0 SUBNET2 ; Subnet address
; 192.168.192.0/24 CAMPUS ; Subnet address
; 192.168.214.0/24 CAMPUS ; Subnet address
; DEFAULT 0 DEFZONE ; Optional Default zone
;ENDNETACCESS
;
;
;
; ==
; Diagnostic data statements
; ==
;
; - For optimum performance, use of tracing should be limited to when
; required for problem analysis.
;
; ITRACE: Controls TCP/IP run-time tracing
;
; ITRACE ON CONFIG 1
; ITRACE OFF SUBAGENT
;
;
; PKTTRACE: Controls the packet trace facility in TCP/IP.
;
; PKTTRACE ABBREV=200 LINKNAME=TR1 PROT=ICMP IP=*
; SRCPORT=5000 DESTPORT=161
;
;
; SMFCONFIG: Provides SMF logging for Telnet, FTP, TCP API and TCP
; stack activity.
;
; - The SMF record types for TCP/IP records are 118 and 119.
;
; For Type 118 records specify:
;
; SMFCONFIG TCPINIT TCPTERM FTPCLIENT TN3270CLIENT TCPIPSTATISTICS
;
; For Type 119 records specify:
;
; SMFCONFIG
; TYPE119 TCPINIT TCPTERM FTPCLIENT TN3270CLIENT TCPIPSTATISTICS
; IFSTATISTICS PORTSTATISTICS TCPSTACK UDPTERM
;
; For all Type 118 and Type 119 records specify:
;
; SMFCONFIG TCPINIT TCPTERM FTPCLIENT TN3270CLIENT TCPIPSTATISTICS
; TYPE119 TCPINIT TCPTERM FTPCLIENT TN3270CLIENT TCPIPSTATISTICS
; IFSTATISTICS PORTSTATISTICS TCPSTACK UDPTERM
;
;
; SMFPARMS: Logs the use of TCP by applications using SMF log records.
; However, use of the SMFCONFIG statement is recommended instead.
;
;
; ==
; Other statements
; ==
;
; DELETE: Removes an ATMARPSV, ATMLIS, ATMPVC, device, link, port or
; portrange. This statement is typically done via an obey file, not
; in an initial profile.
;
; STOP: Stops a device. If used, this statement is typically put in
; an obey file, not in an initial profile.
;
; INCLUDE: Causes another data set that contains profile configuration
; statements to be included at this point.
; --
;
; START: Starts a device or interface that is currently stopped.
;
;START LCS1
;START LCS2
;START OSAQDIO26

Chapter 3. Customization 125

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The following section explains several of the statements shown in Figure 27 on
page 115 that are used to set up physical characteristics in PROFILE.TCPIP. For
more information about any of these statements, or information on statements not
described here, see z/OS Communications Server: IP Configuration Reference. For
information specific to IPv6 support, refer to z/OS Communications Server: IPv6
Network and Application Design Guide.

DEVICE and LINK
Use DEVICE and LINK statements to define each IPv4 network interface to
the TCPIP address space. Refer to the z/OS Communications Server: IP
Configuration Reference for more details about the various network
interfaces supported by TCP/IP.

ATM Use the ATM DEVICE and LINK statements to define connectivity to
an ATM network. These statements allow for connectivity in either
ATM native mode over an ATM virtual circuit (VC) or in ATM LAN
Emulation mode.

For ATM native mode, the VC can be either a permanent virtual
circuit (PVC) or a switched virtual circuit (SVC). To define a PVC,
use the ATMPVC statement. To define SVCs, use the ATMLIS
statement to define the ATM logical IP subnet (LIS). Also, for SVCs,
use the ATMARPSV statement to define the ATMARP server that
will resolve ATMARP requests within the LIS. For ATM LAN
emulation mode, the ATM DEVICE and LINK definitions allow you
to retrieve SNMP network management data for the device. In this
mode, you need to define the device as an LCS.

CDLC The DEVICE CDLC describes the interface between the TCP/IP
address space and the 3745/46 devices used.

CLAW Use CLAW DEVICE for RISC System/6000® and SP2®.

CTC Use the CTC DEVICE and LINK statements to define connectivity
to another z/OS using channel-to-channel.

HYPERchannel A220 DEVICE and LINK
Use the HCH DEVICE and LINK statements to define connectivity
via the HYPERchannel A220 adapter.

LAN Channel Station (LCS) DEVICE and LINK
Use the LCS DEVICE and LINK statements to define connectivity to
a token-ring, FDDI, or Ethernet LAN. LCS devices can have more
than one adapter. Therefore, you can have more than one LINK
statement for an LCS DEVICE statement.

In configurations where multiple LCS and/or MPCIPA links onto the
same LAN are defined, if the interface targeted by the ARP Request
is inactive, one of the other active interfaces on the LAN will
automatically take over responsibility for answering ARPs on behalf
of the inactive interface. In this way, fault tolerance is achievable on
the LAN without requiring a dynamic routing protocol.

TCP/IP supports ARP for VIPAs. In a flat network (one in which
traffic flows directly between two endpoints without an intermediate
router) using static routing with multiple interfaces onto the same
LAN, you can achieve fault tolerance by defining a VIPA in the
same subnet as the physical interfaces on the LAN. If a static route
specifies a VIPA as the next hop IP address, the host or router will
send an ARP for the VIPA. TCP/IP will reply to the ARP with the
MAC address of one of the active physical interfaces on that LAN.

126 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|

|

MPCOSA
The MPCOSA DEVICE statements define the MPC OSA Ethernet
and FDDI devices.

MPCIPA
Use the MPCIPA DEVICE and LINK statements to define LAN
connectivity via OSA-Express using the Queued Direct I/O (QDIO)
interface. The MPCIPA device name must be the PORT name of
the TRLE definition of the QDIO interface as described in z/OS
Communications Server: SNA Resource Definition Reference.
Device specifications for the type of IP routing supported are also
specified on the MPCIPA DEVICE statement. These are also
described in z/OS Communications Server: SNA Resource
Definition Reference.

In configurations where multiple LCS and/or MPCIPA links onto the
same LAN are defined, if the interface targeted by the ARP Request
is inactive, one of the other active interfaces on the LAN will
automatically take over responsibility for answering ARPs on behalf
of the inactive interface. In this way, fault tolerance is achievable on
the LAN without requiring a dynamic routing protocol.

TCP/IP supports ARP for VIPAs. In a flat network (one in which
traffic flows directly between two endpoints without an intermediate
router) using static routing with multiple interfaces onto the same
LAN, you can achieve fault tolerance by defining a VIPA in the
same subnet as the physical interfaces on the LAN. If a static route
specifies a VIPA as the next hop IP address, the host or router will
send an ARP for the VIPA. TCP/IP will reply to the ARP with the
MAC address of one of the active physical interfaces on that LAN.

MPCPTP

MPCPTP can be used to define any of the following:

v A connection to another host over a series of CTCs (in this case,
the device name must be the name of a VTAM TRLE).

v An XCF connection to another TCP/IP in the same z/OS sysplex.
For an XCF connection, the device name must be the cp name
of the target VTAM on the other side of the XCF connection, and
the VTAM ISTLSXCF major node must be active to start the
device.

v An IUTSAMEH connection (with no need for any I/O devices) to
another TCP/IP on the same z/OS system or to VTAM for
Enterprise Extender. For an IUTSAMEH connection, the device
name must be the reserved name IUTSAMEH. VTAM
automatically activates the IUTSAMEH TRLE.

Use the IPCONFIG DYNAMICXCF statement to cause TCP/IP to
automatically define and activate XCF connectivity between each
pair of TCP/IP stacks in the same sysplex and IUTSAMEH
connectivity between multiple TCP/IP stacks on the same z/OS.

SNAIUCV and SNALU62
Use SNAIUCV DEVICE to specify the interface to use for SNA LU0
traffic to the SNALINK started procedures. For example, use this to
define the interface between the TCP/IP address space and the
SNALINK address space that is using a 3745 running NCPRoute.
Similarly, the DEVICE SNALU62 statement defines the interface

Chapter 3. Customization 127

between the TCP/IP address space and the address space using
SNA LU6.2. Refer to z/OS Communications Server: IP
Configuration Reference for information about how to define
multiple LU6.2 connections within the same TCP/IP address space.

X.25 The DEVICE X25DEV defines the interface between the TCP/IP
address space and the address space of the X.25 NPSI server.

VIPA and VIPADYNAMIC
Virtual IP Addresses (VIPA) are used to define virtual devices to the
TCP/IP address space. There are two types of VIPAs:

v Static

v Dynamic

The static virtual device requires DEVICE and LINK statements to
define a device that is always started, can never be stopped, can
be known within the network, yet requires no physical adapters. It is
very useful to define VIPAs so that if a physical adapter loses its
connection to the network, application traffic using the failed
physical adapter can be rerouted over another interface to the
network. To the network, the VIPA address appears to be one hop
away from the TCP/IP address spaces. The network sends and
receives datagrams to and from the physical interfaces to get to the
VIPA address. For more information about VIPA, see Chapter 5,
“Virtual IP Addressing” on page 209.

INTERFACE
Use INTERFACE statements to define each IPv6 network interface to the
TCPIP address space. Refer to the z/OS Communications Server: IP
Configuration Reference for more details about the various network
interfaces supported by TCP/IP.

IPAQENET6
Use the IPAQENET6 INTERFACE statement to define IPv6 LAN
connectivity through OSA-Express using QDIO.

VIRTUAL6
Use the VIRTUAL6 INTERFACE statement to define IPv6 static
VIPAs.

HOME HOME lists the IP addresses and their associated LINK adapter. The first
HOME statement within a configuration data set replaces the existing
HOME list. If subsequent HOME statements are found within a
configuration data set, add entries to the list.

Note: The order of the HOME list is important if IPCONFIG SOURCEVIPA
is specified, except for TCP datagram requests with
TCPSTACKSOURCEVIPA specified. The source address used will
be the preceding VIPA address instead of the physical adapter used
to send the datagram. If no VIPA precedes the physical adapter in
the HOME list, the physical adapter IP address is used as the source
address. Refer to z/OS Communications Server: IP Configuration
Reference for precautions when either the VIPA address or a
physical adapter used as a source for the VIPA has an IP address
that is the network address.

PRIMARYINTERFACE
Use PRIMARYINTERFACE to specify which link should be designated as
the default local host for use by the GETHOSTID() function. If

128 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|

|
|
|

|
|
|

|
|
|

PRIMARYINTERFACE is not used, the first IP address in the HOME list
becomes the default local host address.

BEGINROUTES
Use the BEGINROUTES statement to add static routes to the IP route
table.

SMFCONFIG
Use the SMFCONFIG statement to provide SMF logging for Telnet, FTP,
TCP, API, and stack activity. This statement is used for TYPE 118 and
TYPE 119 records. Refer to z/OS Communications Server: IP Configuration
Reference for more information about the SMFCONFIG statement.

START
Use START to activate a device or interface.

TRANSLATE
Use TRANSLATE to indicate which LINK has specified network addresses
for use as a static ARP table. The first TRANSLATE statement in a
configuration data set replaces the entire ARP cache. Subsequent
TRANSLATE statements add to the table. If you are using OSPF routing
(OMPROUTE), see Chapter 4, “Routing” on page 155 for more information
about requirements for the TRANSLATE statement.

After an IPv4 interface has a DEVICE, LINK, and HOME statement, it can be
started with the START device statement or the VARY TCPIP,,START command.

After an IPv6 interface has an INTERFACE statement, it can be started with the
START interface statement or the VARY TCPIP,,START command.

Devices that support ARP offload
Certain devices provide an ARP offload function that offloads all ARP processing to
the adapter. The function provided by the adapter impacts the ability of TCP/IP to
display ARP cache information or ARP counter statistics for these devices.

Note: ARP processing is relevant only for IPv4 LAN interfaces.

The following devices provide an ARP offload function and provide ARP cache data
or ARP counters to TCP/IP.

v MPCIPA (OSA-Express Gigabit Ethernet) with a minimum required microcode
level of [MCL] 401

v MPCIPA (OSA-Express Fast Ethernet)

v MPCIPA (OSA-Express Token Ring)

Note: If multiple TCP/IP instances are sharing the device, the ARP data will
represent all TCP/IP instances using the device. This information is provided
to TCP/IP every 30 seconds from the device.

The following devices provide an ARP offload function and do not provide any ARP
cache data or ARP counters to TCP/IP:

v MPCOSA (OSA-2 Fast Ethernet, FDDI)

v MPCIPA (OSA-Express Gigabit Ethernet) with a microcode level earlier than
[MCL] 401

Note: For IPv6 LAN interfaces, TCP/IP performs all the neighbor discovery
processing, maintains the neighbor cache, and provides the ability to display
neighbor cache information.

Chapter 3. Customization 129

|
|
|

|

|

|
|

|

|
|
|

HiperSockets concepts and connectivity
iQDIO (Internal Queued Direct Input/Output or HiperSockets) is a new S/390
zSeries hardware feature that provides high performance internal communications
between LPARs within the same CEC without the use of any additional or external
hardware equipment (for example, channel adapters, LANs, etc.). This support is
also referred to as HiperSockets communications. When the processor supports
HiperSockets and the CHPIDs have been configured in HCD (IOCP), TCP/IP
connectivity can occur for two reasons:

v DYNAMICXCF is configured.

v A user defined iQDIO (MPCIPA) DEVICE and LINK is configured and started.

Therefore, there are two types of iQDIO devices:

v DYNAMICXCF iQDIO device (TRLE ″IUTIQDIO″ and an MPC group of
subchannel devices). The PORTNAME will be IUTIQDxx, where xx = the IQD
CHPID that VTAM uses (for example, IUTIQDFD when using IQD CHPID x’FD’).

v A user defined iQDIO device (TRLE ″IUTIQDxx″ and an MPC group of
subchannel devices). The PORTNAME is not applicable for this TRLE.

In both cases, the TRLE is dynamically built by VTAM. For additional details
regarding how to configure a user defined iQDIO MPCIPA device refer to the z/OS
Communications Server: IP Configuration Reference.

Concepts and considerations for the IQD CHPID: The iQDIO hardware device
is represented by the IQD CHPID and its associated subchannel devices. All LPARs
that are configured (HCD) to use the same IQD CHPID have internal connectivity
and therefore have the capability to communicate using iQDIO. The IQD CHPID
can be viewed as a logical LAN within the CEC. The iQDIO hardware allows up to
4 separate IQD CHPIDs to be defined per CEC, creating the capability of having 4
separate logical LANs within the same CEC. The following figures illustrate this
concept:

zSeries CEC

LPAR1

z/OS z/OS

LPAR2

TCP TCP1 2

LPAR5LPAR4LPAR3

Linux LinuxVM

Virtual LAN (IQD CHPID xFE)

GVM
GVM

GVM

1

2

3

Figure 28. HiperSockets Virtual LAN

130 z/OS V1R4.0 CS: IP Configuration Guide

|

|

Having this capability allows the system administrator to logically separate (or
control) the internal connectivity, controlling which specific LPARs are allowed to
internally connect using iQDIO. For example:

v SYSPLEX ’A’ LPARs running on LPs 1 through 4 could use IQD CHPID x’FC’.

v SYSPLEX ’B’ LPARs running on LPs 5 through 8 could use IQD CHPID x’FD’.

v A VM LPAR runs in LP 9 running various second level systems (Linux and z/OS)
which use IQD CHPID x’FE’.

v combinations of the examples above could be:

– Another set of LPARs on LPs 10 through 12 which are not using
DYNAMICXCF (non SYSPLEX) are connected to IQD CHPIDs x’FE’ and
x’FF’.

– Subsets of LPARs 1 through 8 are using both the DYNAMICXCF IQD CHPIDs
and a non-DYNAMICXCF IQD CHPIDs.

– Some LPARs are connected to all four IQD CHPIDs.

The iQDIO MPC group: VTAM will build a single iQDIO MPC group, using the
subchannel devices associated with a single IQD CHPID. VTAM will use two
subchannel devices for the read and write control devices, and 1 to 8 devices for
data devices. Each TCP/IP stack will be assigned a single data device.

Therefore, in order to build the MPC group, there must be a minimum of 3
subchannel devices defined (within HCD) and associated with the same IQD
CHPID. The maximum number of subchannel devices that VTAM will use is 10
(supporting 8 data devices or 8 TCP/IP stacks) per LPAR or MVS image. The
subchannel devices must be configured for the LPAR and online prior to when the
TCP/IP stack is initialized. Generally, the number of IQDIO subchannel devices you
should configure per LPAR is:

Linux LPAR

TCP

L - DD

TCP

TCP

TCP

TCPTCPTCP

TCP

L - DDL - DD DD

DD DD

DD

DD

z/OS LPAR z/OS LPAR

z/OS LPARz/OS LPAR

z/OS LPAR

z/OS LPAR

CHPID FF CHPID FE

“Production” “Test”

Linux LPAR

Linux LPAR

Figure 29. HiperSockets multiple LANs

Chapter 3. Customization 131

2 (read / write control devices)
+ N (where N = number of TCP/IP stacks)

N+2 (total subchannel devices per LPAR)
Example (LPAR 1 starts two TCP/IP stacks and both stacks use iQDIO):

- define 4 subchannel devices on the same IQD CHPID
- where 2 are used for read / write control and 2 data devices are available

The first TCP/IP stack within the LPAR to initialize DYNAMICXCF will cause the
iQDIO MPC group (IUTIQDIO) to be dynamically created. Each TCP/IP stack can
then start the IUTIQDIO device, and each stack will be assigned a unique
(dedicated) subchannel data device from the IUTIQDIO MPC group.

IBM recommends that the IQD CHPIDs be configured using CHPIDs x’FC’ through
x’FF’ (but any valid CHPID value (x’00’ through x’FF’ can be configured as TYPE =
IQD). Refer to z/OS HCD Planning and Appendix D, “Using HCD” on page 757 for
additional details.

iQDIO Maximum Frame Size: The iQDIO hardware supports four different frame
sizes referred to as the iQDIO MFS (Maximum Frame Size). Using HCD (or IOCP),
the iQDIO MFS is configured on the IQD CHPID using the ’OS=’ parameter. All
LPARs communicating over the same IQD CHPID will then use the same IQD MFS.
The MFS affects the largest packet that TCP/IP can transmit. TCP/IP will adjust the
MTU (Maximum Transmission Unit) based on the MFS, which is discovered during
activation.

The following table depicts the four possible TCP/IP MTU sizes resulting from the
iQDIO frame sizes:

OS=value iQDIO frame size TCP/IP MTU size

00 (default) 16K 8K

40 24K 16K

80 40K 32K

C0 64K 56K

The default iQDIO MFS is 16K. However, in cases in which increased bandwidth is
required (such as large file transfers, file backup, etc.), a larger MFS could be used.
In most workload environments the default size will result in better storage and CPU
utilization.

* OS values are ’00’=16K, ’40’=24K, ’80’=40K and ’C0’=64K. *
* *
* Need at least 3 addresses per z/OS, maximum of 10: *
* - 2 addresses for control *
* - 1 address for data for each TCP stack (between 1 and 8) *

ID SYSTEM=(2064,1)
*
CHPID PATH=FC,TYPE=IQD,SHARED,OS=00
CHPID PATH=FD,TYPE=IQD,SHARED,OS=40
CHPID PATH=FE,TYPE=IQD,SHARED,OS=80
CHPID PATH=FF,TYPE=IQD,SHARED,OS=C0
*
CNTLUNIT CUNUMBR=FC00,PATH=FC,UNIT=IQD
IODEVICE ADDRESS=(2C00,16),CUNUMBR=FC00,UNIT=IQD
*
CNTLUNIT CUNUMBR=FD00,PATH=FD,UNIT=IQD

132 z/OS V1R4.0 CS: IP Configuration Guide

IODEVICE ADDRESS=(2C10,16),CUNUMBR=FD00,UNIT=IQD
*
CNTLUNIT CUNUMBR=FE00,PATH=FE,UNIT=IQD
IODEVICE ADDRESS=(2C20,16),CUNUMBR=FE00,UNIT=IQD
*
CNTLUNIT CUNUMBR=FF00,PATH=FF,UNIT=IQD
IODEVICE ADDRESS=(2C30,16),CUNUMBR=FF00,UNIT=IQD

Refer to z/OS HCD Planning and Appendix D, “Using HCD” on page 757 for
additional details.

Modifying iQDIO connectivity (TCP/IP device and link and the VTAM iQDIO
(IUTIQDIO) MPC group): Certain modifications can be made to the iQDIO device
(MPC group) without disrupting an active TCP/IP stack.

z/OS supports dynamic I/O for the iQDIO CHPID and subchannel devices allowing
subchannels devices to be added or removed to or from an LPAR which has
already been IPLed.

TCP/IP supports the STOP and START command for the iQDIO (IUTIQDIO) device.
However, the commands are only supported when the (internal) start (activation)
was successful during stack initialization. TCP/IP also supports the STOP and
START command for the user defined iQDIO devices (IUTIQDxx). Since a user
defined iQDIO device is supported as an MPCIPA device, STOP and START
function just as they would for other MPCIPA devices.

VTAM supports a MODIFY IQDCHPID command, which allows the user to change
the initial setting of the IQDCHPID start option.

Therefore, it is possible to make certain changes to the DYNAMICXCF iQDIO MPC
Group (IUTIQDIO) without restarting VTAM or an active TCP/IP stack. Examples of
changes that can be made are (STOP/START device required):

v Alter which specific IQD CHPID is used for DYNAMICXCF (for example, move
from the x’FC’ CHPID to the x’FD’ CHPID).

v Add or remove subchannel devices (for example, from the current IQD CHPID).

v Alter the IQD MFS which alters the TCP/IP MTU (for example, increase the
current IQD CHPID from 16k to 64k).

Although VTAM supports modifications to the start option IQDCHPID (and the
modification will be immediately displayed), the effects will vary depending on what
the current usage was and the change (from or to) that was made. For example:

v When MODIFIED from ANY (or CHPID) to NONE, there no effect on current
usage but blocks subsequent activations of the DYNAMICXCF iQDIO device

v When MODIFIED from NONE to ANY (or CHPID), there is no effect on current
usage but allows subsequent activations.

v When MODIFIED from CHPID_X to CHPID_Y, there is no effect on current
usage.

Note: VTAM only uses the CHPID value when building the IUTIQDIO MPC
group.

To change CHPIDs for an active MPC group the following must be done:

1. TCP/IP IUTIQDIO devices that are changing must be stopped.

2. Make any necessary HCD/IOCDS changes.

3. Verify new subchannel devices are varied online.

Chapter 3. Customization 133

4. Verify the MPC group has deactivated (with no usage it times out after
approximately 2 minutes).

5. Modify IQDCHPID = CHPID (to new CHPID).

6. Restart the TCP/IP IUTIQDIO devices.

In order to use iQDIO communications, the processor must have the necessary
hardware support. If the processor does not support iQDIO communications,
modifications to this start option will not be accepted, and the IQDCHPID option will
not be displayed (displayed as ***NA***) .

iQDIO connectivity and routing: For each pair of stacks within a sysplex (which
are not on the same MVS image), if all of the following conditions are true, then the
stacks will use iQDIO DYNAMICXCF connectivity (versus standard XCF links):

v The two stacks must be on the same CEC

v The two stacks must be using the same IQD CHPID for the DYNAMICXCF
iQDIO (IUTIQDIO) device

v Both stacks must be at the z/OS V1R2 (or higher) level and be configured (HCD)
to use iQDIO

v The initial iQDIO activation must complete successfully.

If any of the above conditions are not met, then the stacks will use XCF
connectivity.

When a DYNAMICXCF iQDIO device and link are created and successfully
activated, a subnet route is created across the iQDIO link. The subnet is created by
using the DYNAMICXCF IP address and mask. This allows any LPAR within the
same CEC to be reached, even ones that are not within the sysplex. For example,
an LPAR that is running Linux and does not support joining the sysplex can still be
reached. The Linux LPAR must define at least one IP address for the iQDIO
endpoint that is within the subnet defined by the DYNAMICXCF IP address and
mask.

Therefore, TCP/IP can communicate with other LPARs within the CEC over the
DYNAMICXCF iQDIO (IUTIQDIO) device even when the TCP/IP in the other LPAR
is not part (joins or supports) of the sysplex. You can also elect to manually
configure an iQDIO device for non-sysplex communications.

When multiple stacks reside within the same LPAR which supports iQDIO, both
IUTSAMEH and iQDIO links will coexist. In this case, it is possible to transfer data
across either link. Because IUTSAMEH links have better performance, it is better to
always use them for intra-stack communication. A host route will be created by
DYNAMICXCF processing across the IUTSAMEH link but not across the iQDIO link.
To avoid using the iQDIO link for communication within the same host, the following
rules should be observed:

v Specify DYNAMICXCF IP addresses within a separate subnet from VIPA
addresses.

v Do not specify static IUTSAMEH links.

It is also possible with multiple stacks in the same LPAR to end up with both XCF
and iQDIO links. This occurs when the availability of the (preferable) iQDIO link
changes as each TCP stack (within the same LPAR) is started. For example, stack
A is started with iQDIO available and later stack B is started with iQDIO
unavailable. This type of configuration should be avoided.

134 z/OS V1R4.0 CS: IP Configuration Guide

Efficient routing using HiperSockets Accelerator: Communications Server
leverages the technological advances and high performing nature of the I/O
processing offered by HiperSockets with the IBM zSeries servers and the IBM
OSA-Express using QDIO architecture by optimizing IP packet forwarding
processing that occurs across these two types of links. This function is referred to
as HiperSockets Accelerator. It is a configurable option, and activated by configuring
the IQDIORouting option on the IPCONFIG statement.

When configured, it allows IP packets that are forwarded across an iQDIO link from
a QDIO link (or from QDIO to iQDIO) to be forwarded by the z/OS CS HiperSockets
device driver. That is, the IP forwarding function is pushed down as close to the
hardware [or to the lowest software DLC (Data Link Control)] layer as possible so
that these packets do not have to be processed by the TCP/IP stack or address
space. Therefore, valuable TCP/IP resources (storage and machine cycles) are not
expended for purposes of routing and forwarding packets. The following figure
illustrates a configuration before the utilization of HiperSockets Accelerator.

HiperSockets Accelerator presents a different configuration and approach to obtain
full connectivity as shown in the figure below.

OSA4

ENet4

OSA1

ENet1

OSA2

ENet2

OSA3

ENet3

LP7 ...
LP10

LP11
LP12

...
LP3

LP2
LP1

CEC

Figure 30. Candidate configuration for HiperSockets Accelerator

Chapter 3. Customization 135

This function allows a user to position a specific or single TCP/IP stack which has
direct physical connectivity to the OSAs LANs as the iQDIO router. This stack can
then connect to all remaining TCP/IP stacks in other images (LPARs) within the
same CEC that require connectivity to the same OSA LANs using HiperSockets
connectivity.

This approach becomes more beneficial as the number of LPARs within a given
CEC increase. Instead of attempting to directly attach each LPAR to each physical
network attachment using an OSA LAN, a smaller number of OSAs could be
concentrated through a single z/OS LPAR. From a performance perspective,
HiperSockets Accelerator attempts to make the intermediate (or router) TCP/IP
stack appear as if it did not exist in the path. Instead, each LPAR will appear as if
each were directly attached to the physical network (for example, packets are
forwarded without traversing the router TCP/IP stack). There are no additional
routing configuration tasks required by the user. The prerouting occurs
automatically. The TCP/IP stack automatically detects IP packet forwarding is
occurring across a HiperSockets eligible route (QDIO/iQDIO or iQDIO/QDIO), and
dynamically creates an IDIORouting route entry. All subsequent packets will then
take the optimized device driver path, and will not traverse the TCP/IP stack.

The dynamically created iQDIO routing entries can be displayed with NETSTAT.
VTAM tuning statistics are provided to allow the user to monitor or measure
prerouting activity.

IQDIOPriority (IQDIORouting option) is an optional choice that allows the user to
specify which of the four priority queues should be used when prerouting packets
from an iQDIO link outbound to a QDIO link. The default is 1 (highest priority), and
in most cases should be sufficient.

For additional details regarding the IQDIORouting configuration option, refer to the
IPCONFIG statement in the z/OS Communications Server: IP Configuration
Reference.

LP1 LP4

LP7 LP10

LP2 LP5

LP8 LP11

LP3 LP6

LP9 LP12

HSA
LPAR

z900
CEC

iQIDIO
LANs

OSA1 OSA2 OSA3 OSA4

ENet1 ENet2 ENet3 ENet4

xFC xFD

xFE xFF

Figure 31. HiperSockets Accelerator configuration

136 z/OS V1R4.0 CS: IP Configuration Guide

Interface-layer fault-tolerance for local area networks
(interface-takeover function)
The TCP/IP stack in the z/OS Communications Server provides transparent
fault-tolerance for failed (or stopped) IPv4 devices or IPv6 interfaces, when the
stack is configured with redundant connectivity onto a LAN. This support is provided
by the z/OS Communications Server interface-takeover function, and applies to
IPv4 MPCIPA and LCS device types and to the IPv6 IPAQENET6 interface type.

At device or interface startup time, TCP/IP dynamically learns of redundant
connectivity onto the LAN, and uses this information to select suitable backups in
the case of a future failure of the device or interface. This support makes use of
ARP flows (for IPv4 devices) or neighbor discovery flows (for IPv6 interfaces), so
upon failure (or stop) of a device or interface, TCP/IP immediately notifies stations
on the LAN that the original IPv4 or IPv6 address is now reachable through the
backup’s link-layer (MAC) address. Users targeting the original IP address will see
no outage due to the failure, and will be unaware that any failure occurred.

Since this support is built upon ARP or neighbor discovery flows, no dynamic
routing protocol in the IP layer is required to achieve this fault tolerance. To enable
this support, you only need to configure redundancy onto the LAN:

v You need redundant LAN adapters.

v For IPv4, you must configure and activate multiple LINKs onto the LAN.

v For IPv6, you need to configure and start multiple INTERFACEs onto the LAN.

Note: An IPv4 device cannot back up an IPv6 interface, and an IPv6 interface
cannot back up an IPv4 device.

The interface-layer fault-tolerance feature can be used in conjunction with VIPA
addresses, where applications can target the VIPA address, and any failure of the
real LAN hardware is handled by the interface-takeover function. This differs from
traditional VIPA usage, where dynamic routing protocols are required to route
around real hardware failures.

IPv6 considerations: Stateless autoconfiguration and duplicate
address detection
IPv6 provides the capability of autoconfiguring addresses for an interface by using
information provided by IPv6 routers. Descriptions of this function can be found in
RFC 2461 and RFC 2462. The term autoconfigured IP address is used below to
mean an IP address that is created as a result of information received from a router
advertisement. z/OS TCP/IP allows autoconfiguration if no IP addresses are defined
on the profile INTERFACE statement using the IPADDR keyword. If the
INTERFACE statement contains IPADDR definitions, this indicates that the
installation is defining its own IP addresses and autoconfiguration is not desired.
Subsequent descriptions use the term manually configured addresses to describe
the addresses that are defined using the IPADDR keyword.

TCP creates an autoconfigured IP address for an interface if all three of the
following conditions are met:

v The interface is active.

v A valid router advertisement containing prefix information with the autonomous
flag on is received over the interface.

v No manually configured home addresses are defined for the interface at the time
the router advertisement is received.

Chapter 3. Customization 137

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|
|

The IP address that is created is formed by appending the interface ID generated
by the stack to the prefix supplied by the router advertisement. Autoconfigured IP
addresses can be identified in the netstat home report by the ’Autoconfigured’ flag.
For more information on the interface ID generated by the stack, see z/OS
Communications Server: IPv6 Network and Application Design Guide.

An autoconfigured IP address exists until one of the following occurs:

v The valid lifetime specified by the most recent router advertisement expires.
When the valid lifetime expires, the autoconfigured address is removed. Existing
connections using this address are terminated when subsequent activity occurs
on the connection. The router advertisement that contains the valid lifetime for
the autoconfigured address can also specify a preferred lifetime. The preferred
lifetime indicates that the IP address can be freely used. When the preferred
lifetime expires, the autoconfigured address is considered deprecated. The
deprecated state indicates that another IP address should be used if available
and provides a transition period before the valid lifetime expires. A deprecated IP
address can be identified in the netstat home report by the ’deprecated’ flag.

v The installation activates a profile that contains a manually configured IP address
on the same interface as the autoconfigured IP address (that is, the INTERFACE
statement contains the ADDADDR keyword). If this occurs, any autoconfigured IP
addresses on that interface are deleted and existing connections using this
address are terminated when subsequent activity occurs on the connection. The
manually configured addresses are added and duplicate address detection for
the newly added IP addresses initiated, if applicable.

Duplicate address detection is the process described in RFC 2462 which verifies
that IPv6 home addresses are unique on the local link before assigning them to an
interface. Duplicate address detection is performed on all IPv6 IPAQENET6 home
addresses, whether they are manually configured or autogenerated, unless the
INTERFACE statement specifies DUPADDRDET 0. Duplicate address detection is
not done for LOOPBACK6 or VIRTUAL6 addresses. The duplicate address
detection process sends a multicast neighbor solicitation and waits a period of time
to see if another neighbor indicates that the address is in use. By default, only one
neighbor solicitation is sent and the length of time waited is approximately one
second. If no neighbor responds in that interval, the address is considered unique
and the interface will start using it. The number of neighbor solicitations sent by
duplicate address detection can be modified by the DUPADDRDET keyword on the
INTERFACE statement. The duration of the wait interval (awaiting a response from
a neighbor already using the address) can be modified by information obtained from
routers on the attached network.

Duplicate address detection occurs when the interface is started. Unless the
INTERFACE statement indicated duplicate address detection is to be bypassed,
IPv6 manually configured addresses are unavailable until the interface is started
and duplicate address detection completes without finding another node on the local
link with the same address. Prior to activation of the interface, manually configured
addresses are shown in the netstat home report as unavailable with a reason of
’DUPLICATE ADDRESS DETECTION PENDING’. While the duplicated address
detection is actively in progress for an address, the netstat home report shows the
address as unavailable with a reason of ’DUPLICATE ADDRESS DETECTION IN
PROGRESS’. If another neighbor indicates the address is in use during the
duplicate address detection process, message EZZ9780I is issued and the address
is not made available to the interface. If the address that failed duplicate address

138 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

detection is a manually configured address, the address shows up in the netstat
home report as unavailable with a reason of ’DUPLICATE ADDRESS DETECTION
FAILED’.

A link-local address is required to activate a QDIO IPv6 interface and will be
generated automatically by the stack. The link-local address is generated using the
link-local prefix and the interface ID. If the link-local address generated from the
interface ID is determined to be a duplicate, the interface is not activated if:

v Autoconfigured addresses are allowed.

v A manually configured home address specifying only the prefix was specified on
the INTERFACE statement. In such a case, the interface ID needs to be used to
form the complete link-local address, and since the interface ID has been found
to be in use on the network, the formed link-local address cannot be used.

If duplicate address detection fails on the link-local address and only fully
configured manual addresses were specified on the INTERFACE statement, up to
two attempts are made to create a unique link local address using a randomly
generated value instead of the interface ID. If duplicate address detection succeeds
using the randomly generated link-local address, message EZZ9784I is issued
indicating the generated address and the interface is activated.

Setting up reserved port number definitions in PROFILE.TCPIP
Figure 32 shows a portion of the sample configuration file for the TCP/IP address
space, PROFILE.TCPIP. This sample can be copied from SEZAINST(SAMPPROF).
Figure 32 includes the portion of the sample that shows how to set up reserved port
number definitions. Descriptions for the statements follow Figure 32. For more
information about any of these statements, refer to z/OS Communications Server:
IP Configuration Reference. For information specific to IPv6 support, refer to z/OS
Communications Server: IPv6 Network and Application Design Guide.

; ==
; Application configuration
; ==
;
;
; AUTOLOG: Supplies TCPIP with the procedure names to start and the
; time value to wait at TCP start up for any of those procedures
; to terminate if they are active.
;
; AUTOLOG 5
; FTPD JOBNAME FTPD1 ; FTP Server
; LPSERVE ; LPD Server
; NAMED ; Domain Name Server
; NCPROUT ; NCPROUTE Server
; OROUTED ; OROUTED Server
; OSNMPD ; SNMP Agent Server
; PORTMAP ; Portmap Server (SUN 3.9)
; PORTMAP JOBNAME PORTMAP1 ; USS Portmap Server (SUN 4.0)
; RXSERVE ; Remote Execution Server
; SMTP ; SMTP Server
; SNMPQE ; SNMP Client
; TCPIPX25 ; X25 Server
; ENDAUTOLOG
;
;
; PORT: Reserves a port for specified job names
;
; - A port that is not reserved in this list can be used by any user.
; If you have TCP/IP hosts in your network that reserve ports
; in the range 1-1023 for privileged applications, you should
; reserve them here to prevent users from using them.

Figure 32. Example of reserved port number definitions

Chapter 3. Customization 139

|
|
|

|
|
|

|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

; The RESTRICTLOWPORTS option on TCPCONFIG and UDPCONFIG will also
; prevent unauthorized applications from accessing unreserved
; ports in the 1-1023 range.
;
; - A PORT statement with the optional keyword SAF followed by a
; 1-8 character name can be used to reserve a PORT and control
; access to the PORT with a security product such as RACF.
; For port access control, the full resource name for the security
; product authorization check is constructed as follows:
; EZB.PORTACCESS.sysname.tcpname.safname
; where:
; EZB.PORTACCESS is a constant
; sysname is the MVS system name (substitute your sysname)
; tcpname is the TCPIP jobname (substitute your jobname)
; safname is the 1-8 character name following the SAF keyword
;
; When PORT access control is used, the TCP/IP application
; requiring access to the reserved PORT must be running under a
; USERID that is authorized to the resource. The resources
; are defined in the SERVAUTH class.
;
; For an example of how the SAF keyword can be used to enhance
; security, see the definition below for the FTP data PORT 20
; with the SAF keyword. This definition reserves TCP PORT 20 for
; any jobname (the *) but requires that the FTP user be permitted
; by the security product to the resource:
; EZB.PORTACCESS.sysname.tcpname.FTPDATA in the SERVAUTH class.
;
; - The BIND keyword is used to force a generic server (one that
; binds to INADDR_ANY) to bind to the specific IP address that
; is specified following the BIND keyword. This capability could
; be used, for example, to allow z/OS UNIX telnet and telnet
; 3270 servers to both bind to TCP port 23.
; The IP address that follows bind must be in IPv4 dotted
; decimal format and may be any valid address for the host
; including VIPA and dynamic VIPA addresses.
;
; The special jobname of OMVS indicates that the PORT is reserved
; for any application with the exception of those that use the Pascal
; API.
;
; The special jobname of * indicates that the PORT is reserved
; for any application, including Pascal API socket applications.
;
; The special jobname of RESERVED indicates that the PORT is
; blocked. It will not be available to any application.
;
; The special jobname of INTCLIEN indicates that the PORT is
; reserved for internal stack use.
;
;
PORT

7 UDP MISCSERV ; Miscellaneous Server - echo
7 TCP MISCSERV ; Miscellaneous Server - echo
9 UDP MISCSERV ; Miscellaneous Server - discard
9 TCP MISCSERV ; Miscellaneous Server - discard
19 UDP MISCSERV ; Miscellaneous Server - chargen
19 TCP MISCSERV ; Miscellaneous Server - chargen
20 TCP * NOAUTOLOG ; FTP Server

; 20 TCP * NOAUTOLOG SAF FTPDATA ; FTP Server
21 TCP FTPD1 ; FTP Server

; 21 TCP FTPD2 BIND FEC9:C2D4:1:0000:0009:0067:0115:0066 ; FTP IPv6
23 TCP INTCLIEN ; Telnet 3270 Server

; 23 TCP INETD1 BIND 9.67.113.3 ; z/OS UNIX Telnet server
25 TCP SMTP ; SMTP Server
53 TCP NAMED ; Domain Name Server
53 UDP NAMED ; Domain Name Server
111 TCP PORTMAP ; Portmap Server (SUN 3.9)
111 UDP PORTMAP ; Portmap Server (SUN 3.9)

; 111 TCP PORTMAP1 ; Unix Portmap Server (SUN 4.0)
; 111 UDP PORTMAP1 ; Unix Portmap Server (SUN 4.0)

123 UDP SNTPD ; Simple Network Time Protocol Server
135 UDP LLBD ; NCS Location Broker
161 UDP OSNMPD ; SNMP Agent
162 UDP SNMPQE ; SNMP Query Engine
389 TCP LDAPSRV ; LDAP Server

140 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

443 TCP HTTPS ; http protocol over TLS/SSL
443 UDP HTTPS ; http protocol over TLS/SSL
512 TCP RXSERVE ; Remote Execution Server
514 TCP RXSERVE ; Remote Execution Server

; 512 TCP * SAF OREXECD ; z/OS UNIX Remote Execution Server
; 514 TCP * SAF ORSHELLD ; z/OS UNIX Remote Shell Server

515 TCP LPSERVE ; LPD Server
520 UDP OROUTED ; OROUTED Server
580 UDP NCPROUT ; NCPROUTE Server
750 TCP MVSKERB ; Kerberos
750 UDP MVSKERB ; Kerberos
751 TCP ADM@SRV ; Kerberos Admin Server
751 UDP ADM@SRV ; Kerberos Admin Server
1933 TCP ILMTSRVR ; IBM LM MT Agent
1934 TCP ILMTSRVR ; IBM LM Appl Agent
3000 TCP CICSTCP ; CICS Socket
3389 TCP MSYSLDAP ; LDAP Server for Msys

;
;
; PORTRANGE: Reserves a range of ports for specified jobnames.
;
; In a common INET (CINET) environment, the port range indicated by
; the INADDRANYPORT and INADDRANYCOUNT in your BPXPRMxx parmlib member
; should be reserved for OMVS.
;
; The special jobname of OMVS indicates that the PORTRANGE is reserved
; for ANY z/OS UNIX socket application.
;
; The special jobname of * indicates that the PORTRANGE is reserved
; for any socket application, including Pascal API socket
; applications.
;
; The special jobname of RESERVED indicates that the PORTRANGE is
; blocked. It will not be available to any application.
;
; The SAF keyword is used to restrict access to the PORTRANGE to
; authorized users. See the use of SAF on the PORT statement above.
;
;
; PORTRANGE 4000 1000 TCP OMVS
; PORTRANGE 4000 1000 UDP OMVS
; PORTRANGE 2000 3000 TCP RESERVED
; PORTRANGE 5000 6000 TCP * SAF RANGE1
;
; SACONFIG: Configures the TCP/IP SNMP subagent
;
SACONFIG ENABLED COMMUNITY public AGENT 161

The following explains the statements shown in Figure 32 on page 139.

AUTOLOG
Use AUTOLOG to list the procedure names that should start when the
TCPIP address space starts. It is also used to supply a timeout value for
detecting hung procedures at TCP/IP initialization time. The timeout value is
the time TCP/IP should allow for a procedure to come down when, at
startup, it is still active and TCP/IP is attempting to AUTOLOG the
procedure again. A hung procedure is active to MVS, but is not listening on
the socket that is reserved for it via the PORT statement. When AUTOLOG
detects a hung task, TCP/IP checks every 10 seconds (until the timeout
value has expired) to see if the procedure has come down. If the procedure
comes down during one of these 10 second intervals, it is restarted. If the
procedure is still active when the time interval specified by the timeout
value expires, then TCP/IP cancels and restarts the procedure.

The AUTOLOG statement shown in Figure 32 on page 139 has a timeout
value of five minutes.

In the first AUTOLOG statement the FTP Server shows FTPD JOBNAME
FTPD1. This means when the TCPIP address space starts, the FTPD
procedure will be started via the MVS START FTPD command. Because

Chapter 3. Customization 141

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

FTPD forks a child process that actually listens on PORT 21 (see the PORT
statement in this section), the autolog task verifies that FTPD1 is listening
on port 21.

Similarly, when the TCPIP address space starts, the autolog task starts the
remaining 10 tasks.

Unless the tasks in the AUTOLOG list are in the PORT reservation list, the
autolog task does not check for hung tasks every five minutes. Also at
startup time, those procedures that are not on the PORT list are first
canceled and then started. This occurs because the procedure might have
been running from a previous TCP/IP address space and would need to be
started and stopped to start listening when the new stack starts.

Notes:

1. If you run multiple TCP/IP address spaces, ensure that the second
address space AUTOLOG list does not cancel the procedures of the
first. In those cases, an installation might require different procedure
names for the servers for each address space. For more information
about multiple stacks, see “Port management overview” on page 55.

2. You can use the AUTOLOG statement to automatically start generic
servers in a single stack environment, but you should be careful using
the AUTOLOG statement to start generic servers in a multiple stack
environment. Instead, you could use an operations automation software
package (IBM and other vendors provide these) to start generic servers
automatically. For a list of generic servers provided by TCP/IP, see
“Generic servers in a CINET environment” on page 58.

For those procedures that require parameters to be used on the MVS
START command, there is a PARMSTRING option. For more information,
refer to z/OS Communications Server: IP Configuration Reference.

PORT Use PORT to reserve ports for different jobs. This prevents a rogue
application from taking port 21, which is needed by FTP. For each port
entry, the port number, protocol, and procedure name are specified. The
first port entry shows port 7 UDP reserved for the miscellaneous echo
server for procedure MISCSERV. Similarly, port 7 of TCP is also reserved
for the same server. In this example, six ports are reserved for the
miscellaneous server.

INTCLIEN is an INTernal CLIENt to the TCPIP address space (the TN3270
Telnet server), and it runs continuously. See Chapter 8, “Accessing remote
hosts using Telnet” on page 305 for more information about INTCLIEN.

NOAUTOLOG can be specified, as in the port 20 TCP * in Figure 32 on
page 139. In this way, the port is reserved for an OMVS forked task so that
the FTP server can fork tasks to port 20 as each FTP user logs in.

Use the DELAYACKS and NODELAYACKS options to allow an installation
to delay their acknowledgments so they can be combined with data to be
sent to foreign hosts. Unless a performance reason is needed,
NODELAYACKS should be used to immediately send acknowledgments.

Use SHAREPORT when reserving a port to be shared across multiple TCP
listeners. This is not valid for UDP.

Typically, reserving a port for a specific job name is sufficient. If the port
must instead be reserved for a specific user ID or a set of user IDs, use the
SAF keyword to specify the name of a SAF resource to be associated with

142 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|

the port. The user ID associated with the application that attempts to bind to
the port must be permitted to the SAF resource.

The BIND keyword is used to force a generic server (one that binds to
INADDR_ANY) to bind to the specific IP address that is specified following
the BIND keyword. This capability could be used, for example, to allow the
z/OS UNIX Telnet and TN3270 Telnet servers to both bind to TCP port 23
on different IP addresses. The IP address that follows bind can be any valid
address for the host, including VIPA and dynamic VIPA addresses. The
address supplied can be either an IPv4 address (in dotted-decimal format)
or an IPv6 address (in colon-hexadecimal format). IPv4-mapped IPv6
addresses and IPv4-compatible IPv6 addresses are not supported. For
multiple servers to bind to the same port with this function, the IP address
for each server must be unique.

RESERVED indicates that the port is not available for use by any user.

PORTRANGE
PORTRANGE is a statement used to reserve a range of ports for specified
job names.

SACONFIG
SACONFIG is the statement used to configure the information about the
SNMP subagent. Omission of this statement causes TCPIP to assume the
default value of SACONFIG ENABLED COMMUNITY public AGENT 161.
Use SACONFIG to specify the following:

v SNMP community string

v OSA/SF port number

v Agent port

v OSA management support

v Whether or not the SNMP agent can perform SNMP sets

Setting up SAF Server Access Authorization (SERVAUTH) (optional)
The TCP/IP address space uses the SERVAUTH System Authorization Facility
(SAF) class to protect TCP/IP resources from unauthorized access. The use of
SERVAUTH may be optional and is available in degrees so that installations can
pick and choose the access needed. Installations may be able to choose to use
one, all, or none of the protections provided by SERVAUTH. The customizing
described in this section is completely optional when using the IBM security product
RACF. Non-IBM security products may require customizing. A template of the
commands and all other SAF commands appears in SEZAINST(EZARACF). Refer
to Chapter 2, “Security” on page 79 for more detailed information.

Configuring the local host table (optional)

Why configure a local host table?
You can set up the local host table to support local host name resolution. If you use
the local host table for this purpose, your socket applications will only be able to
resolve names and IP addresses that appear in your local host table.

If you need to resolve host names outside your local area, you can configure the
resolver to use a domain name server (see the NSINTERADDR statement). If you
use a domain name server, you do not need to set up any host definitions in your
resolver configuration, but you may still do so.

Chapter 3. Customization 143

|
|
|
|
|
|
|

|

|
|
|

If you have configured your resolver to use a name server, it will always try to do
so, unless your TCP/IP C/C++ API applications were written with a
RESOLVE_VIA_LOOKUP symbol in the source code. You can also configure the
resolver to only use a local host table by specifying LOOKUP LOCAL in the
TCPIP.DATA configuration file. For both cases, all name resolution calls will always
use a local host table. This is probably not a technique you will see for standard
socket applications, but it may be a technique you could find useful for when you
develop your own socket applications or for testing changes before they are placed
in your name server.

It might be a good idea to have a local host table available for the resolver to use if
the name server is not reachable. If the name server does not respond to name
resolution requests, the resolver tries to use the local host table. If the name server
is reachable but returns a negative reply for a name resolution request, the resolver
tries to resolve the name using the local host table, if such a file is present.

Assume you try to resolve the host name friendly and your DOMAINORIGIN is
my.house.com, the resolver sends a query to the name server for
friendly.my.house.com. If the name server returns a negative reply (the name is not
registered), the resolver looks into the local host table for an entry of
friendly.my.house.com and, if not found, for an entry of friendly.

Due to the flexibility of the Domain Name System, it is recommended you use a
domain name server. If you set up a small TCP/IP network, the simplicity of the
local host table approach might be preferable.

The following types of local host table can be used:

v HOSTS.LOCAL

HOSTS.LOCAL is only used for IPv4 requests.

v /etc/hosts

/etc/hosts is only used for IPv4 requests.

v ETC.IPNODES and /etc/ipnodes

ETC.IPNODES and /etc/ipnodes can be used for IPv6 requests, and for IPv4
requests when COMMONSEARCH is coded in the resolver setup statements.

Creating HOSTS.LOCAL site host table
The site host table is generated from the hlq.HOSTS.LOCAL data set. This data set
contains descriptions of local host entries in the HOSTS format. HOSTS.LOCAL can
only contain IPv4 addresses. A sample HOSTS.LOCAL data set is created during
installation. The following sections describe how to update the sample
hlq.HOSTS.LOCAL data set and use it to generate the two data sets,
hlq.HOSTS.SITEINFO and hlq.HOSTS.ADDRINFO, which function as your site
table.

HOST entries
One line of the hlq.HOSTS.LOCAL data set is used for each distinct host and ends
with four colons (::::). The maximum length of the line is 512 characters. Each host
can have multiple IP addresses and multiple names. The line for each host has
three essential fields, separated by colons. These fields are:
v The keyword HOST
v A list, separated by commas, of IP addresses for that host. A maximum of 6 IP

addresses can be specified.

144 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|

|
|

|

|

|

|
|

|

|

|

|

|

|

|

|
|

|
|
|

v A list, separated by commas, of fully qualified names for that host. A maximum of
20 host names can be specified. Only the first six host names will be used in the
hlq.HOSTS.ADDRINFO data set. All twenty host names will be used in the
hlq.HOSTS.SITEINFO data set.

For example, if you have two local hosts, LOCAL1 (IP addresses 192.6.77.4 and
192.8.4.1) and LOCAL2 (with an alias LOCALB and IP address 192.6.77.2), append
the following lines to the hlq.HOSTS.LOCAL data set:

HOST : 192.6.77.4, 192.8.4.1 : LOCAL1 ::::
HOST : 192.6.77.2 : LOCAL2, LOCALB ::::

Note: The maximum length for a host allowed in the HOST tables is 24 characters.

NET and GATEWAY entries
The NET and GATEWAY statements are not used by TCP/IP for z/OS applications.
However, some socket calls require the NET entries. If your programs do not need
the NET and GATEWAY statements, delete them before invoking MAKESITE.

Sample HOSTS.LOCAL data set (HOSTS): Following is the sample
HOSTS.LOCAL data set provided in SEZAINST(HOSTS):
; HOSTS.LOCAL
; -----------
; COPYRIGHT = NONE.
;
; The format of this file is documented in RFC 952, "DoD Internet
; Host Table Specification".
;
; The format for entries is:
;
; NET : ADDR : NETNAME :
; GATEWAY : ADDR, ALT-ADDR : HOSTNAME : CPUTYPE : OPSYS : PROTOCOLS :
; HOST : ADDR, ALT-ADDR : HOSTNAME, NICKNAME : CPUTYPE : OPSYS : PROTOCOLS :
;
; Where:
; ADDR, ALT-ADDR = IP address in decimal, e.g., 26.0.0.73
; HOSTNAME, NICKNAME = the fully qualified host name and any nicknames
; CPUTYPE = machine type (PDP-11/70, VAX-11/780, IBM-3090, C/30, etc.)
; OPSYS = operating system (UNIX, TOPS20, TENEX, VM/SP, etc.)
; PROTOCOLS = transport/service (TCP/TELNET,TCP/FTP, etc.)
; : (colon) = field delimiter
; :: (2 colons) = null field
; *** CPUTYPE, OPSYS, and PROTOCOLS are optional fields.
;
; MAKESITE does not allow continuation lines, as described in
; note 2 of the section "GRAMMATICAL HOST TABLE SPECIFICATION"
; in RFC 952. Entries should be specified on a single line of
; up to a maximum of 512 characters per line.
;
;
; Note: The NET and GATEWAY statements are not used by the TCP/IP for
; MVS applications. However, some socket calls require the NET
; entries. For better performance, if your programs do not need
; the NET and GATEWAY statements, delete them before running
; the MAKESITE program.
;
;
HOST : 9.67.43.100 : NAMESERVER ::::
HOST : 9.67.43.126 : RALEIGH ::::
HOST : 129.34.128.245, 129.34.128.246 : YORKTOWN, WATSON ::::
;

Chapter 3. Customization 145

NET : 9.67.43.0 : RALEIGH.IBM.COM :
;
GATEWAY : 129.34.0.0 : YORKTOWN-GATEWAY ::::
;

Using MAKESITE
Because many servers and commands allocate hlq.HOSTS.SITEINFO and
hlq.HOSTS.ADDRINFO, it is important not to overwrite or delete these data sets
while TCP/IP is running. To avoid disrupting any active users, use an HLQ=parm
that is different than your active hlq. This allows you to swap names (by renaming
the old HOSTS data sets and then renaming the new HOSTS data sets) without
starting and stopping TCP/IP.

Use MAKESITE as a TSO command or in a batch job to generate new
hlq.HOSTS.SITEINFO and hlq.HOSTS.ADDRINFO data sets. The parameters are
the same for either a TSO command or a batch job invocation of MAKESITE. Refer
to z/OS Communications Server: IP System Administrator’s Commands for more
information.

After you make changes to your hlq.HOSTS.LOCAL data set, you must generate
and install new hlq.HOSTS.SITEINFO and hlq.HOSTS.ADDRINFO data sets.

For the search orders used in locating the local host tables, see “Configuration files
for TCP/IP applications” on page 26.

Creating /etc/hosts
The /etc/hosts HFS file can be defined as follows:

v The maximum line length is 256 characters. If a line is greater than 256
characters, it is truncated to 256 characters and processed. If trace resolver is
active, a warning message is issued.

v The line starts with an IP address, followed by a blank, followed by host names.
Host names are separated by one or more blanks.

v Only IPv4 addresses are supported.

v Each IP address can have up to 35 host names.

v The values for the host name must conform to the following:

– Maximum of 128 characters.

– Must contain one or more tokens separated by a period.

– Each token must be larger than one character and less than 64 characters.

– First character in each token must start with a letter (A-Z or a-z).

v A comment is indicated by the # or ; character.

For the search orders used in locating /etc/hosts, see “Configuration files for TCP/IP
applications” on page 26.

Creating ETC.IPNODES and /etc/ipnodes
The ETC.IPNODES and /etc/ipnodes file can be defined as follows:

v HFS files can reside in any directory. The maximum line length supported is 256
characters. If a line is greater than 256 characters, it is truncated to 256
characters and processed. If trace resolver is active, a warning message is
issued.

v MVS data sets must be partitioned organization (PO) or sequential (PS),
RECFM=F or RECFM=FB, a logical record length (LRECL) between 56 and 256,
and have any valid blocksize (BLKSIZE) for fixed block.

146 z/OS V1R4.0 CS: IP Configuration Guide

|
|

|

|

|
|
|

|
|

|

|

|

|

|

|

|

|

|
|

|

|

|
|
|
|

|
|
|

v It can contain IPv4 and IPv6 addresses, but not IPv4 mapped addresses. Each
IP address can have up to 35 host names.

v The values for the host name must conform to the following:

– Maximum of 128 characters.

– Must contain one or more tokens separated by a period.

– Each token must be larger than one character and less than 64 characters.

– First character in each token must start with a letter (A-Z or a-z).

v A comment is indicated by the # or ; character.

The sample IPNODES file provided by z/OS Communications Server follows. It can
be found as member EZBREIPN (alias IPNODES) in SEZAINST.
;
; IBM z/OS Communications Server
; SMP/E distribution name: EZBREIPN
;
; 5694-A01 (C) Copyright IBM Corp. 2002.
; Licensed Materials - Property of IBM
;
; Function: Sample ETC.IPNODES file
;
; The file contains the Internet Protocol (IP) host names
; and addresses for the local host and other hosts in the
; Internet network.
; This file is used to resolve a name into an address (that is, to
; translate a host name into its Internet address) or resolve
; an address into a name.
;
; Comments begin with a # or ; character and continue until the
; end of the line.
;
; The following statement defines the Internet Protocol (IP) name
; and address of the local host and specifies the names and
; addresses of remote hosts. The maximum line length support is
; 256 characters
;
; Entries in the hosts file have the following format:
;
; Address HostName
;
; Address HostName1 HostName2 HostName3 HostName35
;
;
; Address: is an IP address, it can be IPV4 or IPV6 address.
; Note: IPv4-mapped IPv6 address is not allowed.
; HostName: the length of the hostname is up to 128 characters,
; and each IP address can have up to 35 hostnames.
;
;

9.67.43.100 NAMESERVER
9.67.43.126 RALEIGH
9.67.43.222 HOSTNAME1.RALEIGH.IBM.COM
129.34.128.245 YORKTOWN WATSON
1::2 TESTIPV6ADDRESS1
1:2:3:4:5:6:7:8 TESTIPV6ADDRESS2

;

For the search orders used in locating ETC.IPNODES and /etc/ipnodes, see
“Configuration files for TCP/IP applications” on page 26.

Chapter 3. Customization 147

|
|

|

|

|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

Verifying your configuration
At this point, your configuration files have been updated.

To verify a configuration, start the TCP/IP address space and ensure that you see
the following message:
EZB6473I TCP/IP STACK FUNCTIONS INITIALIZATION COMPLETE

If the message is not displayed, the messages issued by the TCP/IP address space
should describe why TCP/IP did not start.

Verify TCPIP.DATA and TCPIPJOBNAME

Note: For all of the following examples, the unchanged SAMPPROF shipped with
TCP/IP is used as the PROFILE.TCPIP. No resolver GLOBALTCPIPDATA
was used.

From the TSO ready prompt, verify that the TCPIP.DATA file specifies the correct
TCP/IP address space by typing a NETSTAT command. If the wrong
TCPIPJOBNAME is specified, you will see the following message:
netstat
EZZ2377I Could not establish affinity with TCPXXX (1011/11B3005A) - cannot

provide the requested option information
READY

With a TCPIP.DATA file correctly specifying TCPIP, the following results are
displayed. To ensure that the correct TCPIP.DATA file is found in the example, the
SYSTCPD is explicitly allocated.
alloc f(systcpd) dsn(’sys1.tcpparms(tcpdata)’) shr reuse
READY
netstat home
MVS TCP/IP NETSTAT CS V1R4 TCPIP NAME: TCPIP 17:10:57
Home address list:
Address Link Flg
------- ---- ---
127.0.0.1 LOOPBACK P
READY

Verify /etc/resolv.conf
Next, verify the UNIX System Services environment with the onetstat commands.
The following example shows the incorrect address space.

The /etc/resolv.conf file is shown.

Note: You only need to create /etc/resolv.conf if you want to maintain separate
resolver configuration files for the different APIs.

EDIT /etc/resolv.conf Columns 00001 00072
Command ===> Scroll ===> PAGE
****** ***************************** Top of Data ******************************
000001 TCPIPJOBNAME TCPCS2

netstat -h
Unable to open UDP socket to TCPCS2 : TCPCS2 is not active.

With the /etc/resolv.conf correctly specified with TCPIPJOBNAME TCPIP, the
following is displayed:

148 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|
|
|
|
|

|

onetstat
MVS TCP/IP onetstat CS V1R4 TCPIP Name: TCPIP 13:15:51
User Id Conn Local Socket Foreign Socket State
------- ---- ------------ -------------- -----
BPXOINIT 00000011 0.0.0.0..10007 0.0.0.0..0 Listen
TCPIP 0000000B 0.0.0.0..1025 0.0.0.0..0 Listen
TCPIP 00000010 0.0.0.0..23 0.0.0.0..0 Listen
TCPIP 0000000F 127.0.0.1..1025 127.0.0.1..1026 Establsh
TCPIP 0000000E 127.0.0.1..1026 127.0.0.1..1025 Establsh
Syslogd1 00000012 0.0.0.0..514 *..* UDP

Verifying PROFILE.TCPIP with netstat or onetstat
Many configuration values specified within the PROFILE.TCPIP file can be verified
with the netstat command. To verify the physical network and hardware definitions,
use the NETSTAT DEV command. To see operating characteristics use NETSTAT
CONFIG. A version of Netstat runs in the TSO and UNIX environments and from
the MVS operator environment. Refer to z/OS Communications Server: IP System
Administrator’s Commands for information about the syntax and output of the
commands. Following is output from the TSO NETSTAT command. Use the netstat
command in the environment with which you are most comfortable.
NETSTAT DEVLINKS

MVS TCP/IP NETSTAT CS V1R4 TCPIP NAME: TCPCS 13:40:35
DevName: LOOPBACK DevType: LOOPBACK

DevStatus: Ready
LnkName: LOOPBACK LnkType: LOOPBACK LnkStatus: Ready

NetNum: 0 QueSize: 0
BytesIn: 2560 BytesOut: 2560
ActMtu: 65535

BSD Routing Parameters:
MTU Size: 00000 Metric: 00
DestAddr: 0.0.0.0 SubnetMask: 0.0.0.0

Multicast Specific:
Multicast Capability: No

DevName: LCS1 DevType: LCS DevNum: 0D00
DevStatus: Ready
LnkName: TR1 LnkType: TR LnkStatus: Ready

NetNum: 0 QueSize: 0
BytesIn: 1390158 BytesOut: 842254
MacAddrOrder: Non-Canonical SrBridgingCapability: Yes
IpBroadcastCapability: Yes ArpBroadcastType: All Rings
MacAddress: 0123456789AB
ActMtu: 1492

BSD Routing Parameters:
MTU Size: 02000 Metric: 100
DestAddr: 0.0.0.0 SubnetMask: 255.255.255.128

Packet Trace Setting:
Protocol: * TrRecCnt: 00000006 PckLength: FULL
SrcPort: * DestPort: *
IpAddr: * SubNet: *

Multicast Specific:
Multicast Capability: Yes
Group RefCnt
----- ------
224.0.0.1 0000000001

DevName: HYDRAPFD DevType: MPCIPA
DevStatus: Ready CfgRouter: Pri ActRouter: Pri
LnkName: LHYDRAF LnkType: IPAQENET LnkStatus: Ready

NetNum: 0 QueSize: 0 Speed: 0000001000
BytesIn: 0 BytesOut: 0
IpBroadcastCapability: No
ArpOffload: Yes ArpOffloadInfo: Yes

Chapter 3. Customization 149

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ActMtu: 1000
BSD Routing Parameters:

MTU Size: 00000 Metric: 00
DestAddr: 0.0.0.0 SubnetMask: 255.0.0.0

Multicast Specific:
Multicast Capability: Unknown

DevName: OSATRL90 DevType: ATM
DevStatus: Not Active
LnkName: OSA90LINK1 LnkType: ATM LnkStatus: Not Active

NetNum: 0 QueSize: 0
BytesIn: 0 BytesOut: 0

BSD Routing Parameters:
MTU Size: 00000 Metric: 00
DestAddr: 0.0.0.0 SubnetMask: 255.0.0.0

ATM Specific:
ATM portName: OSA90
ATM PVC Name: STEPH PVC Status: Not Active

ATM LIS Name: LIS1
SubnetValue: 9.67.1.0 SubnetMask: 255.255.255.0
DefaultMTU: 0000009180 InactvTimeOut: 0000000300
MinHoldTime: 0000000060 MaxCalls: 0000001000
CachEntryAge: 0000000900 ATMArpReTry: 0000000002
ATMArpTimeOut: 0000000003 PeakCellRate: 0000000000
NumOfSVCs: 0000000000 BearerClass: C

ATMARPSV Name: ARPSV1
VcType: PVC ATMaddrType: NSAP
ATMaddr:
IpAddr: 0.0.0.0

Multicast Specific:
Multicast Capability: No

DevName: CLAW2 DevType: CLAW DevNum: 0D10
DevStatus: Ready CfgPacking: Yes ActPacking: Packed
LnkName: CLAW2LINK LnkType: CLAW LnkStatus: Ready

NetNum: 0 QueSize: 0
BytesIn: 0 BytesOut: 0
ActMtu: 2500

BSD Routing Parameters:
MTU Size: 00000 Metric: 00
DestAddr: 0.0.0.0 SubnetMask: 255.255.255.0

Multicast Specific:
Multicast Capability: Yes

The SAMPPROF provided defines only the LOOPBACK address (as shown in this
example).

Your installation should have a DEVICE for each interface used by TCP/IP.
Counters, BSD Routing Parameters, and Multicast information is given but will not
be discussed here. See Chapter 4, “Routing” on page 155 and z/OS
Communications Server: IP Configuration Reference for more information on these
topics.
NETSTAT CONFIG

MVS TCP/IP NETSTAT CS V1R4 TCPIP NAME: TCPCS 14:09:59
TCP Configuration Table:
DefaultRcvBufSize: 00016384 DefaultSndBufSize: 00016384
DefltMaxRcvBufSize: 00262144
MaxReTransmitTime: 120.000 MinReTransmitTime: 0.500
RoundTripGain: 0.125 VarianceGain: 0.250
VarianceMultiplier: 2.000 MaxSegLifeTime: 60.000
DefaultKeepALive: 00000120 LogProtoErr: 00
RestrictLowPort: Yes SendGarbage: No

150 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

TcpTimeStamp: Yes FinWait2Time: 600

UDP Configuration Table:
DefaultRcvBufSize: 00065535 DefaultSndBufSize: 00065535
CheckSum: 00000001 LogProtoErr: 01
RestrictLowPort: Yes NoUdpQueueLimit: Yes

IP Configuration Table:
Forwarding: Yes TimeToLive: 00064 RsmTimeOut: 00060
FireWall: No
ArpTimeout: 01200 MaxRsmSize: 65535 Format: Short
IgRedirect: Yes SysplxRout: Yes DoubleNop: No
StopClawEr: No SourceVipa: Yes VarSubnet: Yes
MultiPath: No PathMtuDsc: Yes DevRtryDur: 0000000090
DynamicXCF: Yes

IpAddr: 199.11.84.104 SubNet: 255.255.248.0 Metric: 00
IQDIORoute: No
TcpStackSrcVipa: No

SMF Parameters:
Type 118:

TcpInit: 01 TcpTerm: 02 FTPClient: 03
TN3270Client: 00 TcpIpStats: 05

Type 119:
TcpInit: No TcpTerm: No FTPClient: Yes
TcpIpStats: Yes IfStats: Yes PortStats: Yes
Stack: Yes UdpTerm: Yes TN3270Client: Yes

Global Configuration Information:
TcpIpStats: 01 ECSALimit: 0002047M PoolLimit: 2096128K

The output from the NETSTAT CONFIG command should show many of the
settings specified in PROFILE.TCPIP or implicitly taken from default values. Values
set by the PROFILE.TCPIP operating characteristics can be verified at this point.

Verifying interfaces with PING and TRACERTE
PING and TRACERTE can be used to verify adapters or interfaces attached to the
z/OS host. Again, oping and otracert can be used in the z/OS UNIX environments
with identical results. Since the example shipped with TCPIP has only the
LOOPBACK address, for this section a 3172 LCS has been defined.
NETSTAT DEVLINKS

MVS TCP/IP NETSTAT CS V1R4 TCPIP NAME: TCPCS 13:40:35
DevName: LOOPBACK DevType: LOOPBACK

DevStatus: Ready
LnkName: LOOPBACK LnkType: LOOPBACK LnkStatus: Ready

NetNum: 0 QueSize: 0
BytesIn: 2560 BytesOut: 2560
ActMtu: 65535

BSD Routing Parameters:
MTU Size: 00000 Metric: 00
DestAddr: 0.0.0.0 SubnetMask: 0.0.0.0

Multicast Specific:
Multicast Capability: No

DevName: LCS1 DevType: LCS DevNum: 0D00
DevStatus: Ready
LnkName: TR1 LnkType: TR LnkStatus: Ready

NetNum: 0 QueSize: 0
BytesIn: 1390158 BytesOut: 842254
MacAddrOrder: Non-Canonical SrBridgingCapability: Yes
IpBroadcastCapability: Yes ArpBroadcastType: All Rings
MacAddress: 0123456789AB
ActMtu: 1492

Chapter 3. Customization 151

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|
|
|
|
|
|
|
|

BSD Routing Parameters:
MTU Size: 02000 Metric: 100
DestAddr: 0.0.0.0 SubnetMask: 255.255.255.128

Packet Trace Setting:
Protocol: * TrRecCnt: 00000006 PckLength: FULL
SrcPort: * DestPort: *
IpAddr: * SubNet: *

Multicast Specific:
Multicast Capability: Yes
Group RefCnt
----- ------
224.0.0.1 0000000001

NETSTAT HOME

MVS TCP/IP NETSTAT CS V1R4 TCPIP NAME: TCPCS 14:15:47
Home address list:
Address Link Flg
9.67.113.27 TR1 P
127.0.0.1 LOOPBACK

ping 9.67.113.27
CS V1R4: Pinging host 9.67.113.27
Ping #1 response took 0.000 seconds.
READY
ping 127.0.0.1
CS V1R4: Pinging host 127.0.0.1
Ping #1 response took 0.000 seconds.
READY

tracerte 9.67.113.27
CS V1R4: Traceroute to 9.67.113.27 (9.67.113.27)
1 9.67.113.27 (9.67.113.27) 4 ms 6 ms 4 ms
READY
tracerte 127.0.0.1
CS V1R4: Traceroute to 127.0.0.1 (127.0.0.1)
1 LOOPBACK (127.0.0.1) 4 ms 4 ms 4 ms
READY

Given that your PROFILE.TCPIP file contains the interfaces of your installation and
that the TCPIP.DATA file contains the correct TCPIPJOBNAME, the TCPIP address
space is configured and you can go on to configuring routes, servers, and so on.

Verifying local name resolution with TESTSITE
Use the TESTSITE command to verify that the hlq.HOSTS.ADDRINFO and
hlq.HOSTS.SITEINFO data sets can correctly resolve the name of a host, gateway,
or net. For more information on the TESTSITE command, refer to z/OS
Communications Server: IP System Administrator’s Commands.

Verifying PROFILE.TCPIP and TCPIP.DATA using HOMETEST
Use the HOMETEST command to verify the HOSTNAME, DOMAINORIGIN,
SEARCH, and NSINTERADDR TCPIP.DATA statements. HOMETEST will use the
resolver to obtain the IP addresses assigned to the HOSTNAME and compare them
to the HOME list specified in PROFILE.TCPIP. A warning message will be issued if
any HOSTNAME IP addresses are missing from the HOME list.

Activate TRACE RESOLVER if you would like detailed information on how the
HOSTNAME is resolved to IP addresses. The information will also include what
TCPIP.DATA data set names were used. This can be done by issuing the following
TSO command before running HOMETEST. The detailed information will be
displayed on your TSO screen.
allocate dd(systcpt) da(*)

152 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

Issue the following TSO command after HOMETEST to turn off TRACE RESOLVER
output.
free dd(systcpt)

If you do not have TRACE RESOLVER turned on before running HOMETEST, the
following is displayed:
hometest

Running IBM MVS TCP/IP CS V1R4 TCP/IP Configuration Tester

FTP.DATA file not found. Using hardcoded default values.

TCP Host Name is: MVS026

Using Name Server to Resolve MVS026
The following IP addresses correspond to TCP Host Name: MVS026
9.67.113.58

The following IP addresses are the HOME IP addresses defined in PROFILE.TCPIP:
9.67.113.58
127.0.0.1

All IP addresses for MVS026 are in the HOME list!

Hometest was successful - all Tests Passed!

Verifying your X Windows System installation (Optional)

Note: You cannot verify your X Windows System until after routing and DNS setup.
Support is provided for two versions of the X Windows System and the
corresponding OSF/Motif. The current support, provided as part of the base IP
support in z/OS CS, is for X Windows System Version 11 Release 6 and OSF/Motif
Version 1.2. Support for X Windows System Version 11 Release 4 and OSF/Motif
Version 1.1 is available as feature HIP614X.

Verifying the X Windows X11R4 System installation
X Windows X11R4 System is installed with the other target libraries. The macro or
headers go into the target library data set hlq.SEZACMAC. To verify the installation
of the X Windows System:

1. Specify your workstation IP address by adding a record (such as the following)
to your XWINDOWS.DISPLAY data set.

royal.csc.ibm.com:0.0

In this example, royal.csc.ibm.com:0.0 is the name of the host running the X
Windows System server.

Note: No leading blanks are allowed in this record.

2. On the workstation running the X Windows System server, issue an XHOST
command specifying the name of your MVS system.

3. Run the program with the XSAMP1 command.

Verifying the X Windows X11R6 System installation
To verify the installation of the X Windows X11R6 System:

1. Ensure that a host (the workstation) with an X Windows System server that
supports X11R6 is properly configured and reachable by the MVS system. From
the workstation, use Telnet to access the MVS system, and open a z/OS UNIX
shell on the MVS system.

Chapter 3. Customization 153

|
|

|

|

|

2. From the z/OS UNIX shell, export the DISPLAY environment variable using
either the network name or the qualified IP address of the workstation as shown
in the following example:
export DISPLAY=royal.csc.ibm.com:0.0

In this example, royal.csc.ibm.com is the name of the workstation running the X
Windows System server. The display is indicated by :0.0, and is specified this
way in almost all cases.

3. Authorize the MVS system to access the workstation by executing the XHOST
command, and specify either the name of the MVS system or a plus sign (+) as
shown in the following example.
xhost +

Note: The + option turns off security for this workstation and allows any X client
to display here.

4. The sample X clients are shipped in the directory
/usr/lpp/tcpip/X11R6/Xamples/demos. Change into this directory. There are four
sample program directories, xsamp1, xsamp2, xsamp3, and pexsamp. Change
to the xsamp1 directory. Verify that there are files named Makefile and
xsamp1.c, and then execute the following command:
make

5. Execute the program using the following command:
xsamp1

6. The z/OS UNIX shell should block as another window is opened. Verify the
workstation is displaying a new window. The xsamp1 client displays a blank
window for 60 seconds and then exits, taking its window with it. The z/OS UNIX
shell should no longer be blocked.

154 z/OS V1R4.0 CS: IP Configuration Guide

|

|

Chapter 4. Routing

The objective of this chapter is to guide you through the steps required to configure
static or dynamic routing and explain how to verify the configuration. The contents
of this chapter are based on the assumption that you understand your entire
network configuration. It also assumes that you have read and completed all of the
verification tasks outlined in previous chapters in this document.

After reading this chapter, you should be able to do the following:

v Configure static or dynamic routing

v PING a remote host by IP address

v Use TRACERTE to determine the path that will be taken to reach a particular
destination

v Use NETSTAT to display your routing table

v Use DISPLAY commands to display dynamic routing information

Note: The definition or modification of an installation’s routing configuration should
not be performed without a complete understanding of the entire network
design.

Routing terminology
The following list describes some of the more common IP routing-related terms and
concepts. If you need more detailed information, refer to Routing in the Internet by
Christian Huitema.

General terms
Autonomous System (AS)

A group of routers exchanging routing information through a common
routing protocol. A single AS can represent a large number of IP networks.

Dynamic routes
IP layer routing table entries that are dynamically managed and can
automatically change in response to network topology changes. For IPv4,
these routes are managed by a routing daemon. For IPv6, these routes are
learned by listening to router advertisement messages received from
routers.

Exterior Gateway Protocol (EGP)
A routing protocol spoken by routers belonging to different Autonomous
Systems when those routers are configured to share routing information
between Autonomous Systems. This chapter does not discuss exterior
gateway routing.

Interior Gateway Protocol (IGP)
A routing protocol spoken by routers belonging to the same Autonomous
System. Each AS has a single IGP. A separate AS within a network can be
running a different IGP.

Replaceable static routes
IPv4 static routes that can be replaced by OMPROUTE, or IPv6 static
routes that can be replaced by routes learned by listening to router
advertisement messages received from routers.

© Copyright IBM Corp. 2000, 2002 155

|
|
|
|
|
|

|
|
|

Router
A device or host that interprets protocols at the IP layer and forwards
datagrams on a path towards their correct destination.

Routing
The process used in an IP network to deliver a datagram to the correct
destination.

Routing daemon
A server process that manages the IP route table.

Static routes
IP layer routing table entries that are manually configured and do not
change automatically in response to network topology changes, except
when the change is due to an ICMP redirect (if not disabled).

Interior Gateway Protocols (IGP)
An interior gateway protocol is a dynamic route update protocol used between
routers that run on TCP/IP hosts within a single autonomous system. The routers
use this protocol to exchange information about IP routes.

Some of the more common interior gateway protocols are:

Routing Information Protocol (RIP)
RIP uses a distance vector algorithm to calculate the best path to a
destination based on the number of hops in the path. RIP has several
limitations. Some of the limitations which exist in RIP Version 1 are resolved
by RIP Version 2.

RIP Version 2
RIP Version 2 extends RIP Version 1. Among the improvements are
support for multicasting and variable subnetting. Variable subnetting
allows the division of networks into variable size subnets. For
example, one route can represent addresses from 9.1.1.0 through
9.1.1.255 (the 9.1.1.0/255.255.255.0 subnet) while another can
represent addresses from 9.2.0.0 through 9.2.255.255 (the
9.2.0.0/255.255.0.0 subnet).

Open Shortest Path First (OSPF)
OSPF uses a link state or shortest path first algorithm. OSPF’s most
significant advantage compared to RIP is the reduced time needed to
converge after a network change. In general, OSPF is more complicated to
configure than RIP and might not be suitable for small networks.

Table 9. Interior Gateway Protocol characteristics

Feature RIP-1 RIP-2 OSPF

Algorithm Distance Vector Distance Vector Shortest Path First

Network Load (1) High High Low

CPU Processing
Requirement (1)

Low Low High

IP Network Design
Restrictions

Many Some Virtually none

Convergence Time Up to 180 seconds Up to 180 seconds Low

Multicast supported
(2)

No Yes Yes

156 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|

|
|

|
|
|

Table 9. Interior Gateway Protocol characteristics (continued)

Feature RIP-1 RIP-2 OSPF

Multiple equal-cost
routes

No (3) No(3) Yes

Notes:

1. Depends on network size and stability.

2. Multicast saves CPU cycles on hosts that are not interested in certain periodic updates,
such as OSPF link state advertisements or RIP-2 routing table updates. Multicast
frames are filtered out either in the device driver or directly on the interface card if this
host has not joined the specific multicast group.

3. RIP in OMPROUTE allows multiple equal-cost routes only for directly-connected
destinations over redundant interfaces. See “Using static routing with OMPROUTE” on
page 160.

Static versus dynamic routing
Whether static or dynamic routing is used, the IP layer routing mechanism is the
same. The IP layer routes a packet by searching its routing table for the most
specific route known. Route selection occurs in the following order:

1. If a route exists to the destination address (a host route), it is chosen.

2. At this point, the route chosen depends upon the version of IP being used:

v For IPv4:

a. If subnet, network, or supernetwork routes exist to the destination, the
route with the most specific network mask (the mask with the most bits
on) is chosen.

b. If the destination is a multicast destination and a multicast default route
exists, that route is chosen.

v For IPv6, if prefix routes exist to the destination, the route with the most
specific prefix is chosen.

3. Default routes are chosen when no other route exists to a destination.

Multiple equal-cost routes are allowed for both static and dynamic routing, as
depicted in Table 9 on page 156.

The sample network
Figure 33 on page 158 shows a network diagram that depicts a sample network.
This sample will be used in the following sections as the configuration of static and
dynamic routing is described. See “IPv4 static routing” on page 158, “IPv6 static
routing” on page 161, and “Dynamic routing using OMPROUTE” on page 166 for
more information.

Chapter 4. Routing 157

|

|
|

|
|

|

Note: In this sample network, TCPCS4 and TCPCS7 are both performing as OSPF
Area Border Routers between OSPF Areas 0.0.0.0 and 1.1.1.1. TCPCS7 is
also performing as an AS Boundary Router between the OSPF AS and the
RIP AS.

IPv4 static routing
Static routing requires that routes are configured manually for each router or
destination; this is a significant reason system administrators avoid this technique (if
given a choice). Static routing has the disadvantage that network reachability is not
dependent on the state of the network itself. If a destination is down or unreachable
via that statically configured route, the static routes remain in the routing table, and
traffic continues to be sent toward that destination without success.

To minimize network administrator tasks, configuration of static routes is to be
avoided, especially in a large network. However, certain circumstances make static
routing more appropriate. For example, static routes can be used:

v To define a default route or a route that is not being advertised within a network

10.1.1.0

30.1.1.0

20.1.1.0

9.67.106.4

9.67.105.49.67.101.4

9.67.108.2

255.255.255.0
9.67.104.15
9.67.104.16
9.67.104.25

255.255.255.0

255.255.255.0

9.67.107.5

10.1.1.2 20.1.1.5

9.67.108.4

9.67.100.7

9.67.103.7

9.67.107.7

9.67.100.8

130.200.1.8130.200.1.3

9.67.103.6

30.1.1.6

9.67.102.3

9.67.102.7

9.67.105.8

9.67.106.7

9.67.104.7

z/OS
HOST
4.4.4.4

TCPCS4

ROUTER
5.5.5.5

ROUTER
3.3.3.3

ROUTER
8.8.8.8

z/OS
HOST
7.7.7.7

TCPCS7

130.201

130.200

130.200
255.252.0.0

130.202

FEC0:0:0:A1C::/64

FE80::1:2:3:4 FE80::1:2:3:3

FE80::1:2:3:2FE80::1:2:3:1

FEC0:0:0:A1B::/64

130.203

Area 1.1.1.1
Area 0.0.0.0 OSPF AS

RIP AS

IPv6
Network

Area 0.0.0.0

z/OS
HOST
6.6.6.6

TCPCS6

ROUTER
2.2.2.2

Virtual Link

ROUTER ROUTER

9.67.101.3

Figure 33. Sample network

158 z/OS V1R4.0 CS: IP Configuration Guide

|
|

|

v To replace exterior gateway protocols when:

– Trying to avoid the cost of routing protocol traffic between ASs

– Trying to avoid complex routing policies

v In conjunction with a routing daemon to provide backup routes when the daemon
cannot find a dynamic route to the destination

If static routing is used, only the PROFILE.TCPIP data set has to be updated with
either the BEGINROUTES or GATEWAY statements. The BEGINROUTES
statement is recommended to define static routes due to its ease of use and
additional functionality. Additionally, if static routes are to be replaceable by
OMPROUTE, the BEGINROUTES configuration statement must be used.
GATEWAY does not support definition of replaceable static routes, and a static
route defined on a GATEWAY statement will not be replaceable by a routing
daemon.

The only ways to modify static routes are:

v Replace the routing table using the VARY TCPIP,,OBEYFILE command

v Use incoming ICMP Redirect packets

v Use ICMP Must Fragment packets

v If a static route is defined on a BEGINROUTES statement as being replaceable,
it can be replaced if a dynamic route is discovered by OMPROUTE. This is the
only way that a static route can be replaced by a dynamic route, and a static
route cannot be replaced by OROUTED.

For more information on the VARY TCPIP,,OBEYFILE command, the IPCONFIG
statement, and the IGNOREREDIRECTS and PATHMTUDISC parameters for the
IPCONFIG statement, see z/OS Communications Server: IP Configuration
Reference.

Note that the first BEGINROUTES or GATEWAY statement in PROFILE.TCPIP or
an OBEYFILE data set replaces all static routes in the TCP/IP stack routing table
(including those destination addresses specified in the BSDROUTINGPARMS
section of the PROFILE.TCPIP). Subsequent statements within the same data set
append to the routing table. Also, both BEGINROUTES and GATEWAY statements
cannot be used within the same data set.

Every interface must have an IP address to transmit or receive packets. Along with
the IP address, each interface must have a subnet mask associated with it for
routing purposes. The combination of the address and mask will yield the subnet
that the interface belongs to and also determines the broadcast address for the
interfaces. There are two ways to specify the subnet mask:

v Specify the netmask on the BSDROUTINGPARMS statement in PROFILE.TCPIP

v Allow z/OS CS to select the interface netmask using information in the routing
tables.

The BSDROUTINGPARMS statement is highly recommended to set the netmask
value for each physical interface. If either OROUTED or NCPROUTE is used, then
BSDROUTINGPARMS are required.

Replaceable static routes: Because replaceable static routes are intended to be
last-resort routes, TCP/IP attempts to use them only if no dynamic routes to the
destination are available.

If a non-replaceable static route fails validation, even if the reason for the failure is
transient like gateway unreachable, the definition for the non-replaceable static

Chapter 4. Routing 159

|
|

|

|

|

|
|

|

route is discarded. However, if a replaceable static route fails validation for a
transient reason, the definition of the route is retained and when there are no
dynamic routes to the destination, TCP/IP periodically retries, adding the
replaceable static route to the routing table. Because of these periodic retries
multiple EZZ4333I messages may be seen. Retries will be performed no more often
than every 30 seconds, and only as long as there are no active routes to the
destination in the routing table, and only if at least one new route has been added
to the routing table since the last retry. Retries are terminated as soon as a valid
route to the destination is installed into the routing table, whether it is dynamic,
static, or replaceable static.

Using static routing with OMPROUTE
It is recommended that non-replaceable static routes not be used with OMPROUTE
because this will prevent those routes from being dynamically updated in response
to network topology changes. An exception is when routes need to be defined to
destinations which, for some reason, will not be learned dynamically via the routing
protocol. If static routes are required, use the BEGINROUTES or GATEWAY
statement in PROFILE.TCPIP to define them.

TCP/IP will treat static routes defined as replaceable on BEGINROUTES as
last-resort routes. These routes can be replaced by dynamic routes. Additionally, if a
static route is replaced with a dynamic route, TCP/IP will always retain knowledge
of the static route and reinstall it if the destination becomes unreachable using
dynamic routes. It is not necessary for TCP/IP to relearn static routes that have
been replaced. For this reason, replaceable static routes can be used with
OMPROUTE as backup routes, that is, a route to use if nothing is found
dynamically.

Another situation where static routes might be required is when multiple, equal-cost
routes to a destination are needed and the RIP routing protocol is being used. This
is due to the fact that, with the exception of directly attached resources, the RIP
protocol will not create multiple, equal-cost routes to a destination. In other words, if
multiple adjacent routers are advertising via RIP that they can reach the same
destination, RIP will add a route to the TCP/IP route table via only one of those
adjacent routers. If it is required that more than one of these routes exist, they
would need to be statically configured using the BEGINROUTES or GATEWAY
statement in PROFILE.TCPIP. If OROUTED is used instead of OMPROUTE,
external entries in the gateways file will be needed. An example of this would be if
in Figure 33 on page 158, TCPCS4 used the RIP protocol to Router 3.3.3.3 and
Router 8.8.8.8 and if multiple routes were desired to 130.200.0.0 network.

If an installation has multiple interfaces to a directly attached network and it wants
to use one interface for input packets and one for output packets (traffic splitting),
the installation must use static routes. To do this, a static route could be defined for
one and only one interface, forcing all output packets to use that interface. The
other routers on the directly attached network would have to be defined with a
similar static route, but for the other interface. Although this is the easiest way to
implement traffic splitting, if one of the interfaces fails, a host might become
unreachable even though the other physical connection may still exist.

Note: A more robust way of accomplishing traffic splitting is to use dynamic routes
and make one route preferred over the other via the configured interface
costs. See “Step 5: Defining interface costs (OSPF and RIP)” on page 188
for more information.

160 z/OS V1R4.0 CS: IP Configuration Guide

The BSDROUTINGPARMS statement in PROFILE.TCPIP is not used when the
OMPROUTE routing daemon is used. Instead, the interface characteristics,
including subnet mask, are defined in the OMPROUTE configuration file.

Note: If you are using NCPROUTE with OMPROUTE, the BSDROUTINGPARMS
statement is required to route Transport PDUs prior to OMPROUTE
activation. Because the BSDROUTINGPARMS parameters are overridden by
the interface parameters defined in the OMPROUTE configuration, ensure
that the interface parameters for the SNALINK or IP/CDLC channel
connections are identical in the BSDROUTINGPARMS statement and the
OMPROUTE configuration file.

IPv6 static routing
Static routing requires that routes are configured manually for each router or
destination; this is a significant reason system administrators avoid this technique if
given a choice. Static routing has the disadvantage that network reachability is not
dependent on the state of the network itself. If a destination is down, or
unreachable through a statically configured route, the static routes remain in the
routing table and traffic continues to be sent toward that destination without
success.

To minimize network administrator tasks, configuration of static routes is to be
avoided, especially in a large network. However, certain circumstances make static
routing more appropriate. For example, static routes can be used:

v To define a route that will not be learned dynamically from router advertisements
received from routers

v In conjunction with dynamic routes to provide backup routes

If static routing is used, only the PROFILE.TCPIP data set has to be updated with
BEGINROUTES statements. The only ways to modify static routes are:

v Replace the routing table using the VARY TCPIP,,OBEYFILE command

v Use incoming ICMPv6 redirect packets

v If a static route is defined on a BEGINROUTES statement as being replaceable,
it can be replaced by a dynamic route

Notes:

1. The first BEGINROUTES statement in PROFILE.TCPIP or a VARY
TCPIP,,OBEYFILE command replaces all static routes in the TCP/IP stack
routing table. Subsequent statements within the same data set append to the
routing table.

2. If you use static routes and want to honor ICMPv6 redirect messages (that is,
you do not code IPCONFIG6 IGNOREREDIRECTS), then you must code the
first hop address using the link-local address of the router. This is required since
all redirect messages are sent using the router’s link-local address, and if the
source address of the redirect message does not match the address of the first
hop in the routing table, the redirect message will be ignored.

For more information on the VARY TCPIP,,OBEYFILE command, the IPCONFIG6
statement, and the IGNOREREDIRECTS parameter on the IPCONFIG6 statement,
see z/OS Communications Server: IP Configuration Reference.

Replaceable static routes: Since replaceable static routes are intended to be
last-resort routes, TCP/IP only attempts to use them if no dynamic routes to a
destination are available. If a non-replaceable static route fails validation, even if the

Chapter 4. Routing 161

|

|
|
|
|
|
|
|

|
|
|

|
|

|

|
|

|

|

|
|

|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

reason for the failure is transient (for example, gateway unreachable), the definition
for the non-replaceable static route is discarded. However, if a replaceable static
route fails validation for a transient reason, the definition of the route is retained.
When there are no dynamic routes to the destination, TCP/IP periodically retries to
add the replaceable static route to the routing table. Because of these periodic
retries, multiple EZZ4348I messages might be seen. Retries are performed at the
most every 30 seconds, as long as there are no active routes to the destination in
the routing table and at least one new route has been added to the routing table
since the last retry. Retries are terminated as soon as a valid route to the
destination is installed into the routing table, whether it is a dynamic, static, or
replaceable static route.

Using static routing with router advertisements
The use of non-replaceable static routes with IPv6 router discovery, when those
routes are to destinations that will be learned through received router
advertisements, is not recommended. Defining these non-replaceable static routes
prevents them from being dynamically updated in response to network topology
changes. Examples of routes that are not learned through router advertisements are
routes for which the destination address is a specific host address and non-default
indirect routes.

TCP/IP treats replaceable static routes as last-resort routes. These routes can be
replaced by dynamic (router discovery) routes. In addition, if a static route is
replaced with a dynamic route, TCP/IP always retains knowledge of the static route
and can reinstall it if the destination becomes unreachable using dynamic routes. It
is not necessary for TCP/IP to relearn static routes that have been replaced. For
this reason, replaceable static routes can be used with IPv6 router discovery as
backup routes, for use if nothing is learned dynamically.

Static routing configuration examples
The following sections illustrate static routing configuration examples.

z/OS TCPCS4
Static route statements for z/OS TCPCS4
BEGINRoutes ;first BEGINRoutes in the profile
;
Network/mask FirstHop LinkName PacketSize
Route 9.67.106.0/24 = CTC4TO7 MTU 1500 ;route1
Route 9.67.105.0/24 = CTC4TO8 MTU 1500 ;route2
Route 9.67.101.0/24 = CTC4TO3 MTU 1500 ;route3
Route 9.67.108.0/24 = CTC4TO2 MTU 1500 ;route4
Route 9.67.107.0/24 9.67.106.7 CTC4TO7 MTU 1500 ;route5
Route 7.7.7.7/32 9.67.106.7 CTC4TO7 MTU 1500 ;route6
Route 9.67.103.0/24 9.67.101.3 CTC4TO3 MTU 1500 ;route7
Route 9.67.103.0/24 9.67.106.7 CTC4TO7 MTU 1500 ;route8
Route 30.1.1.0/24 9.67.106.7 CTC4TO7 MTU 1500 ;route9
Route 10.1.1.0/24 9.67.108.2 CTC4TO2 MTU 1500 ;route10
Route 130.200.0.0/14 9.67.101.3 CTC4TO3 MTU 1500 ;route11
Route 130.200.0.0/14 9.67.105.8 CTC4TO8 MTU 1500 ;route12
Route 130.203.0.0/16 9.67.105.8 CTC4TO8 MTU 1500 ;route13
Route DEFAULT 9.67.106.7 CTC4TO7 MTU 1500 ;route14
;
Destination/PrefixLen FirstHop Interface PacketSize
Route FE80::1:2:3:3/128 = OSAQDIO46 MTU 5000 REPL ;route15
Route FE80::1:2:3:4/128 = OSAQDIO46 MTU 5000 REPL ;route16
Route FEC0:0:0:A1B::/64 FE80::1:2:3:3 OSAQDIO46 MTU 5000 REPL ;route17

162 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Route FEC0:0:0:A1C::/64 FE80::1:2:3:4 OSAQDIO46 MTU 5000 REPL ;route18
Route DEFAULT6 FE80::1:2:3:4 OSAQDIO46 MTU 5000 REPL ;route19
EndRoutes
;

Notes:

1. In the BEGINROUTES block, the netmask can be specified by a /xx. This
number, denoted by xx, represents the number of significant bits in the netmask.
For example:
/16 = 16 significant bits = 11111111 11111111 00000000 00000000 = 255.255.0.0

For IPv6, you must specify the prefix length of the route using the /xxx notation.

2. For direct routes, use an equals symbol (=) for the first hop.

BSDROUTINGPARMS statements for z/OS TCPCS4
BSDRoutingParms TRUE ; Shown only for completeness
; Linkname MTU Metric Subnet Mask Dest Address

CTC4TO8 1500 0 255.255.255.0 0
CTC4TO7 1500 0 255.255.255.0 0
CTC4TO3 1500 0 255.255.255.0 0
CTC4TO2 1500 0 255.255.255.0 0
VIPA1A 1500 0 255.255.255.252 0
EndBSDRoutingParms

;

z/OS TCPCS7
Static route statements for z/OS TCPCS7
BEGINRoutes
;
Network/mask FirstHop LinkName PacketSize
Route 9.67.106.0/24 = CTC7TO4 MTU 1500 ;route1
Route 9.67.100.0/24 = CTC7TO8 MTU 1500 ;route2
Route 9.67.102.0/24 = CTC7TO3 MTU 1500 ;route3
Route 9.67.103.0/24 = CTC7TO6 MTU 1500 ;route4
Route 9.67.107.0/24 = CTC7TO5 MTU 1500 ;route5
Route 4.4.4.4/32 9.67.106.4 CTC7TO4 MTU 1500 ;route6
Route 10.1.1.0/24 9.67.106.4 CTC7TO4 MTU 1500 ;route7
Route 20.1.1.0/24 9.67.107.5 CTC7TO5 MTU 1500 ;route8
Route 30.1.1.0/24 9.67.103.6 CTC7TO6 MTU 1500 ;route9
Route 130.200.0.0/14 9.67.100.8 CTC7TO8 MTU 1500 ;route10
Route 130.200.0.0/14 9.67.102.8 CTC7TO3 MTU 1500 ;route11
Route 130.203.0.0/16 9.67.102.3 CTC7TO3 MTU 1500 ;route12
Route DEFAULT 9.67.107.5 CTC7TO5 MTU 1500 ;route13
;
Destination/PrefixLen FirstHop Interface PacketSize
Route FE80::1:2:3:3/128 = OSAQDIO76 MTU 5000 REPL ;route14
Route FE80::1:2:3:4/128 = OSAQDIO76 MTU 5000 REPL ;route15
Route FEC0:0:0:A1B::/64 FE80::1:2:3:3 OSAQDIO76 MTU 5000 REPL ;route16
Route FEC0:0:0:A1C::/64 FE80::1:2:3:4 OSAQDIO76 MTU 5000 REPL ;route17
Route DEFAULT6 FE80::1:2:3:4 OSAQDIO76 MTU 5000 REPL ;route18
EndRoutes

BSDROUTINGPARMS statements for z/OS TCPCS7
BSDRoutingParms TRUE
; Linkname MTU Metric Subnet Mask Dest Address

CTC7TO8 1500 0 255.255.255.0 0
CTC7TO3 1500 0 255.255.255.0 0
CTC7TO6 1500 0 255.255.255.0 0
CTC7TO4 1500 0 255.255.255.0 0

Chapter 4. Routing 163

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

CTC7TO5 1500 0 255.255.255.0 0
VIPA1A 1500 0 255.255.255.252 0
EndBSDRoutingParms

;

The sample configuration has an IPv4 supernet route for 130.200.0.0. An IPv4
supernet route means that the netmask for the route is smaller than the class
netmask. In this case, 130.200.0.0 is a class B address. The default netmask for
class B is 255.255.0.0. The netmask used for this sample is 255.252.0.0, which is
less than 255.255.0.0, hence making this a supernet route. In routing, the stack
determines a route that has the most bits in common. Therefore, the stack chooses
a route in the following order:

1. If a route exists to the destination address (a host route), it is chosen.

2. At this point, the route chosen depends upon the version of IP being used:

v For IPv4:

a. If subnet, network, or supernetwork routes exist to the destination, the
route with the most specific network mask (the mask with the most bits
on) is chosen.

b. If the destination is a multicast destination and a multicast default route
exists, that route is chosen.

v For IPv6, if prefix routes exist to the destination, the route with the most
specific prefix is chosen.

3. Default routes are chosen when no other route exists to a destination.

For example, for TCPCS4 (and when trying to reach 130.200.0.0), route12 in the
list is used, which is the supernet route 130.200.0.0 with mask 255.252.0.0. If
applying the mask of that route, 255.252.0.0, to the destination IP address,
130.200.0.0, the result is 130.200.0.0, which is the IP address of this route. Now,
when trying to reach destination 130.203.5.2, the stack would use route13 in the
list, which is a network route for 130.203.00 with mask 255.255.0.0. If applying the
mask of that route, 255.255.0.0, to the destination IP address, 130.203.5.2, the
result is 130.203.00, which is the IP address of this route.

For TCPCS4, route7 and route8 are examples of equal cost multipath routes to get
to 9.67.103.0 subnet. This means that TCPCS4 has two different routes to get to
this destination. If IPCONFIG MULTIPATH is not enabled, then only route7 will be
used as long as it is active. This is because the stack chooses the first route and
ignores route8. If route7 becomes inactive, then the stack will switch and use
route8. If MULTIPATH is enabled, then the stack will use both routes according to
the MULTIPATH specification.

In the preceding example, all of the IPv4 links have a subnet mask of
255.255.255.0 because this is what is specified for the links in the
BSDROUTINGPARMS. Therefore, to determine the broadcast addresses for link
CTC4TO3, AND the IP Address, 9.67.101.4, and the subnet mask, 255.255.255.0,
to yield the subnet for this link, 9.67.101.0. Then, OR the subnet, 9.67.101.0, with
the complement of the subnet mask, 0.0.0.255. This determines that the broadcast
address for this link is 9.67.101.255.

For TCPCS4, route15 and route16 would be selected to reach host FE80::1:2:3:3
and host FE80::1:2:3:4 respectively. Route17 and route18 would be selected to
reach any IPv6 address that had the first 64 bits of FEC0:0:0:A1B and
FEC0:0:0:A1C respectively. Route19 would be selected for any other IPv6
destination.

164 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|

|

|

|

|

|

|
|
|

|
|

|
|

|

|

|
|
|
|
|

Notes:

1. All IPv4 IP addresses must follow Classless Inter-Domain Routing (CIDR)
convention that requires the actual mask to be one or more on-bits followed by
zero or more off-bits. On-bits cannot be followed by off-bits followed by on-bits.
Therefore, a mask of 255.255.254.0 is valid (an actual mask of FFFFE00), but a
mask of 255.255.253.0 is not valid (an actual mask of FFFFD00) because 253
is 11111101.

2. VIPA links or VIPA interfaces are not allowed on BEGINROUTES statements.

3. You must have a Direct route to a specific IP Address before using that IP
Address as the first-hop for indirect routes. A direct route is a route to a
destination that is directly connected to the stack by an interface. An indirect
route is a route to a destination that is not directly connected, and therefore a
router is used to reach that destination. In the preceeding example, for
TCPCS4, the subnet route for 9.67.101.0 is directly connected to TCPCS4 by
link CTC4T03, and the host route for FE80::1:2:3:3 is directly connected to
TCPCS4 by interface OSAQDIO46. However, the subnet route for 9.67.103.0 is
indirectly connected and the router used to reach that destination is 9.67.106.7
and/or 9.67.101.3, depending on the MULTIPATH definition.

4. DEFAULT and DEFAULT6 routes are always indirect routes and therefore must
always have a first hop address specified.

IPv4 dynamic routing
This section describes the following for IPv4:

v Routing daemons

v Migration from OROUTED to OMPROUTE

v Dynamic routing using OMPROUTE

v Configuring OSPF and RIP

Routing daemons
Daemon is a UNIX term for a background server process. Daemons are used for
dynamic routing. For z/OS CS IP, there are two routing daemons:

OROUTED
OROUTED is an IP routing daemon that implements RIP Version 1 and RIP
Version 2. It creates and maintains network routing tables. OROUTED
determines if a new route has been established or whether a route is
temporarily unavailable. For more information, see Appendix E, “Configuring
the OROUTED server” on page 769

OMPROUTE
OMPROUTE is an IP routing daemon that supports RIP Version 1, RIP
Version 2, and OSPF protocols. You can send RIP Version 1 or RIP Version
2, but not both at the same time on a single interface. However, you can
configure a RIP interface to receive both versions. OMPROUTE is the
recommended routing daemon application for z/OS CS IP.

Note: OROUTED and OMPROUTE will not run concurrently on the same
TCP/IP stack.

Migration from OROUTED to OMPROUTE
An OROUTED start parameter is available to assist with migration from OROUTED
to OMPROUTE. This function is invoked by specifying ’-c’ on the OROUTED startup
parameters or via the modify command:

Chapter 4. Routing 165

|

|
|

|

|
|
|

|
|

|

|

|

|

|

f orouted,parms=’-c’

The ’-c’ parameter uses OROUTED configuration files and OROUTED’s current
environment (including start parameters and MTU information) to create a file which
can be used to create a sample OMPROUTE configuration file. The generated
sample contains example configuration statements and lists recommended changes
to PROFILE.TCPIP. Refer to the z/OS Communications Server: IP Configuration
Reference for more details about this start parameter. The file,
CNVROUTED.PROFILE (default name) or the name specified by the customer, will
be put in the /tmp directory for HFS (an MVS data set is not an option). See the
z/OS Communications Server: IP Configuration Reference for a comparison of
OROUTED configuration statements to OMPROUTE configuration statements.

Refer to the z/OS Communications Server: IP Migration for more information on
migrating from OROUTED to OMPROUTE.

Dynamic routing using OMPROUTE
OMPROUTE implements the OSPF protocol described in RFC 1583 (OSPF Version
2), the OSPF subagent protocol described in RFC 1850, and the RIP protocols
described in RFC 1058 (RIP Version 1) and in RFC 1723 (RIP Version 2). It
provides an alternative to the static TCP/IP gateway definitions. The MVS host
running with OMPROUTE becomes an active OSPF or RIP router in a TCP/IP
network. Either or both of these routing protocols can be used to dynamically
maintain the host routing table. For example, OMPROUTE can detect when a route
is created, is temporarily unavailable, or if a more efficient route exists. If both
OSPF and RIP protocols are used simultaneously, OSPF routes will be preferred
over RIP routes to the same destination.

Supported protocols

Open Shortest Path First (OSPF): OSPF is classified as an Interior Gateway
Protocol (IGP). This means that it distributes routing information between routers
belonging to a single Autonomous System (AS), a group of routers all using a
common routing protocol. The OSPF protocol is based on link-state or shortest path
first (SPF) technology. It has been designed expressly for the TCP/IP Internet
environment, including explicit support for IP subnetting and the tagging of
externally-derived routing information.

OSPF performs the following tasks:

Multiple routes
Provides support for multiple equal-cost routes.

Authentication
Provides for the authentication of routing updates.

IP multicast
Uses IP multicast when sending or receiving the updates.

Area routing capability
Area routing capability enables an additional level of routing protection and
a reduction in routing protocol traffic.

Allows network grouping
Allows sets of networks to be grouped together. Such a grouping is called
an area. The topology of an area is hidden from the rest of the Autonomous
System. This method of hiding information enables a significant reduction in
routing traffic. Also, routing within the area is determined only by the area’s

166 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|

|

own topology, lending the area protection from bad routing data. An area is
a generalization of an IP subnetted network.

IP subnet configuration
Enables the flexible configuration of IP subnets. Each route distributed by
OSPF has a destination and mask. Two different subnets of the same IP
network number may have different sizes (that is, different masks). This is
commonly referred to as variable length subnetting. A packet is routed to
the best (longest or most specific) match. Host routes are considered to be
subnets whose masks are all ones (0xFFFFFFFF).

Authenticate OSPF protocol exchanges
Can be configured such that all OSPF protocol exchanges are
authenticated. This means that only trusted routers can participate in the
Autonomous System’s routing. A single authentication scheme is configured
for each area. This enables some areas to use authentication while others
do not.

OSPF is a dynamic routing protocol. It quickly detects topological changes in the AS
(such as router interface failures) and calculates new loop-free routes after a period
of convergence. This period of convergence is short and involves a minimum of
routing traffic as compared to RIP protocol.

In a link-state routing protocol, each router maintains a database describing the
Autonomous System’s topology. Each participating router has an identical database.
Each individual piece of this database is a particular router’s local state (for
example, the router’s usable interfaces and reachable neighbors). The router
distributes its local state throughout the Autonomous System by flooding.

To generate routes, all routers run the exact same algorithm, in parallel. From the
topological database, each router constructs a tree of shortest paths with itself as
root. This shortest-path tree gives the route to each destination in the Autonomous
System. Externally derived routing information appears on the tree as leaves. When
several equal-cost routes to a destination exist, the routes (up to four) are added to
the TCP/IP stack’s route table. The TCP/IP stack uses these equal-cost routes
according to the IPCONFIG MULTIPATH statement.

Externally derived routing data (for example, routes learned from the RIP protocol)
is passed transparently throughout the Autonomous System. This externally derived
data is kept separate from the OSPF protocol’s link state data. Each external route
can also be tagged by the advertising router, enabling the passing of additional
information between routers on the boundaries of the Autonomous System. For
information on configuring OSPF, see “Configuring OSPF and RIP” on page 179.

RIP protocol: RIP is an Interior Gateway Protocol (IGP) designed to manage a
relatively small network. RIP is based on the Bellman-Ford or the distance-vector
algorithm. RIP has many limitations and is not suited for every TCP/IP environment.
Before using the RIP function in OMPROUTE, read RFCs 1058 and 1723 to decide
if RIP can be used to manage the routing tables of your network. Refer to z/OS
Communications Server: IP Configuration Reference for more information about
RFCs 1058 and 1723.

RIP uses the number of hops, or hop count, to determine the best possible route to
a host or network. The term hop count is also referred to as the metric. In RIP, a
hop count of 16 means infinity, or that the destination cannot be reached. This limits
the longest path in the network that can be managed by RIP to 15 gateways.

Chapter 4. Routing 167

|

|

A RIP router broadcasts routing information to its directly connected networks every
30 seconds. It receives updates from neighboring RIP routers every 30 seconds
and uses the information contained in these updates to maintain the routing table. If
an update has not been received from a neighboring RIP router in 180 seconds, a
RIP router assumes that the neighboring RIP router is down and sets all routes
through that router to a metric of 16 (infinity). If an update has still not been
received from the neighboring RIP router after another 120 seconds, the RIP router
deletes from the routing table all of the routes through that neighboring RIP router.

RIP Version 2 is an extension of RIP Version 1 and provides the following features:

Route Tags to provide EGP-RIP and BGP-RIP interactions
The route tags are used to separate internal RIP routes (routes for networks
within the RIP routing domain) from external RIP routes, which may have
been imported from an EGP (external gateway protocol) or another IGP.
OMPROUTE does not generate route tags, but preserves them in received
routes and readvertises them when necessary.

Variable subnetting support
Variable length subnet masks are included in routing information so that
dynamically added routes to destinations outside subnetworks or networks
can be reached.

Immediate next hop for shorter paths
Next hop IP addresses, whenever applicable, are included in the routing
information to eliminate packets being routed through extra hops in the
network. OMPROUTE will not generate immediate next hops, but will
preserve them if they are included in the RIP packets.

Multicasting to reduce load on hosts
IP multicast address 224.0.0.9, reserved for RIP Version 2 packets, is used
to reduce unnecessary load on hosts which are not listening for RIP Version
2 messages. This support is dependent on interfaces that are
multicast-capable.

Authentication for routing update security
Authentication keys can be configured for inclusion in outgoing RIP Version
2 packets. Incoming RIP Version 2 packets are checked against the
configured keys.

Configuration switches for RIP Version 1 and RIP Version 2 packets
Configuration parameters allow for controlling which version of RIP packets
are to be sent or received over each interface.

Supernetting support
The supernetting feature is part of Classless InterDomain Routing (CIDR).
Supernetting provides a way to combine multiple network routes into fewer
supernet routes, thus reducing the number of routes in the routing table and
in advertisements.

For configuration information for RIP, see “Configuring OSPF and RIP” on page 179.

OMPROUTE configuration

Run-time environment: OMPROUTE is a z/OS UNIX application, and it requires
the Hierarchical File System (HFS) to operate. It can be started from an MVS
started procedure, from the z/OS shell, or from AUTOLOG (see “Autolog
considerations for OMPROUTE” on page 172 for restrictions on using AUTOLOG to
start OMPROUTE). OMPROUTE must be started by an RACF-authorized user ID,
and it must reside in an APF authorized library.

168 z/OS V1R4.0 CS: IP Configuration Guide

OMPROUTE uses the MVS operator’s console, SYSLOGD, CTRACE, and
STDOUT for its logging and tracing. The MVS operator’s console and SYSLOGD
are used for major events such as initialization, termination, and error conditions.
CTRACE is used for tracing the receipt and transmission of OSPF/RIP packets as
well as communications between OMPROUTE and the TCP/IP stack. STDOUT is
used for detailed tracing and debugging.

OMPROUTE uses a standard message catalog. The message catalog must be in
the HFS. The directory location for the message catalog path is set by the
environment variables NLSPATH and LANG.

Configuration of OMPROUTE is via an OMPROUTE configuration file. For details
on the statements in the OMPROUTE configuration file, refer to z/OS
Communications Server: IP Configuration Reference.

Display of OMPROUTE information is performed using the DISPLAY command.
Modification of OMPROUTE information is performed using the MODIFY command.
For details on OMPROUTE’s DISPLAY and MODIFY commands, refer to the z/OS
Communications Server: IP System Administrator’s Commands.

Multiple TCP/IP stacks: A one-to-one relationship exists between an instance of
OMPROUTE and a stack. OSPF/RIP support on multiple stacks requires multiple
instances of OMPROUTE. OMPROUTE and OROUTED cannot run on the same
stack concurrently.

TCP/IP stack routing table management: OMPROUTE’s job is limited to the
management of the TCP/IP stack routing table. OMPROUTE is not involved in the
actual routing decisions made by the TCP/IP stack when routing a packet to its
destination.

All dynamic routes are deleted from the stack’s routing table upon initialization of
OMPROUTE. OMPROUTE then repopulates the stack routing table using
information learned via the routing protocols.

ICMP Redirects are ignored when OMPROUTE is active.

Unlike OROUTED, OMPROUTE does not make use of the BSDROUTINGPARMS
statement. Instead, the Maximum Transmission Unit (MTU), subnet mask, and
destination address parameters are configured via the OSPF_INTERFACE,
RIP_INTERFACE, and INTERFACE statements in the OMPROUTE configuration
file.

Using RIP and OSPF with OMPROUTE: When OMPROUTE is initialized, it uses
the OMPROUTE configuration file to determine which routing protocols will be
enabled. If at least one OSPF interface is configured, the OSPF protocol is enabled.
If at least one RIP interface is configured, RIP is enabled. If OMPROUTE is started
with no interfaces defined for a particular protocol, that protocol is disabled until one
of the following occurs:

v OMPROUTE is stopped and restarted with a configuration file containing at least
one interface of the specific type.

v OMPROUTE is dynamically reconfigured via the MODIFY command with a
configuration file containing at least one interface of the specific type.

When OMPROUTE is configured for both the OSPF and RIP protocols, routes that
are learned through the OSPF protocol take precedence over routes learned
through the RIP protocol.

Chapter 4. Routing 169

The OSPF and RIP protocols are communicated over interfaces that are defined
with the OSPF_INTERFACE and RIP_INTERFACE configuration statements,
respectively. An interface involved in the communication of neither the RIP nor the
OSPF protocol should be configured to OMPROUTE via the INTERFACE
configuration statement. For non-point-to-point interfaces, an INTERFACE statement
is required only to change the default values used by OMPROUTE (for example, to
change the default MTU.) OMPROUTE supports a total of 254 interfaces (physical
and VIPA). Refer to “VIPA interfaces (Static VIPA and Dynamic VIPA)” on page 185
for special VIPA considerations.

OMPROUTE allows for the generation of multiple, equal-cost routes to a
destination. For OSPF and RIP, up to four multiple equal-cost routes are allowed.
For RIP, multiple equal-cost routes are supported only to directly connected
destinations over redundant interfaces.

Special considerations:

Token-ring multicast: If OMPROUTE will be communicating through the OSPF or
RIP Version 2 protocol over a token ring media, and there will be routers attached
to that token ring that are not listening (at the DLC layer) for the token ring multicast
MAC address 0xC000.0004.0000, the following TRANSLATE statement is required
in the PROFILE.TCPIP:
TRANSLATE 224.0.0.0 IBMTR FFFFFFFFFFFF linkname

Without this statement, OSPF and RIP Version 2 multicast packets are discarded at
the DLC layer by those routers that are not listening for the token ring multicast
MAC address.

Virtual IP Addresses (VIPA): OMPROUTE is enhanced with Virtual IP Addressing
(VIPA) to handle network interface failures by switching to alternate paths. The VIPA
routes are included in the OSPF and RIP advertisements to adjacent routers.
Adjacent routers learn about VIPA routes from the advertisements and can use
them to reach the destinations at the MVS host.

Service policy: If service policy is going to be used to restrict access to neighbors
on point-to-multipoint interfaces (for example MPCPTP interfaces including XCF and
IUTSAMEH connections) for temporary intervals, those neighbors must be explicitly
defined on the OSPF_INTERFACE or RIP_INTERFACE statement. Otherwise,
OMPROUTE might not be able to communicate with those neighbors when the
access restriction expires.

Multiple equal-cost routes: When IPCONFIG MULTIPATH is specified in
PROFILE.TCPIP and multiple routes exist in the TCP/IP route table for a
destination, outbound traffic for that destination will be spread across all of the
routes. This traffic spreading will be done on either a packet-basis or
connection-basis depending on the parameter specified on IPCONFIG MULTIPATH.
When OMPROUTE is being used to provide dynamic routing for a TCP/IP stack,
multiple routes to the same destination can be dynamically added to the TCP/IP
stack’s route table, based upon the routing information learned from other routers.
These multiple routes will be added when the route calculation for each has
resulted in the same route cost value. No more than four equal-cost routes will be
added for each destination. For RIP, multiple equal-cost routes will be added only to
directly-connected destinations over redundant interfaces. The RIP protocol will
generate no more than one indirect route to a destination.

170 z/OS V1R4.0 CS: IP Configuration Guide

|
|

Table 10. Multipath route limitations

Multipath route type BEGINROUTES
(Static)

OMPROUTE (OSPF) OMPROUTE (RIP)

Direct Host Yes (no limit) Yes (up to 4) No

Indirect Host Yes (no limit) Yes (up to 4) No

Direct Network Yes (no limit) No Yes (up to 4 for
redundant interfaces)

Indirect Network Yes (no limit) Yes (up to 4) No

Default (Indirect) Yes (no limit) Yes (up to 4) No

Note: Because of the design limitation for multi-access parallel interfaces support,
OMPROUTE(OSPF) cannot provide multiple equal-cost network routes that
are directly attached to parallel interfaces. However, circumvention would be
to define these direct network routes statically in the TCPIP profile using a
GATEWAY or BEGINROUTES statement. OMPROUTE will recognize these
routes as static equal-cost multipath routes. Also, if more than four
equal-cost multipath routes are desired for OSPF or if multiple equal-cost
indirect routes are desired for RIP, use the GATEWAY or BEGINROUTES
statement.

Configuring OMPROUTE
The steps to configure OMPROUTE are:

1. Create the OMPROUTE configuration file.

2. Reserve the RIP UDP port (if using the RIP protocol).

3. Update the resolver configuration file.

4. Update the OMPROUTE cataloged procedure.

5. Specify the RIP UDP port number in the SERVICES file or data set (if using
the RIP protocol).

6. RACF authorize user IDs for starting OMPROUTE.

7. Start syslogd.

8. Update the OMPROUTE environment variables (optional).

9. Create static routes (optional).

10. Configure OSPF Authentication

These steps are described in the following sections.

Step 1: Create the OMPROUTE configuration file: The OMPROUTE
configuration file provides information about the host’s routing capabilities and
TCP/IP interfaces. See “Configuring OSPF and RIP” on page 179 for more detail
about the contents of this file. The following is the search order used by
OMPROUTE to locate the configuration data set or file:

1. If the environment variable, OMPROUTE_FILE, has been defined, OMPROUTE
uses the value as the name of an MVS data set or HFS file to access the
configuration data. The syntax for an MVS data set name is
//mvs.dataset.name. The syntax for an HFS file name is
/dir/subdir/file.name.

2. /etc/omproute.conf

3. hlq.ETC.OMPROUTE.CONF

Chapter 4. Routing 171

|

A sample configuration file is provided in SEZAINST(EZAORCFG). The
configuration file for TCPCS4, TCPCS6, and TCPCS7 in the sample network are
shown in “Sample OMPROUTE configuration files” on page 202. For a description
of the syntax rules for the OMPROUTE configuration file, as well as details on each
of the configuration statements, refer to the z/OS Communications Server: IP
Configuration Reference.

Step 2: Reserve the RIP UDP port (If using the RIP protocol): If the RIP
protocol of OMPROUTE is going to be used, UDP port 520 should be reserved for
OMPROUTE. This is done by adding the name of the member containing the
OMPROUTE cataloged procedure to the PORT statement in PROFILE.TCPIP:
PORT

520 UDP OMPROUTE

If you want to be able to start OMPROUTE from the z/OS shell, use the special
name OMVS as follows:
PORT

520 UDP OMVS

Autolog considerations for OMPROUTE: As discussed in z/OS Communications
Server: IP Configuration Reference, if a procedure in the AUTOLOG list also has a
PORT statement reserving a TCP or UDP port but does not have a listening
connection on that port, TCP/IP periodically attempts to cancel that procedure and
start it again.

Therefore, if OMPROUTE is being started with AUTOLOG and only the OSPF
protocol is being used (no RIP protocol and, therefore, no listening connection on
the RIP UDP port), it is important to do one of the following:

v Ensure that the RIP UDP port (520) is not reserved by the PORT statement in
the PROFILE.TCPIP.

v Add the NOAUTOLOG parameter to the PORT statement in the PROFILE.TCPIP.
For example,
PORT
520 UDP OMPROUTE NOAUTOLOG

Note: When using only the OSPF protocol, the auto-start feature of AUTOLOG can
be used as described above. However, the monitoring and auto-restart
features of AUTOLOG are unavailable due to AUTOLOG’s dependence on a
listening TCP or UDP connection, which does not exist with OSPF.

If you fail to take one of the above actions, OMPROUTE will be periodically
canceled and restarted by TCP/IP.

Step 3: Update the resolver configuration file: The resolver configuration file
contains keywords (DATASETPREFIX and TCPIPjobname) used by OMPROUTE.
The value assigned to DATASETPREFIX will determine the high-level qualifier (hlq).
The hlq is used in the search order for the OMPROUTE configuration file. If no
DATASETPREFIX keyword is found, a default of TCPIP is used. The value
assigned to TCPIPjobname will be used as the name of the TCP/IP stack with
which OMPROUTE establishes a connection.

For a description of the search order used by the resolver to locate the resolver
configuration file, see “Resolver configuration files” on page 27.

Step 4: Update the OMPROUTE cataloged procedure: If OMPROUTE is to be
started by a procedure, create the cataloged procedure by copying the sample in

172 z/OS V1R4.0 CS: IP Configuration Guide

|

SEZAINST(OMPROUTE) to your system or recognized PROCLIB. Specify
OMPROUTE parameters and change the data set names to suit your local
configuration.
//*
//* TCP/IP for MVS
//* SMP/E Distribution Name: EZBORPRC
//*
//* 5647-A01 (C) Copyright IBM Corp. 1998.
//* Licensed Materials - Property of IBM
//* This product contains "Restricted Materials of IBM"
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions.
//*
//OMPROUTE PROC
//OMPROUTE EXEC PGM=OMPROUTE,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON)’,
// ’ENVAR("_CEE_ENVFILE=DD:STDENV")/’)
//*
//* Example of start parameters to OMPROUTE:
//*
//* PARM=(’POSIX(ON)’,
//* ’ENVAR("_CEE_ENVFILE=DD:STDENV")/-t1’)
//*
//* Provide environment variables to run with the
//* desired stack and configuration. As an example,
//* the file specified by STDENV could have these
//* four lines in it:
//*
//* RESOLVER_CONFIG=//’SYS1.TCPPARMS(TCPDATA2)’
//* OMPROUTE_FILE=/u/usernnn/config.tcpcs2
//* OMPROUTE_DEBUG_FILE=/tmp/logs/omproute.debug
//* OMPROUTE_DEBUG_CONTROL=1000,5
//*
//* For information on the above environment variables,
//* refer to the IP CONFIGURATION GUIDE.
//*
//STDENV DD PATH=’/u/usernnn/envcs2’,
// PATHOPTS=(ORDONLY)
//*
//* The stdout stream may be redirected to a HFS file as
//* shown below.
//* The PATHOPTS OTRUNC option will clear the stdout file
//* every time OMPROUTE is started. If you want to retain
//* previous stdout information, change it to OAPPEND.
//*
//SYSPRINT DD SYSOUT=*
//*SYSPRINT DD PATH=’/tmp/omproute.stdout’,
//* PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
//* PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//*
//* The stderr stream may be redirected to a HFS file as
//* shown below.
//* The PATHOPTS OTRUNC option will clear the stderr file
//* every time OMPROUTE is started. If you want to retain
//* previous stderr information, change it to OAPPEND.
//*
//SYSOUT DD SYSOUT=*
//*SYSOUT DD PATH=’/tmp/omproute.stderr’,
//* PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
//* PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//*
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

Chapter 4. Routing 173

Step 5: Specify the RIP UDP port number in the SERVICES file or data set (If
using the RIP protocol): The services file contains the relationship between
services and port numbers as described in z/OS Communications Server: IP
Configuration Reference. The portion of the services file relevant to OMPROUTE is:

route 520/udp router routed

The file must exist for the RIP protocol of OMPROUTE to operate.

For a description of the search order used to locate the services file, see
“Configuration files for TCP/IP applications” on page 26.

Step 6: RACF authorize user IDs for starting OMPROUTE: To reduce risk of an
unauthorized user starting OMPROUTE and affecting the contents of the routing
table, users who start OMPROUTE must be RACF-authorized to the entity
MVS.ROUTEMGR.OMPROUTE and require a UID of zero. To RACF-authorize, the
following commands must be entered from a RACF user ID, substituting the
authorized user ID on the ID (userid) parameter. The commands in the following
example are taken from SEZAINST(EZARACF).

RDEFINE OPERCMDS (MVS.ROUTEMGR.OMPROUTE) UACC(NONE)
PERMIT MVS.ROUTEMGR.OMPROUTE ACCESS(CONTROL) CLASS(OPERCMDS) ID(userid)
SETROPTS RACLIST(OPERCMDS) REFRESH

Note: OMPROUTE requires UID=0 for correct installation, configuration, and
operation.

Step 7: Start syslogd: To write only the urgent OMPROUTE messages to the
z/OS console, syslogd should be running while OMPROUTE is running. Syslogd
sends the non-urgent messages to the HFS message log.

Step 8: Update the OMPROUTE environment variables (Optional): The
following environment variables are used by OMPROUTE and can be tailored to a
particular installation:

RESOLVER_CONFIG
The RESOLVER_CONFIG variable is used by OMPROUTE to locate the
resolver configuration file. For more information on OMPROUTE’s use of
the resolver configuration file, see “Step 3: Update the resolver
configuration file” on page 172. For more information about the
RESOLVER_CONFIG environment variable, refer to z/OS UNIX System
Services Planning.

OMPROUTE_FILE
The OMPROUTE_FILE variable is used by OMPROUTE in the search
order for the OMPROUTE configuration file. For details on the search order
used for locating this configuration file, see “Step 1: Create the
OMPROUTE configuration file” on page 171.

OMPROUTE_OPTIONS
The OMPROUTE_OPTIONS variable is used by OMPROUTE to set various
controls for OMPROUTE processing. Currently only the hello_hi option is
supported. The syntax of this new variable is:
OMPROUTE_OPTIONS=hello_hi

Specifying OMPROUTE_OPTIONS=hello_hi changes the way OMPROUTE
processes the OSPF Hello packets. These packets are then given a higher
priority than other updates and processed by the first available OMPROUTE
task ahead of other received packets. Prior to specifying this parameter,

174 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|
|

|

|
|
|
|

customers must be cognizant of the impact to their network of processing
hello packets out of the received order sequence.

Note: Specifying OMPROUTE_OPTIONS=hello_hi only helps to keep
adjacencies up when OMPROUTE is running and getting flooded
with protocol packets. It does not provide any help for the case when
adjacencies are not staying up because OMPROUTE is not getting
enough cycles (that is, swapped out or running in too low a priority).

OMPROUTE_DEBUG_FILE
The OMPROUTE_DEBUG_FILE variable is used by OMPROUTE to
override the debug output destination. For more information on using this
environment variable, see “OMPROUTE parameters” on page 177.

OMPROUTE_DEBUG_FILE_CONTROL
The OMPROUTE_DEBUG_FILE_CONTROL variable is used by
OMPROUTE to control the size and quantity of trace files created when the
OMPROUTE_DEBUG_FILE variable is specified. The syntax of this variable
is:
OMPROUTE_DEBUG_FILE_CONTROL=<size of file>,<num of files>

The default values for <size of file> and <num of files> are 200 (kilobytes)
and 5 respectively. In general, these values are sufficient for most
installations.

Step 9: Create static routes (Optional): OMPROUTE does not use the
environment variable GATEWAYS_FILE to initialize static routes. To create static
routes, use the BEGINROUTES or GATEWAY statement in PROFILE.TCPIP. For
information on the syntax of these statements, see z/OS Communications Server:
IP Configuration Reference.

During initialization, OMPROUTE learns of static routes by reading the internal
routing table set up by TCP/IP. If static routes are changed during execution by
VARY TCPIP,,OBEYFILE statements, OMPROUTE is dynamically notified of the
changes by TCP/IP. OMPROUTE will advertise active static routes to other routers
if allowed by configuration (for example, the IMPORT_STATIC_ROUTES parameter
of the AS_BOUNDARY_ROUTING configuration statement).

Static routes can be defined as replaceable or nonreplaceable, with nonreplaceable
being the default. A nonreplaceable static route cannot be replaced or modified by
OMPROUTE, even if a better dynamic route can be learned and even if the static
route is not actually available (but a static route that is not available will not be
advertised by OMPROUTE). Because of this, the use of nonreplaceable static
routes with OMPROUTE is not recommended unless it is to provide routing over an
interface over which no routing protocol is being communicated. A replaceable static
route will be replaced by OMPROUTE if it dynamically learns of any other route to
the destination. Any dynamically learned route will be considered more desirable
than a replaceable static route. A replaceable static route should be considered as a
last resort route, to be used by TCP/IP when no dynamic route to a destination can
be found. Refer to “Using static routing with OMPROUTE” on page 160 for detailed
information.

Step 10: Configure OSPF authentication: OMPROUTE supports defining the
OSPF authentication type by area or by interface. All interfaces attached to an area
default to the type of authentication defined for that area on the AREA configuration
statement, unless overridden on the OSPF_INTERFACE configuration statement.
The values of authentication keys must be defined on OSPF_INTERFACE

Chapter 4. Routing 175

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|

|

statements in any case. All routers which could become neighbors of each other
must use the same authentication type and key, or OSPF communication between
the routers will not be possible.

Virtual links behave similarly to interfaces for authentication purposes. A virtual link
will default to use the same type of authentication that is specified for the backbone
area unless overridden on the VIRTUAL_LINK configuration statement. When the
authentication type is not NONE, the value of the authentication key must be
specified on the VIRTUAL_LINK configuration statement. There is no requirement
for a virtual link to have the same authentication key value as its underlying real
interface.

OSPF authentication does not protect the contents of an OSPF packet. These
packets are not encrypted. However, it does provide verification that the packet is
genuine.

There are two methods of OSPF authentication: password, and MD5 cryptographic.
Password authentication is very basic: an 8-byte password is appended to all OSPF
packets and sent in the clear with the rest of the packet. If the sent password
matches that defined by the packet receiver, the packet is accepted. MD5
authentication is more sophisticated. The combination of the OSPF packet and the
MD5 key is summarized into a 16-byte message digest, which is appended to the
packet and sent. The keys are never sent, only the message digests. The receiver
then attempts to recreate the message digest from the combination of its defined
key and the OSPF packet. If the digest is successfully recreated, the packet is
accepted, otherwise it is rejected. MD5 authentication also contains a monotonic
increasing counter to protect against replay attacks.

If MD5 cryptographic authentication is being used, a 16-byte MD5 key must be
defined on the OSPF_INTERFACE configuration statement. This key is defined as a
hexadecimal string and may be obtained in several ways. One method for obtaining
MD5 keys is provided in the pwtokey utility, which converts a password into an MD5
key. This Unix System Services utility implements the algorithm defined in RFC
2574. Since OSPF does not support localization of keys, it is only necessary to
provide a password to this utility to generate a single, 16-byte key. If multiple sites
have this utility, MD5 keys can easily be generated from passwords, which are
easier to remember and communicate than 16 byte hexadecimal strings.

Starting and controlling OMPROUTE
After the necessary RACF authorization has been defined (see “Step 6: RACF
authorize user IDs for starting OMPROUTE” on page 174), OMPROUTE can be
started from an MVS procedure, from the z/OS shell, or from AUTOLOG.

Note: When OMPROUTE is taken down, it should be kept down for at least 3
times the largest dead router interval of the interfaces using MD5
authentication. The same applies to routers adjacent to interfaces using MD5
authentication. Do not stop and start OMPROUTE instantly.

v You can start OMPROUTE from the MVS operators console by starting the
OMPROUTE start procedure. A sample start procedure is provided with the
product in hlq.SEZAINST(OMPROUTE).

v You can start OMPROUTE from the z/OS shell by starting OMVS and then
issuing the OMPROUTE command and, optionally, any parameters. For
information on parameters, see “OMPROUTE parameters” on page 177.

176 z/OS V1R4.0 CS: IP Configuration Guide

v You can use the AUTOLOG statement to start OMPROUTE automatically during
TCP/IP initialization. Insert the name of the OMPROUTE start procedure in the
AUTOLOG statement of the PROFILE.TCPIP data set.

AUTOLOG
OMPROUTE

ENDAUTOLOG

Note: For special considerations when using AUTOLOG to start OMPROUTE,
see “Autolog considerations for OMPROUTE” on page 172.

In a Common INET environment, OMPROUTE will attempt to connect to a stack
whose name is determined by the TCPIPjobname keyword from the resolver
configuration data set or file. In configurations with multiple stacks, a copy of
OMPROUTE must be started for each stack that requires OMPROUTE services. To
associate OMPROUTE with a particular stack, use the environment variable
RESOLVER_CONFIG to point to the data set or file that defines the unique
TCPIPjobname.

When running from an MVS procedure, the environment variables can be set by
using the STDENV DD statement in the OMPROUTE procedure. For information
concerning the environment variables used by OMPROUTE, refer to z/OS
Communications Server: IP Configuration Reference.

OMPROUTE parameters: OMPROUTE accepts three command line parameters,
which govern tracing and debug information. OMPROUTE’s trace and debug
information is written to stdout with two exceptions:

v When the routing application was started with no tracing, and then a MODIFY
command is issued to enable tracing. In this case, the output destination defaults
to the file omproute_debug in the current temporary directory (the default is
/tmp).

v When the debug output destination has been overridden via the use of an
environment variable (OMPROUTE_DEBUG_FILE).

If OMPROUTE is to be started from an MVS procedure, add your parameters to
PARM=() in the OMPROUTE cataloged procedure. For example:
//* PARM=(’POSIX(ON)’,
//* ’ENVAR("_CEE_ENVFILE=DD:STDENV")/-t1’)
//*

If OMPROUTE is to be started from a z/OS shell command line, enter the
parameters on the command line.

For either method of starting OMPROUTE, parameters can be specified in mixed
case.

Note: Use of the -tn, -dn, and -sn parameters affects OMPROUTE performance
and might require increasing the Dead_Router_Interval on OSPF interfaces
to keep neighbor adjacencies from collapsing.

The -tn command line parameter: The -tn option specifies the external tracing
level, where n is a supported trace level. It is intended for customers, testers,
service, or developers, and provides information on the operation of the routing
application. This option can be used for many purposes, such as debugging a
configuration, education on the operation of the routing application, verification of
test cases, and so on. The following levels are supported:

Chapter 4. Routing 177

1 Informational messages

2 Formatted packet trace

These option levels are cumulative—level 2 includes level 1. For example, -t2
provides formatted packet trace and informational messages.

The -dn and -sn command line parameters: These options specify the internal
debugging levels. They are intended for service and provide internal debugging
information needed for debugging problems. Use of these parameters can
significantly impact performance and are not recommended unless needed to debug
a problem. For more information about the use of these parameters, refer to z/OS
Communications Server: IP Diagnosis.

Controlling OMPROUTE: You can control OMPROUTE from the operator’s
console using the MODIFY command. The syntax of the MODIFY command can be
found in z/OS Communications Server: IP System Administrator’s Commands.
MODIFY commands are available to perform the following functions:

v “Stopping OMPROUTE”

v “Rereading the configuration file”

v “Enabling or disabling the OMPROUTE subagent” on page 179

v “Changing the cost of OSPF links” on page 179

v “Controlling OMPROUTE tracing and debugging” on page 179

Stopping OMPROUTE: OMPROUTE can be stopped in several ways:

v From MVS, issue STOP <procname> or MODIFY <procname>,KILL.

If OMPROUTE was started from a cataloged procedure, procname is the
member name of that procedure. If OMPROUTE was started from the z/OS shell,
procname is useridX, where X is the sequence number set by the system. To
determine the sequence number, from the SDSF LOG window on TSO, issue /d
omvs,u=userid. This will show the programs running under this user ID. The
procname can also be set using the environment variable _BPX_JOBNAME and
then starting OMPROUTE in the shell background.

v From a z/OS shell superuser ID, issue the kill command to the process ID (PID)
associated with OMPROUTE. To determine the PID, use one of the following
methods:

– From the MVS console, issue D OMVS,U=userid, or issue /D OMVS,U=userid
at the SDSF LOG window on TSO (where userid is the user ID that started
omproute from the shell).

– Issue the ps -ef command from the z/OS shell.

– Record the PID when you start OMPROUTE.

For information on the environment variable _BPX_JOBNAME, refer to z/OS UNIX
System Services Planning. For information on the D OMVS,U=userid command,
refer to z/OS MVS System Commands.

Rereading the configuration file: The MODIFY <procname>,RECONFIG command
is used to reread the OMPROUTE configuration file. This command ignores all
statements in the configuration file except new OSPF_INTERFACE,
RIP_INTERFACE, and INTERFACE statements. These new configuration
statements must be reread from the configuration file through this command prior to
the interface being configured to the TCP/IP stack.

178 z/OS V1R4.0 CS: IP Configuration Guide

Enabling or disabling the OMPROUTE subagent: Use the MODIFY
<procname>,ROUTESA=ENABLE command or the MODIFY
<procname>,ROUTESA=DISABLE command to enable or disable the OMPROUTE
subagent.

Note: To change any other value on the ROUTESA_CONFIG statement, the
OMPROUTE application must be recycled.

The OMPROUTE subagent implements RFC 1850 for the OSPF Protocol. The
ROUTESA_CONFIG statement is used in the OMPROUTE configuration file to
configure the OMPROUTE subagent. For details on ROUTESA_CONFIG, refer to
z/OS Communications Server: IP Configuration Reference.

Changing the cost of OSPF links: The cost of an OSPF interface can be
dynamically changed using the MODIFY
<procname>,OSPF,WEIGHT,NAME=<if_name>,COST=<cost> command. This new
cost is flooded quickly throughout the OSPF routing domain, and modifies the
routing immediately.

The cost of the interface reverts to its configured value whenever the router is
restarted. To make the cost change permanent, you must reconfigure the
appropriate OSPF_INTERFACE statement in the configuration file.

Controlling OMPROUTE tracing and debugging: The following commands are
used to start, stop, or change the level of OMPROUTE tracing and debugging:

v MODIFY <procname>,TRACE=n : for OMPROUTE tracing; n can be 0–2

v MODIFY <procname>,DEBUG=n : for OMPROUTE debugging; n can be 0–4

v MODIFY <procname>,SADEBUG=n : for OMPROUTE subagent debugging; n
can be 0 or 1

Note: Use of OMPROUTE tracing and debugging affects OMPROUTE
performance and might require increasing the Dead_Router_Interval on
OSPF interfaces to keep neighbor adjacencies from collapsing.

Configuring OSPF and RIP
The steps for configuring OSPF and RIP are:

1. Setting the OSPF router ID (If OSPF protocol is used)

2. Defining OSPF areas (If OSPF protocol is used)

3. Limiting information exchange between OSPF areas (If OSPF protocol is used)

4. Defining interfaces (OSPF and RIP)

5. Defining interface costs (OSPF and RIP)

6. Configuring Virtual Links (If OSPF protocol is used)

7. Managing high-cost links (If OSPF protocol is used)

8. Defining filters (If RIP protocol is used)

9. Defining route precedence in a MultiProtocol environment (If OSPF protocol is
used)

Step 1: Setting the OSPF router ID (If OSPF protocol is used)
Every router in an OSPF Autonomous System must be assigned a unique router ID.
The ROUTERID configuration statement should be coded within the OMPROUTE
configuration file to assign the router ID. The value must be one of the
OSPF_INTERFACEs defined in the OMPROUTE configuration file. If the
ROUTERID configuration statement is not coded, OMPROUTE chooses the IP

Chapter 4. Routing 179

|

address from one of the OSPF_INTERFACE statements as the router ID. With the
advent of Dynamic VIPAs (DVIPAs) that can move between z/OS hosts within a
sysplex, it is highly recommended that the ROUTERID be a physical interface or a
static VIPA, not a Dynamic VIPA.

In the example network shown in Figure 33 on page 158, the ROUTERID is set to
the static VIPA address that represents each OMPROUTE router. TCPCS4 has
ROUTERID=4.4.4.4, and TCPCS7 has ROUTERID=7.7.7.7.

Step 2: Defining OSPF areas (If OSPF protocol is used)
The sample network shown in Figure 33 on page 158 depicts a network divided
using two different methods. The first division is between IP subnetworks within the
OSPF Autonomous System (AS) and IP subnetworks external to the OSPF AS
(those within the RIP AS). The subnetworks included within the OSPF AS are
further subdivided into regions called areas. OSPF areas are collections of
contiguous IP subnetworks. The function of areas is to reduce the OSPF overhead
required to compute routes to destinations in different areas. Overhead is reduced
because less information is exchanged and stored by routers and because fewer
CPU cycles are required for a less complex route table calculation.

Every OSPF AS must have at least a backbone area. The backbone is always
identified by area number 0.0.0.0. For small OSPF networks, the backbone is the
only area required. For larger networks with multiple areas, the backbone provides
a core that connects the areas. Unlike other areas, the backbone’s subnets can be
physically separate. In this case, logical connectivity of the backbone is maintained
by configuring virtual links between backbone routers across intervening
non-backbone areas. See “Step 6: Configuring Virtual Links (If OSPF protocol is
used)” on page 189 for more information on this subject.

Routers that attach to more than one area function as Area Border Routers. All Area
Border Routers are part of the backbone, so they must either attach directly to a
backbone IP subnet or be connected to another backbone router over a virtual link.

The information and algorithms used by OSPF to calculate routes vary according to
whether the destination is within the same area, in a different area within the OSPF
AS, or external to the OSPF AS. Every router maintains a database of all links
within its area. A shortest path first algorithm is used to calculate the best routes to
destinations within the area from this database. Routes between areas are
calculated from summary advertisements originated by Area Border Routers for
destinations located in other areas of the OSPF AS. External routes (for example,
routes to destinations that lie within a RIP AS) are calculated from AS External
advertisements originated by AS Boundary Routers and flooded throughout the
OSPF AS.

Use the AREA configuration statement to define the areas to which a router
attaches. If you do not use the AREA statement, the default is that all OSPF
interfaces attach to the backbone area. In the sample network, TCPCS4 and
TCPCS7 are both Area Border Routers belonging to both the backbone area
(0.0.0.0) and area 1.1.1.1.
AREA

Area_Number=0.0.0.0;

AREA
Area_Number=1.1.1.1;

180 z/OS V1R4.0 CS: IP Configuration Guide

Step 3: Limiting information exchange between OSPF areas (If
OSPF protocol is used)
When Area Border Routers are configured, parameters on the AREA and RANGE
configuration statements can be used to control the OSPF route information that
crosses the area boundary. For recommendations regarding the usefulness of
multiple areas in the z/OS CS environment, refer to “Network design considerations
with z/OS CS” on page 193.

One option is to use the AREA statement to define an area as a stub area. AS
External advertisements are never flooded into stub areas. In addition, the AREA
statement has an option to suppress origination into the stub of summary
advertisements for interarea routes. Destinations external to the stub area are still
reachable due to the Area Border Routers advertising default routes into stub areas.
Traffic within the stub area for unknown destinations is forwarded to the Area
Border Router (using the default route). The border router uses its more complete
routing information to forward the traffic on an appropriate path toward its
destination.

The following requirements must be met for an area to be defined as a stub area:

v No virtual links are configured through the area to maintain backbone
connectivity.

v It is acceptable for routers within the area to use a default route for traffic
destined outside the AS.

v No routers within the area are AS boundary routers (OSPF routers that advertise
routes from external sources as AS External advertisements).

The following AREA statement example meets these requirements:
AREA

Area_Number=2.2.2.2
Stub_area=Yes
Import_Summaries=No;

Another option is to use IP subnet address ranges to limit the number of summary
advertisements originated into an area. A range is defined by an IP address and an
address mask. Destinations are considered to fall within the range if the destination
address and the range IP address match after the range mask has been applied to
both addresses.

When a range is configured for an area at an Area Border Router, the border router
suppresses summary advertisements for destinations within that area that fall within
the range. The suppressed advertisements would have been originated into the
other areas to which the border router attaches. Instead, the Area Border Router
may originate a single summary advertisement for the range or no advertisement at
all, depending on the option chosen with the RANGE configuration statement.

Notes:

1. If the range is not advertised, there will be no interarea routes for any
destination that falls within the range.

2. Ranges cannot be used for areas through which virtual links are configured to
maintain backbone connectivity.

In the sample network shown in Figure 33 on page 158, the following RANGE
statement could be configured on TCPCS7 to prevent TCPCS7 from advertising
destinations in the 9.67.101.0 subnet into the backbone area (Area 0.0.0.0):

Chapter 4. Routing 181

|

RANGE
IP_Address=9.67.101.0
Subnet_Mask=255.255.255.0
Area_Number=1.1.1.1
Advertise=No;

Step 4: Defining interfaces (OSPF and RIP)
Each interface in use by the stack should be defined to OMPROUTE using an
OSPF_INTERFACE, RIP_INTERFACE, or INTERFACE statement. This section
describes the differences between interface types that you should consider when
configuring interfaces to OMPROUTE. In general, use the following guidelines:

v An interface over which the OSPF protocol is communicated with other routers
must be configured with the OSPF_INTERFACE statement.

v An interface over which the RIP protocol is communicated with other routers
must be configured with the RIP_INTERFACE statement.

v All other interfaces should be configured with the INTERFACE statement.

A VIPA interface is an exception to these guidelines and is discussed in more detail
in “VIPA interfaces (Static VIPA and Dynamic VIPA)” on page 185.

Communications Server enforces RFC rules against using either a subnetwork’s
broadcast or network address as a host address. (An address that has all ones in
the host portion is a subnet broadcast address. An address that has all zeros in the
host portion is the subnet’s network address.) Therefore, the subnet_mask on an
OSPF_INTERFACE, RIP_INTERFACE, or INTERFACE statement should have
enough zero bits such that no home address in that subnet has all zeros or all ones
in the host portion of the address. For example if a subnet has two home addresses
10.1.1.1 and 10.1.1.2, then the subnet mask must have zeros in at least two bits;
for example, 255.255.255.252. However, if a subnet has four home addresses
10.1.1.1, 10.1.1.2, 10.1.1.3, and 10.1.1.4, then the subnet mask must have zeros in
at least three bits; for example, 255.255.255.248; in this case, there could be up to
six home addresses in that subnet (10.1.1.1 through 10.1.1.6). In general, if a
subnet mask has n zero bits, then there can be up to ((2**n)-2) home addresses in
that subnet. This limit applies even if the home addresses are configured on
different TCP/IP stacks.

Notes:

1. It is important to define all interfaces to OMPROUTE, even ones not being used
for routing because OMPROUTE sets values that override
BSDROUTINGPARMS. When an interface that is not defined to OMPROUTE
comes up, OMPROUTE will assign it default values, and update the TCP/IP
stack’s control blocks with these default values, which could result in
undesirable effects. These default values include:

v MTU size set to 576

v Interface mask set to the class mask. OMPROUTE will generate message
EZZ7871 when it does this.

2. OMPROUTE supports up to 254 interfaces (physical and VIPA).

Configuring multi-access parallel interfaces: Whenever configuring
multi-access parallel interfaces (primary and secondary redundant interfaces having
IP addresses in the same network) for OMPROUTE (OSPF), the order of the
parallel interfaces in the HOME list of TCPIP profile must match the order of the
corresponding OSPF_INTERFACE statements in the OMPROUTE configuration file.
By doing so, OMPROUTE will treat the first interface in the list as primary and the
remaining ones as secondaries. The order of the interfaces is critical for
OMPROUTE (OSPF) to be able to send the link state updates (LSAs) correctly to

182 z/OS V1R4.0 CS: IP Configuration Guide

|

|

|

the neighboring routers so that the primary interface can be recognized. Otherwise,
a secondary interface configured in OMPROUTE or HOME list may be inadvertently
treated as a primary interface and this can cause routing problems between
OMPROUTE and its neighbors. In case of failure of a primary interface,
OMPROUTE will use the first available secondary interface and mark it as primary.

Note: This procedure is consistent with the method (Method 2) as described in
RFC 2178 for OSPF for multi-access parallel interfaces.

Point-to-point (For example CTC and CLAW): For point-to-point interfaces, the
destination IP address must be known to OMPROUTE. Specify the
DESTINATION_ADDR parameter to allow for the creation of a host route to the
address at the remote end of the interface.

Sample OSPF_INTERFACE
OSPF_INTERFACE
IP_Address=9.67.106.7
Name=CTC7TO4
Subnet_mask=255.255.255.0
Attaches_to_Area=1.1.1.1
Destination_Addr=9.67.106.4;

Sample RIP_INTERFACE
RIP_INTERFACE
IP_Address=9.67.103.7
Name= CTC7TO6
Subnet_mask=255.255.255.0
Destination_Addr=9.67.103.6
RIPV2=Yes;

Sample INTERFACE
INTERFACE
IP_Address=9.67.111.1
Name=CTCX
Subnet_mask=255.255.255.0
Destination_addr=9.67.111.2;

Note: If another router is directly attached via a CLAW device, and the OSPF
protocol is being communicated with that router, the other router must also
be configured to view the CLAW device as a point-to-point interface. Failure
to do this results in a failure to add any routes via that router.

Point-to-Multipoint: For Point-to-Multipoint capable interfaces (for example
MPCPTP interfaces including XCF and IUTSAMEH connections), OMPROUTE
must know the IP addresses of the other routers (neighbors) with which it needs to
communicate the OSPF or RIP packets. However, due to underlying signaling that
takes place when a host connects to these network types, the stack is able to learn
the required addresses. In turn, OMPROUTE learns those IP address from the
stack. As a result, it is not necessary to configure the IP addresses of the other
routers on the interface statements.

Sample OSPF_INTERFACE
OSPF_INTERFACE
IP_Address=9.27.13.81
Name=XCFD00

Attaches_to_Area=1.1.1.1
Subnet_mask=255.255.255.0;

Sample RIP_INTERFACE

Chapter 4. Routing 183

RIP_INTERFACE
IP_Address=9.27.23.81
Name=MPCA01
Subnet_mask=255.255.255.0
RIPV2=Yes;

Sample INTERFACE
INTERFACE
IP_Address=9.27.33.81
Name=XCFB00
Subnet_mask=255.255.255.0;

Non-broadcast network interfaces (For example, Hyperchannel and ATM): If
the OSPF or RIP protocol communicates with one or more routers over a
non-broadcast network interface, OMPROUTE must know the IP addresses of the
other routers (neighbors) with which it needs to communicate. For non-broadcast
network interfaces, there is no underlying signaling that allows the stack to learn the
required IP addresses. As a result, the neighbor addresses must be configured to
OMPROUTE with the parameters configured as follows:

v DR_NEIGHBOR and/or the NO_DR_NEIGHBOR parameters on the
OSPF_INTERFACE statement

v NEIGHBOR parameter on the RIP_INTERFACE statement

v NON_BROADCAST=YES and ROUTER_PRIORITY parameters on the
OSPF_INTERFACE statement

In the OSPF case, DR_NEIGHBOR defines which routers within the non-broadcast
network can become the designated router. NO_DR_NEIGHBOR defines which
routers cannot become the designated router. ROUTER_PRIORITY defines the
priority of this router on the non-broadcast network so that the designated router
can be elected for the network. Note that multiple DR_NEIGHBOR and
NO_DR_NEIGHBOR parameters can be coded on one statement.

Sample OSPF_INTERFACE
OSPF_INTERFACE
IP_Address=9.37.84.49
Name=HCHE00
Subnet_mask=255.255.255.0

Attaches_to_Area=1.1.1.1
Non_Broadcast=Yes
DR_Neighbor=9.37.84.53
No_DR_Neighbor=9.37.84.63
Cost0=3
Router_Priority=2;

Sample RIP_INTERFACE
RIP_INTERFACE
IP_Address=9.37.104.79
Name=ATME00
Subnet_mask=255.255.255.0
RIPV2=Yes
Neighbor=9.37.104.85
Neighbor=9.37.104.53;

Sample INTERFACE
INTERFACE
IP_Address=9.77.13.49
Name=ATMB00
Subnet_mask=255.255.255.0;

184 z/OS V1R4.0 CS: IP Configuration Guide

Broadcast network interfaces (For example, Token Ring, Ethernet, and FDDI):
When the OSPF or RIP protocol is communicated over a broadcast medium such
as Token Ring, Ethernet, or FDDI, these networks allow for broadcasting and
multicasting. Therefore, it is not necessary for OMPROUTE to know the IP
addresses of the other routers on the network for OSPF or RIP packets to be
communicated with those routers. OMPROUTE sends packets to the other routers
on the network by using appropriate broadcast or multicast addresses. The IP
addresses of the other routers are learned as OSPF/RIP packets are received from
them. The OSPF_INTERFACE must include the ROUTER_PRIORITY parameter to
assist in electing a Designated Router for the network.

Sample OSPF_INTERFACE
OSPF_INTERFACE
IP_Address=9.59.101.5
Name=TR1

Subnet_mask=255.255.255.0
Attaches_to_Area=1.1.1.1
Cost0=2
Router_Priority=1;

Sample RIP_INTERFACE
RIP_INTERFACE
IP_Address=9.29.107.3
Name=TR2
Subnet_mask=255.255.255.0
RIPV2=Yes;

Sample INTERFACE
INTERFACE
IP_Address=9.77.14.49
Name=ETHB00
Subnet_mask=255.255.255.0;

If OMPROUTE will be communicating with the OSPF or RIP Version 2 protocol over
a token ring media where an attached router does not listen for multicast MAC
address 0xC000.0004.0000, see “Token-ring multicast” on page 170.

For interfaces into broadcast media which contain routers that do not support
multicast, it is possible to configure the interfaces as Non-Broadcast Network
Interfaces. This would cause OMPROUTE to unicast to the neighbor addresses
rather than using a multicast address. However, it would also be necessary to
configure all the routers on the network to unicast. Otherwise, their multicast
packets would never be received.

Note that it is possible to define neighbors using DR_NEIGHBOR and/or
NO_DR_NEIGHBOR parameters for OSPF_INTERFACEs and using NEIGHBOR
parameters for RIP_INTERFACEs that are broadcast capable, but it is not required
or recommended. If you define neighbors on these interfaces, you must define all of
them, as OMPROUTE will not communicate RIP or OSPF to undefined neighbors if
any are defined on an interface.

VIPA interfaces (Static VIPA and Dynamic VIPA): If only the RIP protocol is
used by OMPROUTE, VIPA interfaces should be defined with the INTERFACE
statement. If only OSPF or if both OSPF and RIP are used by OMPROUTE, VIPA
interfaces should be defined with the OSPF_INTERFACE statement.

Sample OSPF_INTERFACE

Chapter 4. Routing 185

OSPF example:
OSPF_INTERFACE
IP_Address=4.4.4.4
Name=VIPA1

Subnet_mask=255.255.255.252;

Sample INTERFACE
non-OSPF example:
INTERFACE
IP_Address=6.6.6.6
Name=VIPA1
Subnet_mask=255.255.255.252;

Note: The most specific subnet mask you can specify is 255.255.255.252.

If the name in an OSPF_INTERFACE or INTERFACE statement refers to a link of
type VIRTUAL, then OMPROUTE generates and advertises the following routes
whenever applicable:

1. A network route to the network specified in that statement

2. A subnet route to the subnet specified in that statement

3. A host route to the IP_address specified in that statement

Following are the conditions for advertising these routes on a physical network
interface to a network:

1. Network route - If VIPA is not in the same network as the physical network
interface and is allowed by filters or RANGE.

2. Subnet route - VIPA subnet routes are advertised in OMPROUTE in all
conditions, except for RIP when filters prevent it.

3. Host route - as allowed by filters or RANGE. Advertisement of the host route for
a VIPA defined on an OSPF_INTERFACE statement can be controlled by the
SUBNET parameter on the OSPF_INTERFACE statement that defines that
VIPA. If SUBNET=YES, then the host route is not advertised. If SUBNET=NO
(the default), the host route is advertised. Care should be taken in using this
parameter. VIPA host routes should not be suppressed for dynamic VIPAs or for
VIPAs whose subnet might exist on multiple hosts. It is up to the user to ensure
these restrictions are enforced, as they are not and cannot be enforced by
OMPROUTE.

On the RIP_INTERFACE statement for a physical network interface, the VIPA
routes are allowed to be advertised by the following filter parameters:

1. Send_Net_Routes

2. Send_Subnet_Routes

3. Send_Host_Routes, and Send_Only

In addition, the global FILTER and Send_Only statements for RIP can be used to
specify which routes are advertised or not.

For OSPF, the RANGE statement can be used to advertise or not to advertise the
VIPA routes external to an area in terms of address range based on a subnet mask.

Note: For RIP, the Send_Only = (VIRTUAL) filter in conjunction with the
Send_Net_Routes, Send_Subnet_Routes, and Send_Host_Routes filters, or
the FILTER statement with VIPA routes, indicates whether or not VIPA routes
can be advertised over a RIP interface. Unlike RIP, there are no routing
filters for OSPF. For OSPF, the RANGE statement can be used to control
which address range of routes can be advertised or not external to an area;

186 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|

|

|
|
|
|
|

|

|
|
|

|

|

|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|

|

|

|
|

|
|

|
|
|
|
|
|

however, it is not granular enough for use as a routing filter. In area-border
router configurations, if there are multiple VIPA addresses that are uniquely
subnetted, the RANGE statement can be used to specify which VIPA subnet
address range of routes can be advertised or not external to an area.

For Dynamic VIPA (DVIPA), link names are assigned programmatically by the stack
when the DVIPA is created. Therefore, the name field set on the INTERFACE or
OSPF_INTERFACE statement is ignored by OMPROUTE for DVIPAs.

Because a stack could have a large number of DVIPAs defined, as well as DVIPA
ranges, additional wildcard capabilities exist on the OSPF_INTERFACE and
INTERFACE statements for use only with DVIPAs.

Ranges of DVIPA interfaces can be defined using the Subnet_Mask parameter on
the OSPF_INTERFACE or INTERFACE statement. The range defined in this way
will be all the IP addresses that fall within the subnet defined by the mask and the
IP address. For more information on the Subnet_Mask parameter, see “Step 4:
Defining interfaces (OSPF and RIP)” on page 182.

In the example below, DVIPA interfaces in the range of 10.138.65.80 through
10.138.65.95 are defined:

Sample OSPF_INTERFACE
OSPF example:
OSPF_INTERFACE
IP_Address=10.138.65.80
Name=DVIPAs

Subnet_mask=255.255.255.240;

Sample INTERFACE
non-OSPF example:
INTERFACE
IP_Address=10.138.65.80
Name=DVIPAs
Subnet_mask=255.255.255.240;

You must consider an additional issue when VIPAs are being moved between
TCP/IP stacks and dynamic routing is provided for those stacks by OMPROUTE.
This movement of VIPAs can be done manually or automatically via the use of
Dynamic VIPAs. For the VIPAs to be correctly processed and advertised by the
routing protocols, they (like all other interfaces) must be configured to OMPROUTE
at the time that they become active on the TCP/IP stack. This configuration of
VIPAs to OMPROUTE can be accomplished by:

v Explicitly configuring each VIPA with its own OSPF_INTERFACE or INTERFACE
statement

v Configuring a range of DVIPAs with a single OSPF_INTERFACE or INTERFACE
statement, using the method described above

v Configuring a group of VIPAs with a single OSPF_INTERFACE or INTERFACE
statement, using the wildcarding feature available on the interface statements

The recommended approach for configuring OMPROUTE for VIPAs that might
move is to preconfigure the OMPROUTE on each TCP/IP stack with all VIPAs that
could potentially exist on that stack at some time. Preconfiguring in this way
prepares each OMPROUTE for the possible addition of the VIPAs to its stack.
During times when the VIPAs do not exist on a particular OMPROUTE’s stack, the
configuration information will not be used. However, during periods when the VIPAs

Chapter 4. Routing 187

|
|
|
|

|
|

do exist on that OMPROUTE’s stack, the configuration information will be available
for use by OMPROUTE. This method is recommended because of its ability to
respond to movement of the VIPAs between TCP/IP stacks without modification of
the OMPROUTE configuration with each move.

If the pre-configuration of VIPAs described in this section has not been done, it is
still possible to define a VIPA to OMPROUTE such that it is properly processed and
advertised when it becomes active on the corresponding TCP/IP stack. To do this,
add the appropriate OSPF_INTERFACE or INTERFACE statement to the
OMPROUTE configuration file and then cause OMPROUTE to reread the
configuration file by issuing the MODIFY <procname>,RECONFIG command.

Note: You must modify the OMPROUTE configuration file and issue the
RECONFIG command prior to the movement of the VIPA to the
corresponding TCP/IP stack.

Step 5: Defining interface costs (OSPF and RIP)
Both the OSPF and RIP protocols have a cost value associated with interfaces.
With both protocols, the cost of a route to reach a destination is the sum of the
costs of each link that will be traversed on the way to the destination. In the sample
network shown in Figure 33 on page 158, the cost of a route to get from TCPCS7 to
router 3.3.3.3 via TCPCS4 is the cost of the link from TCPCS7 to TCPCS4 plus the
cost of the link from TCPCS4 to router 3.3.3.3.

The method for configuring cost values differs between the OSPF and RIP
protocols. The cost values of OSPF links, set using the COST0 parameter of the
OSPF_INTERFACE statement, should be configured to ensure that preferred routes
to destinations will have a lower cost than less preferable routes. The less
preferable routes, with the higher cost, will not be used except upon failure of the
preferred routes.

For the purpose of the following example, the sample network Figure 33 on
page 158 is used and the convention stack (interface) is used to refer to the cost
configured for a particular interface on a stack. For instance TCPCS7(9.67.106.7)
refers to the cost configured for interface 9.67.106.7 on TCPCS7.

There are three possible routes from TCPCS7 to router 3.3.3.3. They are:

v Direct (TCPCS7 —> 3.3.3.3),

v Via TCPCS4 (TCPCS7 —> TCPCS4 —> 3.3.3.3)

v Via router 8.8.8.8 and TCPCS4 (TCPCS7 —> 8.8.8.8 —> TCPCS4 —> TCPCS3)

If the preferred route from TCPCS7 to router 3.3.3.3 is via TCPCS4, then interface
costs must be configured such that the following are true:
TCPCS7(9.67.106.7) + TCPCS4(9.67.101.4) < TCPCS7(9.67.102.7)
TCPCS7(9.67.106.7) + TCPCS4(9.67.101.4) < TCPCS7(9.67.100.7) +
8.8.8.8(9.67.105.8) + TCPCS4(9.67.101.4)

The reasons for preferring one route over another are numerous. One approach for
assigning OSPF link costs would be to set the costs to values inversely proportional
to the bandwidth of the physical media. This would result in higher bandwidth routes
having lower costs, thus becoming the preferred routes.

The cost values of RIP links are generally set to a value of 1. This results in the
cost of a route to a destination being the number of hops to reach the destination.
In the sample network, this would result in the three possible RIP routes from
TCPCS7 to router 3.3.3.3 having the following costs:

188 z/OS V1R4.0 CS: IP Configuration Guide

v Direct (TCPCS7 -> 3.3.3.3), cost = 1

v Via TCPCS4 (TCPCS7 -> TCPCS4 -> 3.3.3.3), cost = 2

v Via router 8.8.8.8 and TCPCS4 (TCPCS7 -> 8.8.8.8 -> TCPCS4 -> TCPCS3),
cost = 3

If it were desired that the route via TCPCS4 be the preferred route, this could be
accomplished by increasing the cost of getting directly from TCPCS7 to router
3.3.3.3. This could be done by increasing either the OUT_METRIC configured on
the RIP_INTERFACE statement for 9.67.102.3 on router 3.3.3.3 or the IN_METRIC
configured on the RIP_INTERFACE statement for 9.67.102.7 on TCPCS7. Care
must be taken when increasing IN_METRIC and OUT_METRIC values to be sure
that the cost to reach any destination does not exceed the RIP maximum of 15.

Step 6: Configuring Virtual Links (If OSPF protocol is used)
The OSPF protocol is dependent upon complete connectivity of the backbone area.
To maintain backbone connectivity each backbone router must be interconnected. If
the configuration of an OSPF Autonomous System is such that the backbone area
will become separated into two or more disconnected sections, connectivity must be
restored for the protocol to work correctly. This can be done via a Virtual Link. An
OSPF Virtual Link should not be confused with a VIPA link. Virtual Links can be
configured between any two backbone routers that have an interface to a common
non-backbone area. The VIRTUAL_LINK statements specify the ROUTERID of the
link endpoint and must be configured at both endpoints. In the sample network
shown in Figure 33 on page 158, a Virtual Link is configured between TCPCS4 and
TCPCS7 to restore backbone connectivity through Area 1.1.1.1.

Sample TCPCS4
TCPCS4:
VIRTUAL_LINK

Virtual_Endpoint_RouterID=7.7.7.7
Links_Transit_Area=1.1.1.1;

Sample TCPCS7
TCPCS7:
VIRTUAL_LINK
Virtual_Endpoint_RouterID=4.4.4.4
Links_Transit_Area=1.1.1.1;

Step 7: Managing high-cost links (If OSPF protocol is used)
The periodic nature of OSPF routing traffic requires a link’s underlying data-link
connection to be constantly open. This can result in unwanted usage charges on
network segments whose costs are very high. There are two configuration steps
that can be taken to inhibit the periodic nature of the protocol.

The first step that can be taken is to define the link as a Demand Circuit. The global
Demand_Circuit=YES configuration statement must be specified before any links
can be defined as demand circuits. If you configure an OSPF_INTERFACE with the
Demand_Circuit=YES parameter, Link State Advertisements (LSAs) sent over the
interface will not be periodically refreshed. Only LSAs with real changes will be
readvertised. In addition, aging of these LSAs will be disabled such that they will
not age out of the link state database.

Another step that can be taken is to define Hello Suppression for the link (using the
Hello_Suppression parameter of the OSPF_INTERFACE statement). Hello
Suppression is only meaningful if Demand_Circuit=YES and the device is

Chapter 4. Routing 189

point-to-point or point-to-multipoint. Refer to z/OS Communications Server: IP
Configuration Reference for more information on configuring the Hello_Suppression
parameter.

If Demand_Circuit=YES and Hello Suppression is implemented, the
PP_Poll_Interval parameter of the OSPF_INTERFACE statement can be used to
specify the interval at which OMPROUTE should attempt to contact a neighbor to
reestablish a neighbor relationship when the relationship has failed, but the
interface is still available.

Step 8: Defining filters (If RIP protocol is used)
RIP Filters can be configured to OMPROUTE such that certain RIP routing
information will not be broadcast out to other routers and/or accepted from other
routers. The filters can be applied to individual RIP_INTERFACEs, via the FILTER
parameter, or to all RIP interfaces via by the global FILTER statement. When
defining a filter, a filter type (sending or receiving) is specified along with a
destination/mask address pair. By using filters, an installation can limit the amount
of RIP routing information broadcast into the network and/or the amount of RIP
routing information maintained by OMPROUTE. In addition, filters can be used to
hide destination addresses from portions of the network.

In the sample network shown in Figure 33 on page 158, if you wanted to hide the
10.1.1.0 subnet from TCPCS6 (as well as all routers and hosts on the remote side
of TCPCS6), you could define the following filter on TCPCS7:
Filter=(nosend,10.1.1.0,255.255.255.0);

Step 9: Defining route precedence in a MultiProtocol
environment (If OSPF protocol is used)
Note that this discussion of route precedence is quite complicated. If OSPF is the
only routing protocol used in your network, route precedence is less of a concern.
If, in addition, none of your OSPF routers are configured as AS Boundary Routers,
the route precedence concern is entirely eliminated. For environments with multiple
protocols or AS Boundary Routers, the following information is provided.

OMPROUTE applies an order of precedence in choosing between two routes to the
same destination that were learned via different routing protocols or using
information provided by an OSPF AS Boundary Router. To describe this order of
precedence applied by OMPROUTE, a few terms must first be defined.

RIP route
A route learned via the RIP protocol. A RIP route is generated using
information provided in a RIP packet from a neighboring router. For
example, in the sample network shown in Figure 33 on page 158, the route
from TCPCS7 to destination subnet 30.1.1.0 is a RIP route.

OSPF internal route
A route learned via the OSPF protocol where the entire path traversed to
reach the destination lies within the OSPF autonomous system. For
example, in the sample network shown in Figure 33 on page 158, the route
from TCPCS7 to destination 9.67.108.2 on Router 2.2.2.2 is an OSPF
internal route.

OSPF external route
A route learned via the OSPF protocol where part of the path traversed to
reach the destination does not lie within the OSPF autonomous system.
The path will leave the autonomous system if it uses information brought
into the OSPF autonomous system by an AS Boundary Router. This
information brought into the OSPF AS may be information imported from a

190 z/OS V1R4.0 CS: IP Configuration Guide

different autonomous system (for example, RIP) or information about
destinations statically configured on or directly connected to the AS
Boundary Router. For example, in the sample network, shown in Figure 33
on page 158, the route from TCPCS4 to destination 9.67.103.6 on TCPCS6
is an OSPF external route. TCPCS7, configured as an AS Boundary Router,
has imported information about that destination into the OSPF AS from the
RIP AS.

OSPF external routes fall into two categories based upon the setting of the
multiprotocol comparison value, which is defined in “MultiProtocol
comparison”. If the comparison value is set to Type1 on the AS Boundary
Router that imports the external information into the OSPF AS, then OSPF
external routes generated using this information will be OSPF Type 1
External Routes. If the comparison value is set to Type2 on the AS
Boundary Router, then the generated routes will be OSPF Type 2 External
Routes. For example, in the sample network, shown in Figure 33 on
page 158, if the comparison value on TCPCS7 (an AS Boundary Router) is
set to Type 1, the route from TCPCS4 to destination 9.67.103.6 on TCPCS6
is an OSPF Type 1 external route. If the comparison value on TCPCS7 is
set to Type 2, the route is an OSPF Type 2 external route.

MultiProtocol comparison: You can configure this comparison value to allow for
the specification of how route costs from different autonomous systems should be
treated when they coexist. In OMPROUTE, you can configure this value via the
COMPARISON configuration statement. When COMPARISON=Type1 is configured,
the route cost values used within different autonomous systems (for example, the
OSPF AS and the RIP AS) are considered comparable. With COMPARISON=Type2
configured, the route cost values used with the different autonomous systems are
considered non-comparable.

The comparison value can be used in several different ways, depending on the
function being performed by a router:

v As an AS Boundary Router, OMPROUTE uses the comparison value to
determine the type of external routes (Type 1 or Type 2) that is generated by
routers in the OSPF AS using routing information that the AS Boundary Router
imports into the OSPF AS. See “Step 9: Defining route precedence in a
MultiProtocol environment (If OSPF protocol is used)” on page 190 for additional
OSPF external route definition information.

v As an AS Boundary Router, OMPROUTE also uses the comparison value in
determining how route cost values will be assigned when importing routes from
the OSPF AS into the RIP AS.

– When COMPARISON=Type1 is configured (indicating that cost values are
comparable), an OSPF route imported into the RIP AS will be advertised with
the actual cost of the OSPF route. For example, in the sample network, if
TCPCS7 is configured with COMPARISON=Type1 and the OSPF route from
TCPCS7 to destination 9.67.108.2 on TCPCS2 has a cost of 7, then TCPCS7
will advertise into the RIP AS a RIP route to that destination with a cost of 7.

Notes:

1. An exception to this rule (defining how OSPF routes are advertised into
the RIP AS when COMPARISON=Type1) occurs when the OSPF route to
be imported is an OSPF Type 2 External Route. When this is the case,
the route is not advertised into the RIP AS at all.

2. It is important to remember the requirement that all destinations in the RIP
AS must be reachable with a cost no greater than 15. Using
COMPARISON=Type1 requires that the cost values of OSPF routes be

Chapter 4. Routing 191

low. Any destinations in the OSPF AS that can only be reached from the
RIP AS with a cost greater than 15 will become unreachable.

– When COMPARISON=Type2 is configured (indicating that cost values are
non-comparable), an OSPF route imported into the RIP AS is advertised with
a cost of 1. If a router in the RIP AS has two possible routes to a destination,
one internal to the RIP AS and another that was imported from OSPF, this
approach results in the route imported from OSPF being favored. For
example, in the sample network, Figure 33 on page 158, if TCPCS7 is
configured with COMPARISON=Type2 and TCPCS7 can somehow reach a
destination in the 30.1.1.0 subnet without passing through TCPCS6 (using
links not shown in the sample), then TCPCS7 advertises into the RIP AS a
RIP route to the destination with a cost of 1. As a result, TCPCS6 determines
that the destination can be reached via TCPCS7 with a cost of 2. If the cost of
the route for TCPCS6 to reach the destination internal to the RIP AS is
greater than 2, then the route via TCPCS7 is chosen.

Note: An exception to this rule (defining how OSPF routes are advertised into
the RIP AS when COMPARISON=Type2) occurs when the OSPF route
to be imported is an OSPF Type 2 External Route. When this is the
case, the route is advertised into the RIP AS with the actual cost of the
OSPF Type 2 External Route.

v As any router that has routing information from different autonomous systems,
OMPROUTE uses the comparison value while choosing between the routes
generated using the information from the different autonomous systems. How the
comparison value is used in this case is shown in Table 11.

Given these definitions, the order of precedence used in choosing between multiple
routes to the same destination, which were learned via the different protocols or by
using information provided by an OSPF AS Boundary Router, can be shown in
Table 11. In Table 11, Source Comparison refers to the setting of the comparison
value (using the COMPARISON configuration statement) on the router that is using
the order of precedence to choose between the multiple routes, while Route 1 and
Route 2 are the two possible routes being chosen between.

Table 11. Route precedence

Source comparison Route 1 Type Route 2 Type Route chosen

Type 1 OSPF Internal RIP OSPF Internal

Type 1 OSPF Internal OSPF Type 1
External

OSPF Internal

Type 1 OSPF Internal OSPF Type 2
External

OSPF Internal

Type 1 RIP OSPF Type 1
External

Lowest Cost Route

Type 1 RIP OSPF Type 2
External

RIP Route

Type 1 OSPF Type 1
External

OSPF Type 2
External

OSPF Type 1
External

Type 2 OSPF Internal RIP OSPF Internal

Type 2 OSPF Internal OSPF Type 1
External

OSPF Internal

Type 2 OSPF Internal OSPF Type 2
External

OSPF Internal

192 z/OS V1R4.0 CS: IP Configuration Guide

Table 11. Route precedence (continued)

Source comparison Route 1 Type Route 2 Type Route chosen

Type 2 RIP OSPF Type 1
External

OSPF Type 1
External

Type 2 RIP OSPF Type 2
External

Lowest Cost Route

Type 2 OSPF Type 1
External

OSPF Type 2
External

OSPF Type 1
External

Network design considerations with z/OS CS
OMPROUTE may be run on z/OS CS for a variety of reasons. If the z/OS CS host
is being used as an application or server host and the routing daemon is being run
primarily to provide access to network resources, or to provide network resources
access to the z/OS CS host, then care must be taken to ensure that the z/OS CS
host is not overly burdened with routing work. Unlike routers or other network boxes
whose sole purpose is routing, an application host z/OS CS will be doing many
things other than routing, and it is not desirable for a large percentage of machine
resources (memory and CPU) to be used for routing tasks, as can happen in very
complex or unstable networks. In this case the z/OS CS should not be configured
as a backbone router, either intentionally or inadvertently. Careful network design
can minimize the routing burdens on the z/OS CS application host without
compromising the accessibility of z/OS CS resources to the network and vice versa.
If care is not taken to minimize the routing work required by the z/OS CS host,
OMPROUTE may consume excessive cycles or memory processing huge numbers
of routing updates from the network. Or the burden of routing updates may become
so large that the z/OS CS cannot keep up because of other workloads on the
machine. Since OSPF is heavily timer-driven, this could cause loss of adjacencies
and routing problems.

The primary way to reduce the routing burdens on the z/OS CS host is by use of
OSPF areas. Refer to “Step 2: Defining OSPF areas (If OSPF protocol is used)” on
page 180 for more information. A z/OS CS application host or sysplex can be
placed into a non-backbone area with dedicated routers acting as area-border
routers. The area-border routers would advertise the z/OS CS’s resources to other
attached areas (for example the backbone) and would summarize the network
outside the local area to the z/OS CS hosts. If possible, this can be further refined
to reduce routing protocol traffic by use of interarea route summarization
(accomplished in OMPROUTE area-border routers by the RANGE statement, see
z/OS Communications Server: IP Configuration Reference, and in Cisco routers with
the area range command). Refer to “Step 3: Limiting information exchange between
OSPF areas (If OSPF protocol is used)” on page 181 for more information.

An even further, and ideal, optimization would be to make the area containing the
z/OS CS application host or sysplex a stub area. In a stub area, only routes within
the area are shared among the hosts, and no summaries of other areas are flooded
into the area by the area-border routers. Instead, default routes are used to
represent all destinations outside the stub area. The stub area’s resources are still
advertised to the network at large by the area-border routers. You can only use this
optimization if the following two statements apply to your network:

v It is acceptable to use default routes to reach destinations outside the stub area.
This means that either there is only one area-border router connecting the stub
area to the rest of the network, or if there are multiple such connections they are
redundant, so that it does not matter which one is used to get outside the stub
area.

Chapter 4. Routing 193

v You have no non-OSPF destinations to advertise to the network at large. Stub
areas do not permit importation of OSPF external routes. This means for
example that you do not have a RIP network attached to the stub area, or if you
do, you do not want its destinations reachable from the stub area. Other types of
routes that cannot be imported into stub areas include direct routes (for example,
for networks attached to interfaces that are not running the OSPF protocol) and
static routes. If you define your VIPAs as OSPF_INTERFACE statements in your
OMPROUTE configuration file, routes to their addresses will be considered
OSPF routes and therefore importable into the stub area and can be advertised
by the area-border routers to the network at large.

It is highly recommended to put z/OS CS application hosts or sysplexes into stub
areas if at all possible.

A further optimization is to prevent z/OS CS from becoming the designated router
on multiaccess media, when pure routers that can perform this function are present.
On a multiaccess medium, the designated router and the backup designated router
will carry the majority of the routing protocol load for all hosts on the medium. While
z/OS CS is capable of performing this role, it does impose additional routing
overhead on the system. It would be preferable to allow pure routers to perform this
role, if they are available. This is accomplished by ensuring that the pure routers’
interfaces onto the medium have higher ROUTER_PRIORITY values than the z/OS
CS interfaces on the same medium. However, if the only hosts on a medium are
z/OS CS, then one or two of them will have to be designated router or backup
designated router.

Verification of OMPROUTE configuration and state
The following sections show sample output from each of the commands that can be
used to display OMPROUTE information. The syntax of these DISPLAY commands,
as well as detailed information about the data displayed, can be found in z/OS
Communications Server: IP Configuration Reference.

Note: All commands that include the LIST subparameter indicate that the
information being displayed is configured information only and does not
necessarily mean that the information is currently being used by
OMPROUTE. To display information in current use, use related commands to
display current, run-time statistics, and parameters. There are cases when
the configured information will not match the in-use information due to some
undefined or unresolved information in the OMPROUTE configuration. For
example, undefined interfaces or parameters in the OMPROUTE
configuration or an incorrect sequence of dynamic reconfiguration with the
MODIFY OMPROUTE,RECONFIG command can result in no update of the
in-use information at all. Information defined on wildcard interfaces is not
displayed in the LIST commands; it is only displayed in the corresponding
non-LIST commands when wildcard information is resolved to actual physical
interfaces.

Displaying all OSPF configuration information: To display all of the OSPF
configuration information, enter the following command:
D TCPIP,TCPCS7,OMP,OSPF,LIST,ALL
EZZ7831I GLOBAL CONFIGURATION 735

TRACE: 0, DEBUG: 0, SADEBUG LEVEL: 0
STACK AFFINITY: TCPCS7
OSPF PROTOCOL: ENABLED
EXTERNAL COMPARISON: TYPE 2
AS BOUNDARY CAPABILITY: ENABLED
IMPORT EXTERNAL ROUTES: RIP SUB
ORIG. DEFAULT ROUTE: NO

194 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

DEFAULT ROUTE COST: (1, TYPE 2)
DEFAULT FORWARD. ADDR.: 0.0.0.0
DEMAND CIRCUITS: ENABLED

EZZ7832I AREA CONFIGURATION
AREA ID AUTYPE STUB? DEFAULT-COST IMPORT-SUMMARIES?
0.0.0.0 0=NONE NO N/A N/A
1.1.1.1 0=NONE NO N/A N/A

--AREA RANGES--
AREA ID ADDRESS MASK ADVERTISE?
1.1.1.1 9.67.101.0 255.255.255.0 NO

EZZ7833I INTERFACE CONFIGURATION
IP ADDRESS AREA COST RTRNS TRNSDLY PRI HELLO DEAD DB_EX
7.7.7.7 1.1.1.1 1 5 1 1 10 40 40
9.67.104.7 1.1.1.1 1 5 1 1 10 40 40
9.67.100.7 1.1.1.1 1 5 1 1 10 40 40
9.67.102.7 1.1.1.1 1 5 1 1 10 40 40
9.67.106.7 1.1.1.1 1 5 1 1 10 40 40
9.67.107.7 0.0.0.0 1 5 1 1 10 40 40

EZZ7836I VIRTUAL LINK CONFIGURATION
VIRTUAL ENDPOINT TRANSIT AREA RTRNS TRNSDLY HELLO DEAD DB_EX
4.4.4.4 1.1.1.1 10 5 30 180 180

EZZ7835I NBMA CONFIGURATION
INTERFACE ADDR POLL INTERVAL

9.67.104.7 180
EZZ7834I NEIGHBOR CONFIGURATION

NEIGHBOR ADDR INTERFACE ADDRESS DR ELIGIBLE?
9.67.104.15 9.67.104.7 YES
9.67.104.25 9.67.104.7 NO
9.67.104.16 9.67.104.7

Displaying information about configured OSPF areas: To display information
about configured OSPF Areas, enter the following command:
D TCPIP,TCPCS7,OMP,OSPF,LIST,AREAS
EZZ7832I AREA CONFIGURATION 737
AREA ID AUTYPE STUB? DEFAULT-COST IMPORT-SUMMARIES?
0.0.0.0 0=NONE NO N/A N/A
1.1.1.1 0=NONE NO N/A N/A

--AREA RANGES--
AREA ID ADDRESS MASK ADVERTISE?
1.1.1.1 9.67.101.0 255.255.255.0 NO

Displaying configuration information about configured OSPF interfaces: To
display configuration information about configured OSPF interfaces, enter the
following command:
D TCPIP,TCPCS7,OMP,OSPF,LIST,IFS
EZZ7833I INTERFACE CONFIGURATION 739
IP ADDRESS AREA COST RTRNS TRNSDLY PRI HELLO DEAD DB_EX
7.7.7.7 1.1.1.1 1 5 1 1 10 40 40
9.67.104.7 1.1.1.1 1 5 1 1 10 40 40
9.67.100.7 1.1.1.1 1 5 1 1 10 40 40
9.67.102.7 1.1.1.1 1 5 1 1 10 40 40
9.67.106.7 1.1.1.1 1 5 1 1 10 40 40
9.67.107.7 0.0.0.0 1 5 1 1 10 40 40

Note: Wildcard interface definitions are not displayed. However, when an actual
interface is resolved to a wildcard definition, its information is displayed.

Chapter 4. Routing 195

|

|
|

Displaying information about configured Non-broadcast Multiple Access OSPF
interfaces: To display information about configured Non-broadcast Multiple Access
OSPF interfaces, enter the following command:
D TCPIP,TCPCS7,OMP,OSPF,LIST,NBMA
EZZ7835I NBMA CONFIGURATION 745

INTERFACE ADDR POLL INTERVAL
9.67.104.7 180

Displaying information about configured OSPF Virtual Links: To display
information about configured OSPF virtual links, enter the following command:
D TCPIP,TCPCS7,OMP,OSPF,LIST,VLINKS
EZZ7836I VIRTUAL LINK CONFIGURATION 747
VIRTUAL ENDPOINT TRANSIT AREA RTRNS TRNSDLY HELLO DEAD DB_EX
4.4.4.4 1.1.1.1 10 5 30 180 180

Displaying information about configured OSPF neighbors: To display
information about configured OSPF neighbors enter the following command:
D TCPIP,TCPCS7,OMP,OSPF,LIST,NBRS
EZZ7834I NEIGHBOR CONFIGURATION 749

NEIGHBOR ADDR INTERFACE ADDRESS DR ELIGIBLE?
9.67.104.15 9.67.104.7 YES
9.67.104.25 9.67.104.7 NO
9.67.104.16 9.67.104.7 NO

Displaying the contents of a single OSPF link state advertisement: To display
the contents of a single OSPF link state advertisement, enter the following
command:
D TCPIP,TCPCS7,OMP,OSPF,LSA,LSTYPE=1,LSID=7.7.7.7,ORIG=7.7.7.7,AREAID=1.1.1.1
EZZ7880I LSA DETAILS 751

LS AGE: 521
LS OPTIONS: E,DC
LS TYPE: 1
LS DESTINATION (ID): 7.7.7.7
LS ORIGINATOR: 7.7.7.7
LS SEQUENCE NO: 0X80000013
LS CHECKSUM: 0XA9A
LS LENGTH: 120
ROUTER TYPE: ABR,ASBR,V
ROUTER IFCS: 8

LINK ID: 7.7.7.4
LINK DATA: 255.255.255.252
INTERFACE TYPE: 3

NO. OF METRICS: 0
TOS 0 METRIC: 1

LINK ID: 8.8.8.8
LINK DATA: 9.67.100.7
INTERFACE TYPE: 1

NO. OF METRICS: 0
TOS 0 METRIC: 1 (1)

LINK ID: 3.3.3.3
LINK DATA: 9.67.102.7
INTERFACE TYPE: 1

NO. OF METRICS: 0
TOS 0 METRIC: 1 (1)

LINK ID: 4.4.4.4
LINK DATA: 9.67.106.7
INTERFACE TYPE: 1

NO. OF METRICS: 0
TOS 0 METRIC: 1 (1)

LINK ID: 7.7.7.7
LINK DATA: 255.255.255.255
INTERFACE TYPE: 3

NO. OF METRICS: 0

196 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

TOS 0 METRIC: 1
LINK ID: 9.67.100.8
LINK DATA: 255.255.255.255
INTERFACE TYPE: 3

NO. OF METRICS: 0
TOS 0 METRIC: 1

LINK ID: 9.67.102.3
LINK DATA: 255.255.255.255
INTERFACE TYPE: 3

NO. OF METRICS: 0
TOS 0 METRIC: 1

LINK ID: 9.67.106.4
LINK DATA: 255.255.255.255
INTERFACE TYPE: 3

NO. OF METRICS: 0
TOS 0 METRIC: 1

Displaying statistics and parameters for OSPF areas: To display statistics and
parameters for all OSPF areas attached to the router, enter the following command:
D TCPIP,TCPCS7,OMP,OSPF,AREASUM
EZZ7848I AREA SUMMARY 757
AREA ID AUTHENTICATION #IFCS #NETS #RTRS #BRDRS DEMAND
0.0.0.0 NONE 2 0 4 2 ON
1.1.1.1 NONE 5 0 4 2 ON

Displaying the list of AS external advertisements: To display a list of AS
external advertisements that are in the OSPF link state database, enter the
following command:
D TCPIP,TCPCS7,OMP,OSPF,EXTERNAL
EZZ7853I AREA LINK STATE DATABASE 759
TYPE LS DESTINATION LS ORIGINATOR SEQNO AGE XSUM

5 @6.6.6.6 7.7.7.7 0X80000007 825 0X1B5C
5 @9.67.103.6 7.7.7.7 0X80000007 831 0XE1F3
5 @10.1.1.0 2.2.2.2 0X80000003 1690 0X2775
5 @10.1.1.1 2.2.2.2 0X80000003 1690 0X1D7E
5 @20.1.1.0 5.5.5.5 0X80000003 1616 0X4A3C
5 @20.1.1.1 5.5.5.5 0X80000003 1616 0X4045
5 @30.0.0.0 7.7.7.7 0X80000006 831 0XB0C0
5 @30.1.1.0 7.7.7.7 0X80000006 831 0X99D5
5 @30.1.1.4 7.7.7.7 0X80000001 825 0X7BF4
5 @30.1.1.8 7.7.7.7 0X80000001 825 0X5319
5 @130.200.0.0 3.3.3.3 0X80000003 1695 0X98C0
5 @130.200.0.0 8.8.8.8 0X80000003 1630 0X243
5 @130.200.1.1 3.3.3.3 0X80000003 1695 0X83D3
5 @130.200.1.18 8.8.8.8 0X80000003 1630 0X42EF
5 @130.201.0.0 3.3.3.3 0X80000003 1695 0X8CCB
5 @130.201.0.0 8.8.8.8 0X80000003 1630 0XF54E
5 @130.202.0.0 3.3.3.3 0X80000003 1694 0X80D6
5 @130.202.0.0 8.8.8.8 0X80000003 1629 0XE959

ADVERTISEMENTS: 18
CHECKSUM TOTAL: 0X83472

Displaying a list of non-AS external advertisements: To display a list of non-AS
external advertisements that are in the OSPF link state database for a particular
OSPF area, enter the following command:
D TCPIP,TCPCS7,OMP,OSPF,DATABASE,AREAID=1.1.1.1
EZZ7853I AREA LINK STATE DATABASE 761
TYPE LS DESTINATION LS ORIGINATOR SEQNO AGE XSUM

1 @3.3.3.3 3.3.3.3 0X8000000F 879 0X8B11
1 @4.4.4.4 4.4.4.4 0X8000001A 713 0XA020
1 @7.7.7.7 7.7.7.7 0X80000013 711 0XA9A
1 @8.8.8.8 8.8.8.8 0X8000000D 861 0XBD81
3 @2.2.2.2 4.4.4.4 0X80000003 1676 0XC45C

Chapter 4. Routing 197

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

3 @5.5.5.4 7.7.7.7 0X80000003 880 0XE327
3 @5.5.5.5 7.7.7.7 0X80000003 880 0XDF29
3 @7.7.7.4 7.7.7.7 0X80000001 710 0X956E
3 @9.67.107.5 7.7.7.7 0X80000006 881 0X4A14
3 @9.67.107.7 7.7.7.7 0X80000003 880 0X4618
3 @9.67.108.2 4.4.4.4 0X80000003 1667 0XBDB1
3 @9.67.108.4 4.4.4.4 0X80000003 1658 0XB3B8
4 @2.2.2.2 4.4.4.4 0X80000003 1658 0XAC74
4 @5.5.5.5 7.7.7.7 0X80000003 880 0XC741

ADVERTISEMENTS: 14
CHECKSUM TOTAL: 0X884B0

Displaying current, run-time statistics and parameters for OSPF interfaces:
To display current, run-time statistics and parameters for OSPF interfaces, enter the
following command:
D TCPIP,TCPCS7,OMP,OSPF,INTERFACE
EZZ7849I INTERFACES 763
IFC ADDRESS PHYS ASSOC. AREA TYPE STATE #NBRS #ADJS
7.7.7.7 VIPA1A 1.1.1.1 VIPA N/A N/A N/A
9.67.104.7 NBMA7 1.1.1.1 MULTI 1 3 0
9.67.100.7 CTC7TO8 1.1.1.1 P-P 16 1 1
9.67.102.7 CTC7TO3 1.1.1.1 P-P 16 1 1
9.67.106.7 CTC7TO4 1.1.1.1 P-P 16 1 1
9.67.107.7 CTC7TO5 0.0.0.0 P-P 16 1 1
UNNUMBERED VL/0 0.0.0.0 VLINK 16 1 1

Displaying current, run-time statistics and parameters for a specific OSPF
interface: To display current, run-time statistics and parameters for a specific
OSPF interface, enter the following command:
D TCPIP,TCPCS7,OMP,OSPF,IF,NAME=CTC7TO4
EZZ7850I INTERFACE DETAILS 769

INTERFACE ADDRESS: 9.67.106.7
ATTACHED AREA: 1.1.1.1
PHYSICAL INTERFACE: CTC7TO4
INTERFACE MASK: 255.255.255.0
INTERFACE TYPE: P-P
STATE: 16
DESIGNATED ROUTER: 0.0.0.0
BACKUP DR: 0.0.0.0

DR PRIORITY: 1 HELLO INTERVAL: 10 RXMT INTERVAL: 5
DEAD INTERVAL: 40 TX DELAY: 1 POLL INTERVAL: 0
DEMAND CIRCUIT: OFF HELLO SUPPRESS: OFF SUPPRESS REQ: OFF
MAX PKT SIZE: 1024 TOS 0 COST: 1 AUTHTYPE: PASSWORD

NEIGHBORS: 1 # ADJACENCIES: 1 # FULL ADJS.: 1
MCAST FLOODS: 15 # MCAST ACKS: 4 DL UNICAST: OFF
MC FORWARDING: OFF

NETWORK CAPABILITIES:
POINT-TO-POINT
DEMAND-CIRCUITS

Displaying current, run-time statistics and parameters for OSPF neighbors:
To display current, run-time statistics and parameters for OSPF neighbors, enter the
following command:
D TCPIP,TCPCS7,OMP,OSPF,NBR
EZZ7851I NEIGHBOR SUMMARY 771
NEIGHBOR ADDR NEIGHBOR ID STATE LSRXL DBSUM LSREQ HSUP IFC
9.67.104.16 0.0.0.0 1 0 0 0 OFF NBMA7
9.67.104.25 0.0.0.0 1 0 0 0 OFF NBMA7
9.67.104.15 0.0.0.0 1 0 0 0 OFF NBMA7
9.67.100.8 8.8.8.8 128 0 0 0 OFF CTC7TO8
9.67.102.3 3.3.3.3 128 0 0 0 OFF CTC7TO3

198 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|

9.67.106.4 4.4.4.4 128 0 0 0 OFF CTC7TO4
9.67.107.5 5.5.5.5 128 0 0 0 OFF CTC7TO5
VL/0 4.4.4.4 128 0 0 0 OFF *

Displaying current run-time statistics and parameters for a specific OSPF
neighbor: To display current run-time statistics and parameters for a specific
OSPF neighbor, enter the following command:
D TCPIP,TCPCS7,OMP,OSPF,NBR,IPADDR=9.67.106.4
EZZ7852I NEIGHBOR DETAILS 779

NEIGHBOR IP ADDRESS: 9.67.106.4
OSPF ROUTER ID: 4.4.4.4
NEIGHBOR STATE: 128
PHYSICAL INTERFACE: CTC7TO4
DR CHOICE: 0.0.0.0
BACKUP CHOICE: 0.0.0.0
DR PRIORITY: 1
NBR OPTIONS: E

DB SUMM QLEN: 0 LS RXMT QLEN: 0 LS REQ QLEN: 0
LAST HELLO: 4 NO HELLO: OFF
LS RXMITS: 1 # DIRECT ACKS: 0 # DUP LS RCVD: 6
OLD LS RCVD: 0 # DUP ACKS RCVD: 1 # NBR LOSSES: 0

Displaying routes to other routers that have been calculated by OSPF: To
display routes to other routers that have been calculated by OSPF, enter the
following command:
D TCPIP,TCPCS7,OMP,OSPF,ROUTERS
EZZ7855I OSPF ROUTERS 781
DTYPE RTYPE DESTINATION AREA COST NEXT HOP(S)
ASBR SPF 2.2.2.2 0.0.0.0 2 9.67.106.4

BR SPF 4.4.4.4 0.0.0.0 1 9.67.106.4
ASBR SPF 5.5.5.5 0.0.0.0 1 9.67.107.5
ASBR SPF 3.3.3.3 1.1.1.1 1 9.67.102.3

BR SPF 4.4.4.4 1.1.1.1 1 9.67.106.4
ASBR SPF 8.8.8.8 1.1.1.1 1 9.67.100.8

Displaying the number of LSAs currently in the link state database: To
display the number of LSAs currently in the link state database, categorized by
type, enter the following command:
D TCPIP,TCPCS7,OMP,OSPF,DBSIZE
EZZ7854I LINK STATE DATABASE SIZE 783

ROUTER-LSAS: 8
NETWORK-LSAS: 0
SUMMARY-LSAS: 37
SUMMARY ROUTER-LSAS: 7
AS EXTERNAL-LSAS: 18
INTRA-AREA ROUTES: 24
INTER-AREA ROUTES: 1
TYPE 1 EXTERNAL ROUTES: 0

Displaying statistics generated by the OSPF routing protocol: To display
statistics generated by the OSPF routing protocol, enter the following command:
D TCPIP,TCPCS7,OMP,OSPF,STATS
EZZ7856I OSPF STATISTICS 785

OSPF ROUTER ID: 7.7.7.7
EXTERNAL COMPARISON: TYPE 2
AS BOUNDARY CAPABILITY: YES
IMPORT EXTERNAL ROUTES: RIP SUB
ORIG. DEFAULT ROUTE: NO
DEFAULT ROUTE COST: (1, TYPE 2)
DEFAULT FORWARD. ADDR.: 0.0.0.0

ATTACHED AREAS: 2 OSPF PACKETS RCVD: 821
OSPF PACKETS RCVD W/ERRS: 0 TRANSIT NODES ALLOCATED: 55
TRANSIT NODES FREED: 47 LS ADV. ALLOCATED: 263

Chapter 4. Routing 199

LS ADV. FREED: 201 QUEUE HEADERS ALLOC: 96
QUEUE HEADERS AVAIL: 96 MAXIMUM LSA SIZE: 976
DIJKSTRA RUNS: 9 INCREMENTAL SUMM. UPDATES: 4
INCREMENTAL VL UPDATES: 0 MULTICAST PKTS SENT: 746
UNICAST PKTS SENT: 107 LS ADV. AGED OUT: 0
LS ADV. FLUSHED: 22 PTRS TO INVALID LS ADV: 0
INCREMENTAL EXT. UPDATES: 49

Displaying the routes in the OMPROUTE routing table: To display all of the
routes in the OMPROUTE routing table, enter the following command:
D TCPIP,TCPCS7,OMP,RTTABLE
EZZ7847I ROUTING TABLE 796
TYPE DEST NET MASK COST AGE NEXT HOP(S)

SBNT 2.0.0.0 FF000000 1 1368 NONE
SPF 2.2.2.0 FFFFFFFC 3 1380 9.67.106.4
SPF 2.2.2.2 FFFFFFFF 3 1380 9.67.106.4
SBNT 3.0.0.0 FF000000 1 1549 NONE
SPF 3.3.3.0 FFFFFFFC 2 1561 9.67.102.3
SPF 3.3.3.3 FFFFFFFF 2 1561 9.67.102.3
SBNT 4.0.0.0 FF000000 1 1549 NONE
SPF 4.4.4.4 FFFFFFFC 2 1561 9.67.106.4
SPF 4.4.4.4 FFFFFFFF 2 1561 9.67.106.4
SBNT 5.0.0.0 FF000000 1 1549 NONE
SPF 5.5.5.4 FFFFFFFC 2 1567 9.67.107.5
SPF 5.5.5.5 FFFFFFFF 2 1567 9.67.107.5
SBNT 6.0.0.0 FF000000 1 1549 NONE
RIP 6.6.6.4 FFFFFFFC 2 30 9.67.103.6
SBNT 7.0.0.0 FF000000 1 1368 NONE
SPIA* 7.7.7.4 FFFFFFFC 3 1380 9.67.106.4
DIR* 7.7.7.7 FFFFFFFF 1 1574 VIPA1A
SBNT 8.0.0.0 FF000000 1 1549 NONE
SPF 8.8.8.8 FFFFFFFC 2 1545 9.67.100.8
SPF 8.8.8.8 FFFFFFFF 2 1545 9.67.100.8
SBNT 9.0.0.0 FF000000 1 1368 NONE
DIR* 9.67.100.0 FFFFFF00 1 1576 9.67.100.7
SPF 9.67.100.7 FFFFFFFF 2 1545 CTC7TO8
SPF 9.67.100.8 FFFFFFFF 1 1572 9.67.100.8
SPF 9.67.101.3 FFFFFFFF 2 1561 9.67.106.4
SPF 9.67.101.4 FFFFFFFF 2 1561 9.67.102.3
DIR* 9.67.102.0 FFFFFF00 1 1575 9.67.102.7
SPF 9.67.102.3 FFFFFFFF 1 1566 9.67.102.3
SPF 9.67.102.7 FFFFFFFF 2 1561 CTC7TO3
DIR* 9.67.103.0 FFFFFF00 1 1575 9.67.103.7
RIP 9.67.103.6 FFFFFFFF 1 30 9.67.103.6
SPF 9.67.105.4 FFFFFFFF 2 1545 9.67.100.8
SPF 9.67.105.8 FFFFFFFF 2 1561 9.67.106.4
DIR* 9.67.106.0 FFFFFF00 1 1576 9.67.106.7
SPF 9.67.106.4 FFFFFFFF 1 1566 9.67.106.4
SPF 9.67.106.7 FFFFFFFF 2 1561 CTC7TO4
DIR* 9.67.107.0 FFFFFF00 1 1577 9.67.107.7
SPF 9.67.107.5 FFFFFFFF 1 1574 9.67.107.5
SPF 9.67.107.7 FFFFFFFF 2 1566 CTC7TO5
SPF 9.67.108.2 FFFFFFFF 2 1380 9.67.106.4
SPF 9.67.108.4 FFFFFFFF 3 1380 9.67.106.4
SBNT 10.0.0.0 FF000000 1 1368 NONE
SPE2 10.1.1.0 FFFFFF00 0 1379 9.67.106.4
SPE2 10.1.1.1 FFFFFFFF 0 1379 9.67.106.4
SBNT 20.0.0.0 FF000000 1 1549 NONE
SPE2 20.1.1.0 FFFFFF00 0 1379 9.67.107.5
SPE2 20.1.1.1 FFFFFFFF 0 1379 9.67.107.5
RIP 30.0.0.0 FF000000 2 30 9.67.103.6
RIP 30.1.1.0 FFFFFF00 2 30 9.67.103.6
RIP % 30.1.1.4 FFFFFFFF 2 30 9.67.103.6
RIP % 30.1.1.8 FFFFFFFF 2 30 9.67.103.6
SPE2 130.200.0.0 FFFF0000 0 1379 9.67.100.8 (2)

200 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SPE2 130.200.1.1 FFFFFFFF 0 1379 9.67.102.3
SPE2 130.200.1.18 FFFFFFFF 0 1379 9.67.100.8
SPE2 130.201.0.0 FFFF0000 0 1379 9.67.100.8 (2)
SPE2 130.202.0.0 FFFF0000 0 1379 9.67.100.8 (2)

0 NETS DELETED, 4 NETS INACTIVE

Displaying the routes to a specific destination: To display information about the
routes to a specific destination, enter the following command:
D TCPIP,TCPCS7,OMP,RTTABLE,DEST=130.201.0.0
EZZ7874I ROUTE EXPANSION 798
DESTINATION: 130.201.0.0
MASK: 255.255.0.0
ROUTE TYPE: SPE2
DISTANCE: 0
AGE: 1485
NEXT HOP(S): 9.67.100.8 (CTC7TO8)

9.67.102.3 (CTC7TO3)

Displaying all of the RIP configuration information: To display all of the RIP
configuration information, enter the following command:
D TCPIP,TCPCS7,OMP,RIP,LIST,ALL
EZZ7843I RIP CONFIGURATION 800
TRACE: 0, DEBUG: 0, SADEBUG LEVEL: 0
STACK AFFINITY: TCPCS7
RIP: ENABLED
RIP DEFAULT ORIGINATION: ALWAYS, COST = 1
PER-INTERFACE ADDRESS FLAGS:
CTC7TO6 9.67.103.7 RIP-2 MULTICAST.

SEND NET AND SUBNET ROUTES
RECEIVE NO DYNAMIC HOST ROUTES
RIP INTERFACE INPUT METRIC: 1
RIP INTERFACE OUTPUT METRIC: 0

EZZ7844I RIP ROUTE ACCEPTANCE
ACCEPT RIP UPDATES ALWAYS FOR:

30.1.1.8 30.1.1.4

Displaying information about configured RIP interfaces: To display information
about configured RIP interfaces, enter the following command:
D TCPIP,TCPCS7,OMP,RIP,LIST,IFS
EZZ7843I RIP CONFIGURATION 806
TRACE: 0, DEBUG: 0, SADEBUG LEVEL: 0
STACK AFFINITY: TCPCS7
RIP: ENABLED
RIP DEFAULT ORIGINATION: ALWAYS, COST = 1
PER-INTERFACE ADDRESS FLAGS:
CTC7TO6 9.67.103.7 RIP-2 MULTICAST.

SEND NET AND SUBNET ROUTES
RECEIVE NO DYNAMIC HOST ROUTES
RIP INTERFACE INPUT METRIC: 1
RIP INTERFACE OUTPUT METRIC: 0
RIP RECEIVE CONTROL: ANY

RIP RECEIVE CONTROL indicates what level of RIP updates can be received over
the interface. Values are:

ANY RIP1 and RIP2 updates can be received

RIP1 Only RIP1 updates can be received.

RIP2 Only RIP2 updates can be received.

Chapter 4. Routing 201

|
|
|
|
|
|
|

|

Displaying the routes to be unconditionally accepted: To display the routes to
be unconditionally accepted, as configured with the Accept_RIP_Route statement,
enter the following command:
D TCPIP,TCPCS7,OMP,RIP,LIST,ACCEPTED
EZZ7844I RIP ROUTE ACCEPTANCE 808
ACCEPT RIP UPDATES ALWAYS FOR:

30.1.1.8 30.1.1.4

Displaying current run-time information about RIP interfaces: To display
current, run-time information about RIP interfaces, enter the following command:
D TCPIP,TCPCS7,OMP,RIP,IF
EZZ7859I RIP INTERFACES 810
IFC ADDRESS IFC NAME SUBNET MASK MTU DESTINATION
9.67.103.7 CTC7TO6 255.255.255.0 1024 0.0.0.0

Displaying current run-time information about a specific RIP interface: To
display current, run-time information about a specific RIP interface, enter the
following command:
D TCPIP,TCPCS7,OMP,RIP,IF,NAME=CTC7TO6
EZZ7860I RIP INTERFACE DETAILS 812
INTERFACE ADDRESS: 9.67.103.7
INTERFACE NAME: CTC7TO6
SUBNET MASK: 255.255.255.0
MTU 1024
DESTINATION ADDRESS: 0.0.0.0

RIP VERSION: 2 SEND POIS. REV. ROUTES: YES
IN METRIC: 1 OUT METRIC: 0
RECEIVE NET ROUTES: YES RECEIVE SUBNET ROUTES: YES
RECEIVE HOST ROUTES: NO SEND DEFAULT ROUTES: NO
SEND NET ROUTES: YES SEND SUBNET ROUTES: YES
SEND STATIC ROUTES: NO SEND HOST ROUTES: NO
RIP RECEIVE CONTROL: ANY

SEND ONLY: ALL

RIP RECEIVE CONTROL indicates what level of RIP updates can be received over
the interface. Values are:

ANY RIP1 and RIP2 updates can be received.

RIP1 Only RIP1 updates can be received.

RIP2 Only RIP2 updates can be received.

Displaying the global RIP filters: To display the global RIP filters, enter the
following command:
D TCPIP,TCPCS7,OMP,RIP,FILTERS
EZZ8016I GLOBAL RIP FILTERS 814
SEND ONLY: ALL

FILTERS: NOSEND 10.1.1.0 255.255.255.0
EZZ8026I IGNORE RIP NEIGHBOR

9.67.103.9
9.67.103.10

Sample OMPROUTE configuration files
The following is an example of a pure OSPF environment (from TCPCS4 in the
Figure 33 on page 158).
RouterID=4.4.4.4;
Area

Area_Number = 0.0.0.0;
Area

202 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|

Area_Number = 1.1.1.1;
OSPF_Interface

IP_Address=9.67.108.4
Name = CTC4TO2
Subnet_Mask=255.255.255.0
Attaches_To_Area=0.0.0.0
MTU = 1024
Cost0 = 1;

OSPF_Interface
IP_Address=9.67.106.4
Name = CTC4TO7
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
MTU = 1024
Cost0 = 1;

OSPF_Interface
IP_Address=9.67.105.4
Name = CTC4TO8
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
MTU = 1024
Cost0 = 1;

OSPF_Interface
IP_Address=9.67.101.4
Name = CTC4TO3
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
MTU = 1024
Cost0 = 1;

OSPF_Interface
IP_Address=4.4.4.4
Name = VIPA1A
Subnet_Mask=255.255.255.252
Attaches_To_Area=1.1.1.1
Cost0 = 1;

Virtual_Link
Virtual_Endpoint_RouterID=7.7.7.7
Links_Transit_Area=1.1.1.1;

The following is an example of mixed OSPF and RIP environments (from TCPCS7
in Figure 33 on page 158).
;**********************************
; OSPF Configuration Statements *
;**********************************
RouterID=7.7.7.7;
Area

Area_Number = 0.0.0.0;
Area

Area_Number = 1.1.1.1;
AS_Boundary_Routing

Import_Subnet_Routes=YES
Import_RIP_Routes=YES;

OSPF_Interface
IP_Address=9.67.107.7
Name = CTC7TO5
Subnet_Mask=255.255.255.0
Attaches_To_Area=0.0.0.0
MTU = 1024
Cost0 = 1;

OSPF_Interface
IP_Address=9.67.106.7
Name = CTC7TO4
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
MTU = 1024
Cost0 = 1;

Chapter 4. Routing 203

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

OSPF_Interface
IP_Address=9.67.102.7
Name = CTC7TO3
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
MTU = 1024
Cost0 = 1;

OSPF_Interface
IP_Address=9.67.100.7
Name = CTC7TO8
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
MTU = 1024
Cost0 = 1;

OSPF_Interface
IP_Address=9.67.104.7
Name = NBMA7
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
Non_Broadcast=YES
NB_Poll_Interval=180
MTU = 1024
Cost0 = 1
DR_Neighbor=9.67.104.15
No_DR_Neighbor=9.67.104.16
No_DR_Neighbor=9.67.104.25;

OSPF_Interface
IP_Address=7.7.7.7
Name = VIPA1A
Subnet_Mask=255.255.255.252
Attaches_To_Area=1.1.1.1
Cost0 = 1;

Range
IP_Address=9.67.101.0
Subnet_Mask=255.255.255.0
Area_Number=1.1.1.1
Advertise=NO;

Virtual_Link
Virtual_Endpoint_RouterID=4.4.4.4
Links_Transit_Area=1.1.1.1;

;*********************************
; RIP Configuration Statements *
;*********************************
Originate_RIP_Default

Condition=Always;
Accept_RIP_Route

IP_Address=30.1.1.4;
Accept_RIP_Route

IP_Address=30.1.1.8;
Filter=(nosend,10.1.1.0,255.255.255.0);
RIP_Interface

IP_Address=9.67.103.7
Name = CTC7TO6
Subnet_Mask=255.255.255.0
Receive_Dynamic_Hosts=NO
MTU = 1024
RipV2=YES;

The following is an example of a pure RIP environment (from TCPCS6 in Figure 33
on page 158).
RIP_Interface

IP_Address=9.67.103.6
Name = CTC6TO7
Subnet_Mask=255.255.255.0
MTU = 1024
Send_Static_Routes=YES

204 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

Send_Host_Routes=YES
RipV2=YES;

Interface
IP_Address=6.6.6.6
Name = VIPA1A
Subnet_Mask=255.255.255.252;

IPv6 dynamic routing
Enabling IPv6 router discovery in z/OS Communications Server requires no
additional z/OS Communications Server configuration. All that is needed is at least
one IPv6 interface that is defined and started, and at least one adjacent router
through that interface that is configured for IPv6 router discovery. If these things
exist, then z/OS Communications Server begins receiving router advertisements
from the adjacent routers. Depending on the configuration in the adjacent routers,
the following types of routes may be learned from the received router
advertisements:

v Default route for which the originator of the router advertisement is the next hop

v Direct routes (no next hop) to prefixes that reside on the link shared by z/OS
Communications Server and the originator of the router advertisement.

Multiple default routes and multiple direct prefix routes to a single prefix may be
learned through router advertisements. If an adjacent router resides on a link onto
which z/OS Communications Server TCPIP has multiple IPv6 interfaces, there will
be multiple routes to each route learned through the adjacent router’s router
advertisement (one route through each interface onto the link). Also, if default
routes are learned from the router advertisements originated by multiple adjacent
routers, there will be multiple default routes (one with each of these adjacent
routers as next hop). When this condition of multiple routes exists, TCP/IP will use
those routes according to the setting of the MULTIPATH parameter on the
IPCONFIG6 statement.

If there are static non-replaceable routes to the destinations in the router
advertisements, the dynamic routes will not be added to the stack routing table.

Verification of routing (Static and dynamic)
v If static routes are used, an indirect route must not be defined before the route to

its first hop is defined. The following example shows an incorrect configuration.
BEGINRoutes ;first BEGINRoutes in the profile
;Network/mask FirstHop LinkName PacketSize
Route 9.67.104.0/24 9.67.105.8 CTC4TO8 MTU 1500
Route 9.67.105.0/24 = CTC4TO8 MTU 1500
Route FEC0:0:0:A1B::/64 FE80::1:2:3:3 OSAQDIO46 MTU 5000
Route FE80::1:2:3:3/128 = OSAQDIO46 MTU 5000
ENDRoutes

When configured incorrectly, the following error messages are displayed:
EZZ0657I ROUTE LIST ENTRY ON LINE 28 FOR DESTINATION 9.67.104.0 IS
UNREACHABLE THROUGH INTERFACE 9.67.105.8 ON CTC4TO8
EZZ0657I ROUTE LIST ENTRY ON LINE 30 FOR DESTINATION FEC0:0:0:A1B:: IS
UNREACHABLE THROUGH INTERFACE FE80::1:2:3:3 ON OSAQDIO46

v If OMPROUTE is used for the OSPF protocol only and AUTOLOG is not
configured correctly (see “Autolog considerations for OMPROUTE” on page 172),
OMPROUTE will be periodically restarted and the following messages are
displayed:

Chapter 4. Routing 205

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|

$HASP100 OMPROUTE ON STCINRDR
$HASP373 OMPROUTE STARTED
IEF403I OMPROUT1 - STARTED

OMPROUT1 OMPROUTE BPXBATCH 0000
EZZ7800I OMPROUTE STARTING
EZZ7872I OMPROUTE FOUND ANOTHER ROUTING APPLICATION ALREADY ACTIVE
EZZ8074I OMPROUTE PROCESSING ERROR
EZZ7805I OMPROUTE EXITING ABNORMALLY - RC(11)
OMPROUT1 *OMVSEX BPXPRECP 0011
IEF404I OMPROUT1 - ENDED
$HASP395 OMPROUT1 ENDED

v If a configuration statement in the OMPROUTE configuration file has a missing
semicolon, the syntax checker might issue the following message:
EZZ7830I SYNTAX ERROR AT LINE 22 OF OMPROUTE CONFIGURATION FILE
PROCESSING END OF FILE

Verifying connections with NETSTAT, PING, and TRACERTE
The interfaces were verified with the instructions in Chapter 1, “Configuration
overview” on page 3. The first thing to verify is that the devices and interfaces are
started. In the case of point-to-point links like the CTCs in TCPCS4, the following
message is written to the z/OS console when the device starts:
EZZ4313I INITIALIZATION COMPLETE FOR DEVICE CTCE02

In the case of IPv6 interfaces like OSAQDIO46 in TCPCS4, the following message
is written to the z/OS console when the interface starts:
EZZ4340I INITIALIZATION COMPLETE FOR INTERFACE OSAQDIO46

The same information can be determined from NETSTAT DEV. Following is a
portion of the output of NETSTAT DEV with the CTCE02 device shown as ready.
The NETSTAT DEV can be issued on TCPCS4 and TCPCS7 to verify that the
devices on both systems are ready.
DEVNAME: CTCE02 DEVTYPE: CTC DEVNUM: 0E00

DEVSTATUS: READY
LNKNAME: CTC4TO7 LNKTYPE: CTC LNKSTATUS: READY

NETNUM: 0 QUESIZE: 0
BYTESIN: 488 BYTESOUT: 1092
ACTMTU: 32760

BSD ROUTING PARAMETERS:
MTU SIZE: 01500 METRIC: 01
DESTADDR: 0.0.0.0 SUBNETMASK: 255.255.255.0

MULTICAST SPECIFIC:
MULTICAST CAPABILITY: YES
GROUP REFCNT
----- ------
224.0.0.5 0000000001
224.0.0.1 0000000001

Following is a portion of the output of NETSTAT DEV with an IPv6 interface
(OSAQDIO46) shown as ready.
DEVNAME: OSAQDIO2 DEVTYPE: MPCIPA

DEVSTATUS: READY
INTFNAME: OSAQDIO46 INTFTYPE: IPAQENET6 INTFSTATUS: READY

NETNUM: 0 QUESIZE: 0 SPEED: 0000001000
BYTESIN: 592 BYTESOUT: 1008
MACADDRESS: 0002559A3F65
DUPADDRDET: 1
CFGROUTER: NON ACTROUTER: NON
RTRHOPLIMIT: 5
CFGMTU: NONE ACTMTU: 8992

MULTICAST SPECIFIC:

206 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

MULTICAST CAPABILITY: YES
REFCNT GROUP
------ -----
0000000001 FF02::1:FF03:1
0000000001 FF02::1

If the devices do not have a LnkStatus or IntfStatus of Ready, this must be resolved
before continuing. There are several things that might cause the LnkStatus or
IntfStatus to not be ready. For example, the device might not be defined to z/OS
correctly, the device might not be defined in PROFILE.TCPIP correctly, and so on.

You can PING each others hosts within the network to verify indirect routes exist.
ping 9.67.107.7
CS V1R4: Pinging host 9.67.107.7
Ping #1 response took 0.048 seconds.
READY
ping fec0:0:0:a1b:2:559a:3f65:3
CS V1R4: Pinging host fec0:0:0:a1b:2:559a:3f65:3
Ping #1 response took 0.051 seconds.
READY

Use TRACERTE to verify that the correct route is being taken for each indirectly
attached host:
tracerte 9.67.107.5
CS V1R4: Traceroute to 9.67.107.5 (9.67.107.5)
1 9.67.106.7 (9.67.106.7) 40 ms 7 ms 6 ms
2 9.67.107.5 (9.67.107.5) 9 ms 8 ms 9 ms
READY

Following is an IPv6 example for indirectly attached hosts:
tracerte fec0:0:0:a1c:2:36a4:b39a:7
CS V1R4: Traceroute to fec0:0:0:a1c:2:36a4:b39a:7
at IPv6 address: fec0:0:0:a1c:2:36a4:b39a:7
1 fe80::1:2:3:4
(fe80::1:2:3:4) 13 ms 25 ms 40 ms
2 fec0:0:0:a1c:2:36a4:b39a:7
(fec0:0:0:a1c:2:36a4:b39a:7) 29 ms 263 ms 196 ms

Chapter 4. Routing 207

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

208 z/OS V1R4.0 CS: IP Configuration Guide

Chapter 5. Virtual IP Addressing

This chapter contains information about the following topics:

v Terminology

v Introduction to VIPA

v Moving VIPA (Upon outage of TCP/IP)

v Static VIPAs, Dynamic VIPAs (DVIPAs), and Distributed Dynamic VIPAs

v Using static VIPAs

v Using Dynamic VIPAs (DVIPAs)

v Choosing which form of Dynamic VIPA to use

v Configuring Distributed DVIPAs — Sysplex Distributor

v Resolution of DVIPA conflicts

v Other considerations

v DVIPAs and routing protocols

Terminology
Virtual IP Address (VIPA)

A VIPA is a generic term that refers to an internet address on a z/OS host
that is not associated with a physical adapter. There are two types of
VIPAs:

v A Static VIPA cannot be changed except through a VARY
TCPIP,,OBEYFILE operator command.

v A Dynamic VIPA (DVIPA) can move to other TCP/IP stack members in a
sysplex or it can be activated by an application program or by a supplied
utility. Dynamic VIPAs are used to implement Sysplex Distributor as
described in “Considerations for VIPA” on page 65.

Distributed DVIPA
A distributed DVIPA, which is a special type of DVIPA, can distribute
connections within a Sysplex.

Dynamic routing
VIPAs are designed to interoperate with a dynamic routing daemon.
Therefore, it is highly recommended that a routing daemon be used on a
z/OS host that uses VIPAs.

Introduction to VIPA
Traditionally, an IP address is associated with each end of a physical link (or each
point of access to a shared-medium LAN), and the IP addresses are unique across
the entire visible network, which can be the Internet or a closed intranet. The
majority of IP hosts have a single point of attachment to the network, but some
hosts (particularly large server hosts) have more than one link into the network. A
TCP/IP host with multiple points of attachment also has multiple IP addresses, one
for each link.

Within the IP routing network, failure of any intermediate link or adapter disrupts
end user service only if there is not an alternate path through the routing network.
Routers can route IP traffic around failures of intermediate links in such a way that
the failures are not visible to the end applications or IP hosts. However, because an
IP packet is routed based on ultimate destination IP address, if the adapter or link

© Copyright IBM Corp. 2000, 2002 209

|
|

associated with the destination IP address fails, there is no way for the IP routing
network to provide an alternate path to the stack and application. Endpoint (source
or destination) IP adapters and links thus constitute single points of failure. While
this might be acceptable for a client host, where only a single user will be cut off
from service, a server IP link might serve hundreds or thousands of clients, all of
whose services would be disrupted by a failure of the server link.

The Virtual IP Address (VIPA) removes the adapter as a single point of failure by
providing an IP address that is associated with a stack without associating it with a
specific physical network attachment. Because the virtual device exists only in
software, it is always active and never experiences a physical failure. A VIPA has no
single physical network attachment associated with it. Also, the TCP/IP stack does
not maintain interface counters for VIPA interfaces (VIRTUAL links).

To the routing network, a VIPA appears to be a host address indirectly attached to
the z/OS. When a packet with a VIPA destination reaches the stack, the IP layer
recognizes the address and passes it to the protocol layer in the stack.

The failure of the physical interface can be extended to the failure of the TCP/IP
address space, the entire z/OS, or for planned outages. A VIPA just needs to move
to a backup stack, and the routes to the VIPA need to be updated. Then clients can
transparently connect to the backup stack. This process is known as VIPA Takeover.

VIPA Takeover improved with the introduction of Dynamic Virtual IP Address
(DVIPA) and Distributed Dynamic Virtual IP Address (Distributed DVIPA). The
DVIPA function improves VIPA Takeover by allowing a system programmer to plan
for system outages and provide for backup systems to take over without operator
intervention or external automation. The Distributed DVIPA function allows the
connections for a single DVIPA to be serviced by applications on several stacks
listed in the configuration statement (the distribution list). This adds the benefit of
limiting the scope of an application or stack failure, while also providing enhanced
work load balancing.

In general, z/OS configured with VIPA provides the following advantages:

v Automatic and transparent recovery from device and adapter failure.

When a device (for example, 3172, or channel-attached 2216) or adapter (for
example, a Token Ring or FDDI card) fails, if there is another device or link that
provides the alternate paths to the destination:

– IP will detect the failure, find an alternate path for each network, and route
outbound traffic to hosts and routers on those networks via alternate paths.

– Inbound and outbound traffic will not need to reestablish the active TCP
connections that were using the failed device.

v Recovery from z/OS TCP/IP stack failure (where an alternate z/OS TCP/IP stack
has the necessary redundancy).

Assuming that an alternate stack is installed to serve as a backup, the use of
VIPAs enables the backup stack to activate the VIPA address of the failed stack.

Connections on the failed primary stack will be disrupted but they can be
reestablished on the backup using the same IP as the destination. In addition,
the temporarily reassigned VIPA address can be restored to the primary stack
after the cause of failure has been removed.

Note: For connection requests originating at a z/OS TCP/IP stack, tolerance of
device and adapter failures can be achieved by using the SOURCEVIPA
option. For IPv6 connection requests to have the same tolerance, the IPv6

210 z/OS V1R4.0 CS: IP Configuration Guide

|

|

SOURCEVIPA configuration option must be enabled and a VIPA interface
must be specified with the SOURCEVIPAINT keyword on the INTERFACE
statement associated with the failed device or adapter.

With this option, static VIPA addresses are used as the source IP
addresses in outbound datagrams for TCP, RAW, UDP (except routing
protocols), and ICMP requests.

v Limited scope of a stack or application failure.

If a DVIPA is distributed among several stacks, the failure of only one stack
affects only the subset of clients connected to that stack. If the distributing stack
experiences the failure, a backup assumes control of the distribution and
maintains all existing connections.

v Enhanced workload management through distribution of connection requests.

With a single DVIPA being serviced by multiple stacks, connection requests and
associated workloads can be spread across multiple z/OS images according to
Workload Manager (WLM) and Service Level Agreement policies (for example,
QOS).

v Allows the non-disruptive movement of an application server to another stack so
that workload can be drained from a system in preparation for a planned outage.

Moving a VIPA (For TCP/IP outage)
While a VIPA provides non-disruptive rerouting of IP data during failure of a physical
interface, termination of the stack or the associated z/OS (including planned
outages) will disrupt connections or UDP sessions to applications on the terminated
stack. While failure of the TCP connection or UDP session will be visible to the
clients, the duration of the outage is determined by how long the client application is
unable to reconnect to an appropriate server application. Because it is common in
large enterprises to have multiple instances of an application residing on different
z/OS images, if the VIPA address can be moved to another stack that supports the
application, the clients can reconnect and the perceived outage will be over.

An IP address associated with a particular physical device is unavailable until the
owning stack is restarted; however, a VIPA is not associated with any particular
physical interface. If termination of a stack is detected and a suitable application
already is active on another stack, the VIPA can be moved. Connections on the
terminated stack will be disrupted, but they can be reestablished on the backup
stack using the original VIPA.

Movement of a static VIPA to a backup stack can be accomplished by using VARY
TCPIP,,OBEYFILE commands on the backup. The OBEYFILE data set must contain
an appropriate set of DEVICE, LINK, HOME, and optionally, BSDROUTINGPARM
statements for IPv4 static VIPAs or INTERFACE statements for IPv6 static VIPAs. If
OMPROUTE is used as the routing daemon, an appropriate interface statement is
needed in the OMPROUTE configuration file. If the TCP/IP configuration file with
the statements defining the VIPA is created in advance, the transfer can be
accomplished via automation. This procedure is documented in z/OS
Communications Server: IP Configuration Reference. Movement of a DVIPA, on the
other hand, can be accomplished by configuring a stack to backup a specific DVIPA
that is defined on another stack. In this case, failure of the defining stack causes
the DVIPA to move without operator intervention or extra automation. See “Planning
for Dynamic VIPA Takeover” on page 216 for more information. Regardless of the
type of VIPA to be moved, it is up to the system programmer or operator to ensure
that the VIPA is moved to a backup stack that has the appropriate server
applications.

Chapter 5. Virtual IP Addressing 211

|
|
|

|
|

|

|

|
|
|
|

In the absence of a failure, a VIPA is just like any other IP address, and routing for
a VIPA is the same as for an IP address associated with a physical link.

Static VIPAs, Dynamic VIPAs (DVIPAs), Distributed DVIPAs
z/OS TCP/IP stack supports two types of VIPAs: static and dynamic. Dynamic
VIPAs (DVIPAs) can be used to distribute connections in a sysplex. This is referred
to as a Distributed DVIPA.

All three VIPAs can coexist on a given stack, but there are differences in how these
VIPAs are configured and used.

Static VIPAs have the following characteristics:

v They can be activated during TCP/IP initialization or VARY TCPIP,,OBEYFILE
processing, and are configured using an appropriate set of DEVICE, LINK,
HOME, and optionally, OMPROUTE configuration statements or
BSDROUTINGPARMS statements for IPv4 Static VIPAs or INTERFACE
statements for IPv6 Static VIPAs.

v Using the SOURCEVIPA configuration option, static VIPAs can be used as the
source IP address for outbound datagrams for TCP, RAW, UDP (except routing
protocols), and ICMP requests. For IPv6 static VIPAs to be used as source
addresses, the SOURCEVIPA configuration option must be enabled and the VIPA
interface must appear on the SOURCEVIPAINT keyword on some other
INTERFACE statement. This provides tolerance of device and adapter failures for
connection requests originating at a z/OS TCP/IP stack.

v They can be moved to a backup stack after the original owning stack has failed,
by using VARY TCPIP,,OBEYFILE processing to configure the VIPA on the
backup stack and updating the routers.

v The number of static VIPAs on a stack is limited only by the range of host IP
addresses that are available for that host.

Dynamic VIPAs have the following characteristics:

v They can be configured to be moved dynamically from a failing stack to a backup
stack within the same sysplex without operator intervention or external
automation.

v They can be dynamically activated by an application program.

v They can distribute connections within a sysplex.

v They can be specified on a TCPSTACKSOURCEVIPA statement. This allows a
user to specify one Dynamic VIPA to be used as the source IP address for
outbound datagrams for TCP-only requests.

v Unlike static VIPAs, Dynamic VIPAs:

– Are limited to 256 per stack.

– Cannot be specified as the VIPA used by Enterprise Extender for connectivity
purposes. (See “Configuring static VIPAs for Enterprise Extender” on
page 214 for details.)

Distributed DVIPAs have the following characteristics:

v Have all the characteristics of DVIPAs, but cannot be dynamically activated by an
application program.

v One stack defines a DVIPA and advertises its existence to the network. Stacks in
the target distribution list activate the DVIPA and accept connection requests.

v Connection workload can be spread across several stacks.

212 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|

|
|
|
|
|

|

|
|
|

|

See “Configuring Distributed DVIPAs — Sysplex Distributor” on page 224 for more
detailed descriptions.

Using static VIPAs
The following sections describe how to configure static VIPAs, the special case of
static VIPAs and Enterprise Extender, and how to implement static VIPA Takeover.

Because a VIPA is associated with a z/OS TCP/IP stack and it is not associated
with a specific physical network attachment, it can be moved to a stack on any
image in the sysplex or even to any z/OS TCP/IP stack if the address fits into the
network configuration.

Configuring static VIPAs for a z/OS TCP/IP stack
To configure a static VIPA address in one stack, follow these steps:

1. When configuring static VIPAs for the IPv4 network, add VIPA DEVICE, LINK,
HOME, and optionally, BSDROUTINGPARMS statements for each static VIPA to
be defined. When configuring static VIPAs for the IPv6 network, add
INTERFACE statements of type VIRTUAL6 for each static VIPA to be defined.

Note: A VIPA link or VIPA interface cannot be coded on a static route in the
GATEWAY or BEGINROUTES statements.

2. For IPv4 networks, if tolerance of device and adapter failures is desired for
connection requests originating at a z/OS TCP/IP stack, specify the
SOURCEVIPA option in the IPCONFIG statement. For this option to work
properly, the receiving nodes in the network must be configured to recognize the
SOURCEVIPA addresses using the static or dynamic routing protocols.
Otherwise, timeouts for the connection or request responses will occur as a
result of the VIPA addresses being network unreachable. If
TCPSTACKSOURCEVIPA is specified, it overrides SOURCEVIPA for outbound
IPv4 TCP connections. For more information on configuring IPv4 SOURCEVIPA
or TCPSTACKSOURCEVIPA addresses, refer to z/OS Communications Server:
IP Configuration Reference.

3. For IPv6 networks, if tolerance of device and adapter failures is desired for
connection requests originating at a z/OS TCP/IP stack, specify the
SOURCEVIPA option in the IPCONFIG6 statement and specify a VIPA interface
with the SOURCEVIPAINTerface keyword on the INTERFACE statement of the
real (physical) interface. For more information on configuring IPv6
SOURCEVIPA addresses, refer to z/OS Communications Server: IP
Configuration Reference.

4. For host name resolution of a VIPA address, configure the domain name
servers to associate the host name with the VIPA.

5. Configure the routing daemon to advertise the presence of the VIPA (IPv4 only;
dynamic routing protocols for IPv6 are not supported).

Figure 34 on page 214 illustrates a simple configuration showing multiple network
attachments using a single static VIPA address. Since any other network interface
can be used with static VIPA’s, refer to “Setting up physical characteristics in
PROFILE.TCPIP” on page 115 for descriptions of other network interfaces. The
simple configuration will be used as the TCPCS6 system throughout this chapter.

Chapter 5. Virtual IP Addressing 213

|

|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

Configuring static VIPAs for Enterprise Extender
Defining at least one static VIPA is required by VTAM to access the IP network.
Since VTAM does not move within a sysplex, a dynamic VIPA cannot be used.
VTAM will use the VIPA address specified on the VTAM IPADDR start option. If the
option is not used, VTAM will use the first static VIPA in the HOME list. If remote
APPN nodes use a host name and not a host address to define the destination of
an Enterprise Extender connection, the domain name server must return the VIPA
address used by VTAM for the host name.

For more information about Enterprise Extender, refer to the following:

v z/OS Communications Server: SNA Network Implementation Guide

v http://www.ibm.com/software/network/library/whitepapers/eextender.html

v http://www.ibm.com/software/network/library/whitepapers/eemsthtm/eemst.htm

v IBM Redbook, SNA and TCP/IP Integration (SG24–5291–00)

TCPCS6
z/OS

Device Drivers

VIPA

Device1 Device2

TR1 TR2 ETH1 ETH2

LAN2

LAN1

9.2.1.1 .2 9.3.1.2

.3

.3

Router1

Router2

.2

10.1.1.1
Host

FE80::6:2900:40DC:217C
FEC0::6:2900:40DC:217C
5OC9:C2D4::6:2900:40DC:217C

FEC0::9:67:115:5
5OC9:C2D4:0:A:9:67:115:5

9.1.1.1

FE80::5:2900:40DC:217C
FEC0::5:2900:40DC:217C
5OC9:C2D4::5:2900:40DC:217C

9.3.1.1

FEC0::206:2AFF:FE66:C800

FEC0::1:206:2AFF:FE66:C800

FE80::260:8FF:FEF6:E46E
FEC0::1:9:67:114:44
5OC9:C2D4:0:1:260:8FF:FEF6:E46E

Figure 34. Static VIPA configuration

214 z/OS V1R4.0 CS: IP Configuration Guide

http://www.ibm.com/software/network/library/whitepapers/eextender.html
http://www.ibm.com/software/network/library/whitepapers/eemsthtm/eemst.htm

Note: This document is also available at http://www.redbooks.ibm.com.

Considerations when using static VIPAs with IPv6
When static VIPAs are configured for use with IPv6, it is recommended that the
prefixes of the IPv6 VIPA addresses be different than the prefixes used for
addresses assigned to real interfaces. This reduces the likelihood of address
collisions between the manually configured VIPA addresses and the autoconfigured
addresses of the real interfaces.

To allow other hosts that share links with the z/OS TCP/IP stack to access the IPv6
VIPA addresses, without the need for manual route configuration, a router on each
of the links should include the VIPA prefix in its router advertisements. The router
advertisements should define the prefix as being on-link and should indicate that
the prefix should not be used for autoconfiguration.

Planning for static VIPA Takeover and Takeback
Because a VIPA is associated with a z/OS TCP/IP stack and is not associated with
a specific physical network attachment, it can be moved to a stack on any image in
the sysplex or even to any z/OS TCP/IP stack as long as the address fits into the
network configuration. Moving a static VIPA can be done manually by an operator
or by customer-programmed automation. Movement of the static VIPA allows other
hosts that were connected to the primary stack to reestablish connections with a
backup TCP/IP stack using the same VIPA. After the primary TCP/IP stack has
been restored, the reassigned VIPA address can be moved back.

Consider the following when backing up and restoring a z/OS TCP/IP stack:

v All connections on the failing host will be disrupted.

v The client can use any ephemeral port number when reestablishing the
connection to the backup server.

v Having a different port number for the backup and primary server is not
recommended. For example, if the primary FTP used port 21 and the backup
FTP used port 1021, when backing up and restoring a z/OS TCP/IP stack, the
client would have to know whether to use port 21 or 1021.

Using Dynamic VIPAs (DVIPAs)
DVIPA support allows:

v Dynamic movement of a VIPA from a failing TCP/IP stack to a backup stack

v Dynamic allocation of a VIPA by an application program

Dynamic VIPAs (DVIPAs) are IP addresses like all other IP addresses associated
with a TCP/IP, and they appear as though they had been defined at the end of the
HOME list.

Configuring Dynamic VIPA (DVIPA) support
Unlike static VIPAs, DVIPAs are not configured using DEVICE, LINK, and HOME
statements. The configuration statements for the DVIPA support are contained
within the VIPADYNAMIC and ENDVIPADYNAMIC block and consist of the
following:

v VIPADEFINE and VIPABACKUP statements used to configure DVIPAs to be
dynamically moved from a failing TCP/IP to a backup TCP/IP

v VIPARANGE used to specify a range of IP addresses which may be dynamically
activated as a VIPA by an application program

Chapter 5. Virtual IP Addressing 215

|

|

|
|
|
|
|

|
|
|
|
|

http://www.redbooks.ibm.com

v VIPADELETE used to delete existing DVIPAs

v VIPADISTRIBUTE used to configure a DVIPA as a distributed DVIPA and
designate the target stacks

The following sections discuss how these statements are used to provide the
DVIPA support. For syntax details, see z/OS Communications Server: IP
Configuration Reference.

When Dynamic VIPAs (DVIPAs) are used for VIPA Takeover together with
DNS/WLM in a sysplex, code all of the DVIPAs in the sysplex under each host
name in the DNS forward domain data file for the cluster zone. This will circumvent
manual intervention in the DNS data files when a DVIPA is taken over or given back
and will not cause any undesirable effects in DNS/WLM function.

Planning for Dynamic VIPA Takeover
Movement by network management automation or operator intervention is not
always desirable. Operator intervention takes time and is subject to errors.
Automation requires proper detection of the failure and is also prone to error if the
failure does not produce the exact console messages anticipated.

Dynamic VIPA Takeover function addresses this problem. It is important to
understand that Dynamic VIPA Takeover does not introduce functions that could not
be accomplished by operator action or automation. It just removes the dependency
on human detection of the error or customer programming for automation. Dynamic
VIPA Takeover is completely accomplished by the TCP/IP stacks.

DVIPA Takeover is possible when a DVIPA is configured as active (via
VIPADEFINE) on one stack and as backup (via VIPABACKUP) on another stack
within the sysplex. When the stack on which the DVIPA is active terminates, then
the backup stack will automatically activate the DVIPA and notify the routing
daemon. For DVIPA Takeover to be useful, the applications that service the DVIPA
addresses must be available on the backup stacks. In the absence of the
application, the DVIPA will be active, but client connections to the application will
still fail.

A determination of how the workload will be distributed among the backup stacks
when the primary stack fails should be made. It is possible to designate a single
stack as a backup and move all the workload to it, or the workload can be spread
among several stacks. In the first case, only one DVIPA must be configured with a
VIPADEFINE statement on the primary stack, and only one VIPABACKUP
statement is required on the backup stack. The second option requires the definition
of a VIPABACKUP statement for each stack that will assume responsibility for a
subset of the primary’s workload.

After determining the workload distribution, each of the secondary stacks will
require a VIPABACKUP statement for the DVIPA it will be supporting.

The following example shows how to implement a single stack backup for multiple
applications.

216 z/OS V1R4.0 CS: IP Configuration Guide

|

Stack TCPCS:
Uses VIPADEFINE to define 201.2.10.11
Has a Web server running that binds to INADDR_ANY.

Web client programs use 201.2.10.11 as their destination address.
Has an FTP server running that binds to INADDR_ANY.

FTP client programs use 201.2.10.11 as their destination address.

Stack TCPCS3:
Uses VIPABACKUP to define 201.2.10.11 as backup for stack TCPCS.
Has a Web server running that binds to INADDR_ANY.
Has an FTP server running that binds to INADDR_ANY.

In the preceding scenario, when stack TCPCS goes down, stack TCPCS3 receives
all new connection requests for both the Web and FTP servers. FTP and Web client
programs continue to use 201.2.10.11 as their destination address, but they now
connect to stack TCPCS3.

The following example shows how to implement a multiple stack backup for multiple
applications.

Stack TCPCS:
Uses VIPADEFINE to define 201.2.10.11 and 201.2.10.12
Has a Web server running that binds to INADDR_ANY.

Web client programs use 201.2.10.11 as their destination address.
Has an FTP server running that binds to INADDR_ANY.

FTP client programs use 201.2.10.12 as their destination address.

Stack TCPCS2:
Uses VIPABACKUP to define 201.2.10.11 as backup for stack TCPCS.
Has a Web server running that binds to INADDR_ANY.

Stack TCPCS3:
Uses VIPABACKUP to define 201.2.10.12 as backup for stack TCPCS.
Has an FTP server running that binds to INADDR_ANY.

In the preceding scenario, when stack TCPCS goes down, new connections for the
Web server at 201.2.10.11 will connect with stack TCPCS2, and new connections
for the FTP server at 201.2.10.12 will connect with stack TCPCS3.

9.1.1.1 201.2.10.11
201.2.10.12

201.2.10.21
201.2.10.22

201.2.10.13

201.2.10.13
201.2.10.21
201.2.10.22

201.2.10.11
201.2.10.12
201.2.10.21
201.2.10.22

201.2.10.13
201.2.10.11
201.2.10.12

201.2.10.192-255 201.2.10.192-255 201.2.10.192-255

TCPCS6 TCPCS TCPCS2 TCPCS3

Active Active

DIST
Port

20,21

DIST
Port

20,21

Active Active

Backup
to TCPCS3

Backup
to TCPCS3

VIPA
Range

VIPA
Range

Backup
to TCPCS

Backup
to TCPCS2

Backup
to TCPCS2

Backup
to TCPCS

Figure 35. Sample DVIPA addressing in a sysplex environment

Chapter 5. Virtual IP Addressing 217

Different application uses of IP addresses and DVIPAs
Not all IP-based server applications relate to IP addresses in the same way.
Automated movement of DVIPAs, and the planning for dynamic VIPA Takeover,
must take this difference into account.

Some applications will accept client requests on any IP address by binding to
INADDR_ANY (for example, TN3270 or Web servers). The distinguishing feature of
such an application is the function it provides (the particular set of SNA applications
for TN3270 or the particular web pages for a Web server). If the function is
replicated across multiple z/OS images in the sysplex, as is often the case for
distributed workload, the DVIPA must merely be moved to a stack supporting the
application. This scenario is called the Multiple Application-Instance Scenario. For
the Multiple Application-Instance Scenario, the stacks in the sysplex do all the work
of activating a DVIPA in the event of a failure.

For other types of applications, each application instance must have a unique IP
address for one of the following reasons:

v The application instance cannot bind to INADDR_ANY.

v Clients might establish a relationship to that server application instance that can
span multiple TCP connections, and the client must get connected back to the
same server application instance while the relationship lasts.

This scenario is called the Unique Application-Instance Scenario and uses DVIPAs
that are activated with an ioctl or a bind().

To maintain the relationship between an application instance and its DVIPA, the
application must indicate to the stack that the DVIPA needs to be activated. This
occurs in the following cases:

v When the application instance issues a bind() function call and specifies an IP
address that is not active on the stack. The stack will activate the address as a
DVIPA, provided it meets certain criteria. When the application instance closes
the socket, the DVIPA is deleted.

v Some applications cannot be configured to issue bind() for a specific IP address,
but are Unique Application-Instance Scenario applications. For such applications,
a utility is provided (MODDVIPA), which issues SIOCSVIPA ioctl() to activate or
deactivate the DVIPA. This utility can be included in a JCL procedure or OMVS
script to activate the DVIPA before initiating the application. As long as the same
JCL package or script is used to restart the application instance on another node
in the event of a failure, the same DVIPA will be activated on the new stack. For
information about the authorization required to execute the MODDVIPA utility, see
“Using the MODDVIPA utility” on page 222.

Configuring Dynamic VIPAs
To allow continued and unchanged operation of static VIPAs in z/OS TCP/IP,
DVIPAs are defined with configuration statements in the PROFILE.TCPIP data set.
An overview of the relevant configuration statements is provided in the following
sections, and also see “Verifying the DVIPAs in a sysplex” on page 241 for a
description of the configuration statements. For an example of the
VIPADYNAMIC/ENDVIPADYNAMIC configuration statements and display
commands for Dynamic VIPA, see z/OS Communications Server: IP Configuration
Reference.

218 z/OS V1R4.0 CS: IP Configuration Guide

|
|

|

|
|
|

|
|

|
|
|

Configuring the Multiple Application-Instance Scenario
For the Multiple Application-Instance Scenario, each instance is assigned a unique
DVIPA. The VIPADEFINE keyword of the VIPADYNAMIC configuration statement is
used to create the DVIPA on the stack where the DVIPA is normally expected to be
active. When the VIPADEFINE statement is processed in a TCP/IP profile,
corresponding DEVICE, LINK, HOME, and BSDROUTINGPARMS statements are
generated automatically. Routing daemons are automatically informed.

Additional configuration is required on other stacks in the sysplex to indicate which
stack should take over the DVIPA in the event of a failure. The VIPADYNAMIC
statement has a VIPABACKUP keyword for this purpose. A VIPABACKUP
configures the DVIPA but does not activate it until it is necessary. Because more
than one TCP/IP can backup a single DVIPA, a rank parameter on the
VIPABACKUP statement determines the order in which several stacks will assume
responsibility for a DVIPA.

The stacks in the sysplex exchange information on all VIPADEFINEs and
VIPABACKUPs defined in the sysplex, so that all are aware of which stack should
take over a particular DVIPA. The list of backup stacks for a specific DVIPA can be
different from the list of backup stacks for all other DVIPAs.

In the Multiple Application-Instance Scenario, instances of the application in
question are activated among sysplex nodes according to some plan, presumably
related to balancing workload across available capacity. This activation is done
independently of VIPA Takeover. Configure the associated DVIPAs as follows:

1. For each instance of a particular application to be supported via DVIPA, add a
VIPADEFINE statement to the TCP/IP profile for the TCP/IP associated with the
application instance.

2. For each of the Dynamic VIPAs in Step 1, determine which application instance
or instances should take over the workload (considering probable capacity and
any other application-related considerations). If more than one TCP/IP is to
provide backup for a DVIPA, determine the order in which the selected TCP/IPs
should be designated as backup. Add a VIPABACKUP statement to each
TCP/IP that is to provide backup for the DVIPA, with appropriate rank values to
determine the order. Do this for each of the DVIPAs in Step 1.

3. Perform steps 1 and 2 for each other application to be supported by DVIPAs.

Note: It is possible to share a Dynamic VIPA among several different
applications, but in doing so, ensure that instances of all such
applications will exist together on any TCP/IP to which the DVIPA may be
moved in case of a failure.

After these steps are complete, start the affected TCP/IPs (or modify their
configuration using VARY TCPIP,,OBEYFILE), if applicable, configure DNS for the
application names, and start the application instances. From that point on, the
TCP/IPs in the sysplex will collaborate to ensure that each Dynamic VIPA is kept
active somewhere within the sysplex as long as there is at least one functioning
TCP/IP which has been designated as backup for the Dynamic VIPA.

Configuring the Unique Application-Instance Scenario
The Unique Application-Instance Scenario ties a DVIPA to a specific instance of an
application. To isolate errors in configuring applications, TCP/IP needs a mechanism
to identify permissible DVIPAs. This is provided with one or more VIPARANGE
statements. The VIPARANGE statement identifies a range of IP addresses which

Chapter 5. Virtual IP Addressing 219

|

can be activated as DVIPAs by an application instance. The VIPARANGE statement
consists of a subnet mask and an IP address and thus defines a subnet for
DVIPAs. More than one VIPARANGE statement with different ranges can be
defined on a TCP/IP. VIPARANGE does not itself cause any DVIPAs to be
activated. Rather, DVIPAs are activated either by an application issuing a bind() for
a specific IP address, by use of the SIOCSVIPA ioctl() command issued by an
authorized application, or by the MODDVIPA utility.

When an application issues bind() for a specific IP address or an address was
selected using the BIND keyword on the PORT statement, the receiving stack
checks it against addresses in the HOME list. If the IP address has already been
activated on this stack (whether for a physical device, a static VIPA, or a Dynamic
VIPA), the bind() execution is successful. If the IP address is not active on this
TCP/IP, the current VIPARANGEs are checked to see if the IP address falls within
one of them. If an appropriate VIPARANGE is found, it is activated as a DVIPA and
the operation succeeds. If no appropriate VIPARANGE is found, or if the IP address
is active elsewhere in the sysplex other than by a NONDISRUPTIVE bind(), the
request fails and bind() returns EADDRNOTAVAIL.

When an authorized application issues the SIOCSVIPA ioctl() command to create a
DVIPA, or when the MODDVIPA utility is executed in JCL or an OMVS script to
activate a DVIPA on behalf of an application instance, the current VIPARANGES are
checked to see whether the IP address falls within one of them. If an appropriate
VIPARANGE is found, and the IP address is not currently active on this TCP/IP or
elsewhere in the sysplex as an IP address or a VIPADEFINE/VIPABACKUP
Dynamic VIPA, then the IP address is activated as a DVIPA. However if no
appropriate VIPARANGE is found on this TCP/IP, or if the IP address is currently
defined on this TCP/IP or configured elsewhere in the sysplex as an IP address or
a VIPADEFINE/VIPABACKUP Dynamic VIPA, then the request fails with errno and
errnojr set to indicate the reason for the failure and the utility ends with a nonzero
condition code. See “Dynamic VIPA creation results” on page 236 for more
information.

Note: If the requested IP address has been activated as a Dynamic VIPA by a
bind() or SIOCSVIPA ioctl elsewhere in the sysplex, the result depends on
how the stacks were configured. See “Dynamic VIPA creation results” on
page 236 for more information.

In the Unique Application-Instance Scenario, each application instance is assigned
a unique IP address as its DVIPA. Before defining individual DVIPAs, one or more
blocks of IP addresses must be defined for these DVIPAs, and the individual
DVIPAs must be defined from within the blocks. Each block should be represented
as a subnet, so that a VIPARANGE statement can be defined for it.

Follow these steps when setting up any unique application instances:

1. For each application instance, assign a DVIPA from one of the blocks of IP
addresses for this purpose. Do not assign an IP address which is also assigned
to another application instance, or which is defined by VIPADEFINE for the
Multiple Application-Instance Scenario. Configure the application to use this
DVIPA (if it issues bind() for a particular IP address), or add the MODDVIPA
utility to the JCL or OMVS script and configure the MODDVIPA utility to activate
the DVIPA before starting the application, and to delete the DVIPA when the
application ends.

2. For each application instance, determine on which stack the application instance
will normally be executed and to which stacks the application instance could be

220 z/OS V1R4.0 CS: IP Configuration Guide

moved in case of failure of the normal stack or the application itself. For each
such stack, add a valid VIPARANGE statement to the profile.

Note: The dynamic VIPA must be within the VIPARANGE subnet. The
broadcast address and the net prefix cannot be used.

3. Perform steps 1 and 2 until all application instances have been allocated a
unique DVIPA.

The application restart strategy should ensure that the worst-case failure scenario
does not attempt to activate more than 256 DVIPAs on a single stack. If such an
attempt is made, activation of the 257th DVIPA will fail, with possible resulting loss
of connectivity from clients to the server application.

Note: The limit of 256 DVIPAs on a single TCP/IP applies to all DVIPAs, whether
defined by VIPADEFINE/ VIPABACKUP configuration statements, through a
VIPADISTRIBUTE statement on another stack, by a bind() call, or by
executing the MODDVIPA utility.

Defining a single block makes the definition process easier, but also provides less
individual control. Alternatively, since the smallest subnet consists of four IP
addresses, defining a unique subnet for each DVIPA in this scenario wastes three
other IP addresses that could have been used for DVIPAs.

Using the ’SIOCSVIPA’ ioctl command
An ioctl command ’SIOCSVIPA’ allows an application to create or delete a Dynamic
VIPA on the stack where the application is running. The application issuing the
’SIOCSVIPA’ ioctl command must be APF authorized and be running under a user
ID with SuperUser authority. If the new profile for the MODDVIPA program has been
defined under RACF, any user ID can be allowed to issue the SIOCSVIPA ioctl
simply by being permitted to use this profile. For more information, see “Defining a
RACF profile for MODDVIPA” on page 223.

To create a new Dynamic VIPA, the requested IP address must be within a subnet
that has been previously specified by a VIPARANGE configuration statement in the
PROFILE.TCPIP data set for this stack. The ’SIOCSVIPA’ ioctl command can be
used to delete any existing Dynamic VIPA on the stack, except for distributed
DVIPAs.

The following example shows how to set up the ’SIOCSVIPA’ ioctl command.
#include "ezbzdvpc.h" /* header that contains

the structure for
’SIOCSVIPA’ ioctl
and needed constants*/

struct dvreq dv; /* the structure passed
on the ioctl command*/

dv.dvr_version = DVR_VER1; /*version */
dv.dvr_length = sizeof(struct dvreq); /* structure length */
dv.dvr_option = DVR_DEFINE; /* to define a new

Dynamic VIPA. Use
DVR_DELETE to delete
a dynamic VIPA */

dv.dvr_addr.s_addr = inet_addr(my_ipaddr); /* where my_ipaddr is
a character string
in standard
dotted-decimal
notation */

rc = ioctl(s, SIOCSVIPA, &dv);

Chapter 5. Virtual IP Addressing 221

|
|
|
|
|
|
|

The ’SIOCSVIPA’ ioctl command sets nonzero errno and errnojr values to indicate
error conditions. Refer to z/OS Communications Server: IP and SNA Codes for a
description of the errnojr values returned.

Using the MODDVIPA utility
You can use the MODDVIPA utility to activate or delete a Dynamic VIPA. The utility
can be initiated from JCL or an OMVS script. MODDVIPA must be loaded from an
APF authorized library and be executed under a user ID with SuperUser authority.
The user ID must also have an OMVS segment defined (or defaulted). If the new
profile for the MODDVIPA program has been defined under RACF, any user ID can
execute the MODDVIPA program simply by being permitted to use this profile. For
more information, see “Defining a RACF profile for MODDVIPA” on page 223.

Note: In V2R8, this utility was called EZBXFDVP. The EZBXFDVP name will
continue to work as it did in V2R8, but MODDVIPA is the preferred name
and will be used throughout this document.

Input parameters: The input parameters for the utility are:

-p <tcpipname>
Specifies the TCP/IP which is to create or delete a DVIPA.

-c <IPaddress> or -d <IPaddress>
Specifies to create (-c) or delete (-d) the address (IP address) specified.

Notes:

1. The input parameters -p, -c, and -d must be entered in lowercase.

2. <tcpipname> must be entered in upper case.

3. <IPaddress> is dotted-decimal notation.

4. To create a DVIPA, the specified IP address must be within a subnet that has
been previously specified by a VIPARANGE configuration statement in the
PROFILE.TCPIP data set for the specified TCP/IP.

Output: The MODDVIPA utility sets the following exit (completion) codes for
create (-c):

0 Success: The DVIPA was activated.

4 Warning: The requested DVIPA was not activated because the specified IP
address is already active on this stack.

8 Error: The IP address was not defined as a DVIPA on this TCP/IP.

12 An error was found in the input parameters

The MODDVIPA utility sets the following exit (completion) codes for delete (-d):

0 Success: The Dynamic VIPA was deleted.

8 Error: The requested DVIPA was not deleted.

12 An error was found in the input parameters

Notes:

1. When an error is detected, the ernno text and errnojr value are printed to stderr.

2. If the IP address requested for the DVIPA is not within a VIPARANGE
configured on this stack, completion code 8 is returned even if the IP address is
currently active on this stack

Examples

222 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|

Within JCL:
//TCPDVP EXEC PGM=MODDVIPA,REGION=0K,TIME=1440, X
// PARM=’POSIX(ON) ALL31(ON)/-p TCPCS3 -c 1.2.3.4’

From OMVS shell:
moddvipa -p TCPCS3 -c 1.2.3.4

Defining a RACF profile for MODDVIPA
You can restrict access to the MODDVIPA (EZBXFDVP) program by defining a
RACF profile under the SERVAUTH class and specifying the user IDs that are
authorized to execute the SIOCSVIPA ioctl or the MODDVIPA utility program. You
can decide on the level of control that is appropriate for your installation.

To restrict access to the SIOCSVIPA ioctl (and thus the MODDVIPA utility), you can
define a RACF profile using the following example:

RDEFINE SERVAUTH (EZB.MODDVIPA.system_name.tcpip_name)
UACC(NONE)

PERMIT EZB.MODDVIPA.system_name.tcpip_name
ACCESS(READ) CLASS(SERVAUTH) ID(USER1)

where system_name is the name of the MVS system where the ID will execute the
MODDVIPA utility or issue the SIOCSVIPA ioctl, and tcpip_name is the jobname of
the TCP/IP started task. The jobname for started tasks, such as TCP/IP, is derived
depending on how it is started:

v If the START command is issued with the name of a member in a cataloged
procedure library (for example, S TCPIPX), the jobname will be the member
name (for example, TCPIPX).

v If the member name on the START command is qualified by a started task
identifier (for example, S TCPIPX.ABC), the jobname will be the started task
identifier (for example, ABC). The started task identifier is not visible to all MVS
components, but TCP/IP uses it to build the RACF resource name.

v The JOBNAME parameter can also be used on the START command to identify
the jobname (for example, S TCPIPX,JOBNAME=XYZ).

v The JOBNAME can also be included on the JOB card.

In this example, user ID USER1 is being permitted to invoke the MODDVIPA utility
(and thus the SIOCSVIPA ioctl).

If this RACF profile is created, the user ID must be permitted to access this profile
or else the SIOCSVIPA ioctl (and thus the MODDVIPA utility) will fail with a
’permission denied’ error, regardless of SuperUser authority.

Also note that before the RACF profiles take effect, a refresh of these profiles might
be required. This can be accomplished by the following RACF command:
SETROPTS RACLIST(SERVAUTH) REFRESH

For more information, refer to z/OS Security Server RACF Security Administrator’s
Guide.

Choosing which form of Dynamic VIPA support to use
The following sections explain which of the new features should be used for the
type of application being used.

Chapter 5. Virtual IP Addressing 223

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|

|
|

|
|
|

|
|

|

|
|

When should VIPADEFINE and VIPABACKUP be used to define a Dynamic
VIPA?

v One or more applications bind to INADDR_ANY and exist on multiple TCP/IPs.

v Dynamic VIPA Takeover is desired.

v The DVIPA does not need to be deleted when the application is stopped.

When should VIPARANGE and bind() be used to define a Dynamic VIPA?

v The application cannot bind to INADDR_ANY or Dynamic VIPA Takeover is not
desired.

v The IP address to which the application binds can be controlled by the user. The
application’s first explicit bind (the listening socket) will remain for the life of the
application. Otherwise, the DVIPA will be removed everytime the application’s
DVIPA owning socket is closed, and re-added everytime there is a new DVIPA
owning socket (another explicit bind has been done and the DVIPA does not
exist).

v Automatic deletion of the Dynamic VIPA when the application is stopped is
acceptable.

v A specific Dynamic VIPA address must be associated with a specific application.

v The application is not APF authorized, or not run under a user ID with SuperUser
authority.

When should VIPARANGE and the MODDVIPA utility (or ioctl command
’SIOCSVIPA’) be used to define a Dynamic VIPA?

v The application cannot bind to INADDR_ANY or Dynamic VIPA Takeover is not
desired.

v The IP address to which the application binds is known but cannot be controlled
by the user.

v Automatic deletion of the Dynamic VIPA when the application is stopped is not
acceptable.

v The MODDVIPA utility (or application issuing the ioctl command) will be run from
an APF authorized library and under a user ID with SuperUser authority.

Configuring Distributed DVIPAs — Sysplex Distributor
A Distributed DVIPA exists on several stacks, but is advertised outside the sysplex
by only one stack. This stack receives all incoming connection requests and routes
them to all the stacks in the distribution list for processing. This provides the benefit
of distributing the workload of incoming requests and providing additional fail-safe
precautions in the event of a server failure.

You can distribute connections destined for a Dynamic VIPA (DVIPA) by adding a
VIPADISTribute configuration statement for a previously defined Dynamic VIPA. The
order of the statements is important. The VIPA is first VIPADEFined and then
VIPADISTributed. Another TCP/IP can act as a backup for the Distributed DVIPA by
properly coding a VIPABackup statement; the backup will perform the routing
function in the event of a failure. The options specified on a VIPADISTribute
statement are inherited by a backup stack unless the second stack has its own
VIPADISTribute statement, in which case it will use that VIPADISTribute statement
for distributing. You can also code a VIPADISTribute statement with just the
VIPABackup statement and not for the VIPADEFine statement. This would allow
workload distribution only during a primary outage.

224 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|

|

|

You can change the distribution of a DVIPA after a backup stack has activated it.
However, if the backup stack did not not have its own distribution defined by a
VIPADISTRIBUTE statement before it activated the DVIPA, any distribution changes
made while the DVIPA is active on the backup stack are temporary. Those changes
will be in effect while the DVIPA remains active on the backup stack, but will not be
remembered if this stack takes over the DVIPA again in the future.

Following is an example of a properly coded Distributed VIPA:
IPCONFIG SYSPLEXROUTING DATAGRAMFWD DYNAMICXCF 193.9.200.4 255.255.255.240 1
VIPADYNAMIC

VIPADEFINE 255.255.255.192 9.67.240.02
VIPADISTRIBUTE DEFINE 9.67.240.02 PORT 20 21 8000 9000 DESTIP

193.9.200.2
193.9.200.4
193.9.200.6

ENDVIPADYNAMIC

To enable the TCP/IP to forward connections, Datagram Forwarding must be
enabled (specify DATAGRAMFWD in the IPCONFIG statement). There are several
configuration changes that can be made to affect the method the distributing stack
will use to forward connections to the target stacks. In each of the following items,
all participating stacks is used to refer to the distributing stack and all target stacks.

WLM-based forwarding
To enable the distributing stack to forward connections based upon the
workload of each of the target stacks, configure all participating stacks for
WLM GOAL mode and specify SYSPLEXROUTING in the IPCONFIG
statement in all participating stacks. This will register all participating stacks
with WLM and will allow the distributing stack to request workload
information from WLM.

WLM/QoS-based forwarding
To enable the distributing stack to forward connections based upon a
combination of workload information and network performance information
(TCP retransmissions and timeouts), configure all participating stacks for
WLM GOAL mode, specify SYSPLEXROUTING in the IPCONFIG statement
in all participating stacks and also define a Sysplex Distributor Performance
Policy on the target stacks. For information on configuring these policies,
see “Sysplex Distributor policy example” on page 573.

Random forwarding
In the absence of any of the above configuration changes, the distributing
stack will randomly select one of the target stacks for each connection.

Whether the distributing stack is performing WLM-based forwarding,
WLM/QoS-based forwarding, or random forwarding, Sysplex Distributor Routing
Policies can further affect the distribution of connections. Sysplex Distributor
Routing Policies, configured on the distributing stack, are used to specify a set of
target stacks for a given set of traffic. For example, all traffic destined to a given
port/DVIPA from a specified subnet can be assigned one group of target stacks,
while traffic for the same port/DVIPA from another subnet can be assigned to a
different group of target stacks. For more information on configuring these types of
policies, see “Sysplex Distributor policy example” on page 573.

When some targets are running WLM COMPAT mode and some are running WLM
GOAL mode, the target stacks running WLM COMPAT mode will not be selected to
service any requests. Only WLM GOAL mode targets will be selected when both
COMPAT and GOAL modes exist.

Chapter 5. Virtual IP Addressing 225

Each distributing stack and each target stack must have a DYNAMICXCF address.
When using Sysplex Distributor, do not define an IUTSAMEH link. These links will
be created automatically from the DYNAMICXCF statement. This address is used
by other distributing stacks as a destination point. Refer to z/OS Communications
Server: IP Configuration Reference for directions for coding DYNAMICXCF on the
IPCONFIG statement. For more information on additional configuration parameters
required, also see the usage notes related to the DYNAMICXCF parameter under
the IPCONFIG statement in z/OS Communications Server: IP Configuration
Reference.

The VIPADISTribute statement specifies how new connection requests are routed to
a set of candidate target stacks. The VIPADISTRIBUTEd DVIPA is followed by up to
four ports, in this case the well-known ports for FTP and the ports for a custom
application. Up to 32 target TCP/IPs follow the DESTIP keyword and are identified
by their respective Dynamic XCF IP addresses. The VIPADISTribute statement may
also specify DESTIP ALL, in which case all current and future stacks with activated
Dynamic XCF may participate in the distribution as candidate target stacks. As an
application listens to one of the specified ports on each listed TCP/IP, the routing
TCP/IP begins to forward connections to that stack.

Sysplex wide source VIPA
Sysplex Distributor addresses the requirement of providing to clients outside a
parallel sysplex a single-IP-address appearance to application instances spread
across the sysplex, and also the distribution of the incoming work among the
various instances. Many applications are part of a cooperative network of
applications, and the sysplex applications that serve as clients to end users might
also have to initiate (client-like) outbound connection requests to cooperating
applications. The SOURCEVIPA feature allows applications to attain independence
of any physical adapter, but SOURCEVIPA is limited to statically defined VIPAs
within a stack. Different instances of the same application using Sysplex Distributor,
and thus having a single IP address for inbound connection requests, will use
different IP addresses for their outbound connection requests.

These problems are resolved by allowing a single sysplex wide Dynamic VIPA
(DVIPA) to be used as the source IP address for TCP applications and to have the
sysplex stacks collaborate on assigning ephemeral ports to prevent duplicate
connection 4-tuples (combination of source and destination IP addresses and
ports). These solutions are provided by sysplex wide dynamic source VIPAs for
TCP connections and SYSPLEXPORTS.

Sysplex wide dynamic source VIPAs for TCP connections
The TCPSTACKSOURCEVIPA keyword on the IPCONFIG statement allows users
to specify a single DVIPA to be used as a source IP address for TCP applications
that initiate outbound connections on that stack. TCPSTACKSOURCEVIPA is only in
effect when SOURCEVIPA is enabled and an application issues a connect() without
a bind(). TCPSTACKSOURCEVIPA overrides other forms of source IP selection for
all TCP applications that issue the connect() without a bind().

If you specify TCPSTACKSOURCEVIPA and do not specify SOURCEVIPA in a
profile, a warning message is issued and TCPSTACKSOURCEVIPA will not be
enabled. Also note that, while specifying a DVIPA as the TCPSTACKSOURCEVIPA
address is most useful, any IP address in the home list can be used. Furthermore,
the address specified does not need to be active on the stack at profile processing
time. For example, a valid TCPSTACKSOURCEVIPA address can be an address

226 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

that falls within a VIPARANGE statement [and can be created with the MODDVIPA
utility or an application bind() request], or an address that will be a target address
on this stack for sysplex distribution.

Rules governing conflicts and takeover for this DVIPA activation are the same as
the current rules for DVIPAs created by an application issuing bind(). This includes
the function that the DVIPA will be deleted when the application closes the socket.
For best performance, or to avoid the DVIPA being deleted when the first
application to use it closes its socket, the system programmer might want to use the
MODDVIPA utility to activate the DVIPA.

If the IP address is not an active DVIPA on the stack and cannot be made active as
an application-initiated DVIPA (VIPARANGE), then the connect() call will go through
normal source IP selection. A warning message will be issued no more than once
every five minutes (to avoid flooding the system console), indicating an attempt to
use the address specified in TCPSTACKSOURCEVIPA failed.

TCPSTACKSOURCEVIPA can be coded on all target stacks. The target
TCPSTACKSOURCEVIPA statements can specify individual unique addresses, or
can be duplicates of those specified on the distributing stack (a target DVIPA).
Specifying the same DVIPA address for TCPSTACKSOURCEVIPA on the distributor
and all target stacks creates a sysplex wide dynamic source VIPA and raises the
concern for coordination of ephemeral ports across the sysplex.

For information on diagnosing sysplex wide dynamic source VIPAs for TCP
connections problems, see z/OS Communications Server: IP Diagnosis.

SYSPLEXPORTS
Whenever two or more application instances use the same source IP address and
initate connections to the same destination IP address and port, sysplex wide
coordination of assignment of ephemeral ports is required so that the 4-tuple for
each connection remains unique. As long as the source IP address is on a single
stack, this coordination is not a problem because the stack manages assignment of
ephemeral ports. However, with Sysplex Distributor applications, multiple application
instances might desire to initiate connections using the same distributed DVIPA,
potentially to the same destination IP address and port, so uniqueness of the
connection 4-tuples cannot be guaranteed unless the stacks collaborate across the
sysplex for ephemeral port assignment for distributed DVIPAs. This can be done by
adding the optional SYSPLEXPORTS parameter to the VIPADISTRIBUTE
statement.

SYSPLEXPORTS must be specified on the first VIPADISTRIBUTE statement
processed for a particular DVIPA. It cannot be enabled once a DVIPA has been
configured for distribution. Once enabled, it cannot be disabled until all distribution
has been deleted for the DVIPA.

When a distributed DVIPA can be active on more than one target stack,
SYSPLEXPORTS can be specified to cause the stacks to collaborate in the
assignment of ephemeral ports for outbound initiated TCP connections. This
ensures that two different connections do not end up with the same connection
4-tuple.

At profile processing time, a stack whose profile contains a SYSPLEXPORTS
parameter on a VIPADISTRIBUTE statement will connect to the coupling facility
EZBEPORT structure containing sysplex port assignment information. (The structure
will be a list structure with an entry for each DVIPA address with a

Chapter 5. Virtual IP Addressing 227

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

VIPADISTRIBUTE with SYSPLEXPORTS specified anywhere in the sysplex. The
first stack to connect to the EZBEPORT structure for a particular DVIPA will create
an entry for that DVIPA in the coupling facility.) The stack will create and initialize, in
the EZBEPORT structure, a sublist for this DVIPA of assigned ports for this stack.

The stack also maintains a list of allowable ephemeral ports on this stack, which is
basically any port number above 1023 that has not been reserved for TCP by a
PORT or PORTRANGE statement. Only port number values in this list will be
allocated for use by this stack for its SYSPLEXPORTS DVIPAs. Since this list is
unique to a particular stack and determined by stack configuration, a port number
that is not permissible for one stack because it has been reserved might be
allowable for another stack, and could in fact be allocated for use by that stack for a
SYSPLEXPORTS DVIPA.

When an application issues a TCP bind() with port 0 or a connect() request, and the
bind() or connect() request uses a distributed DVIPA as the source address
(whether by the application explicitly binding the socket to the designated DVIPA or
by the stack assigning the TCPSTACKSOURCEVIPA address) and the Distributed
DVIPA is designated as SYSPLEXPORTS, TCP/IP will receive an unassigned port
from the coupling facility structure that is allowable as an ephemeral port on the
stack (not otherwise reserved by PORT or PORTRANGE). The stack will assign
that ephemeral port as the source port for the TCP connection request, and the
coupling facility structure will be updated to show the port as assigned.

This means that the maximum number of simultaneously active outbound
connections using sysplex wide ephemeral port assignment is approximately 63000
for a particular distributed DVIPA, and is exactly equal to all port numbers between
1024 and 65535 that have not been reserved with a PORT or PORTRANGE
configuration statement on all stacks at the same time. This is the same as for
ephemeral port assignment within a single stack. That is, a single z/OS TCP stack
supports no more than about 63000 simultaneously active, locally initiated TCP
connections whose source ports are ephemeral ports assigned by the stack. If a
stack is unable to successfully obtain an ephemeral port from the coupling facility
for a SYSPLEXPORTS DVIPA, the connection request will be terminated with an
error indication.

When a connection ends, and the connection’s ephemeral port was a sysplex wide
ephemeral port, the stack will update the coupling facility structure entry for that
SYSPLEXPORTS DVIPA to indicate that the specific ephemeral port is once again
available for assignment.

For information on diagnosing SYSPLEXPORTS problems, see z/OS
Communications Server: IP Diagnosis.

Sysplex Wide Security Associations
Sysplex Wide Security Associations (SWSA) is enabled by the addition of the
subparameter DVIPSEC to the FIREWALL parameter on the IPCONFIG statement.
To take advantage of the functions described here, you must add this subparameter
to your primary (including Sysplex Distributor hosts) and backup hosts. It is not
necessary to add DVIPSEC to hosts that serve only as targets for Sysplex
Distributor. For more information on configuring SWSA, see z/OS Communications
Server: IP Configuration Reference.

228 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|

|
|
|
|
|
|
|

SWSA also requires the use of a coupling facility structure, EZBDVIPA. For
information on the setup and use of the EZBDVIPA coupling facility structure, see
z/OS Communications Server: SNA Network Implementation Guide.

Dynamic IPSec security associations (SA), negotiated by IKE, can use a DVIPA
address as the SA endpoint. Manually configured SAs are not supported by SWSA.
For more information on IPSec, refer to z/OS Security Server Firewall Technologies.

When using SWSA, there are two possible configurations to consider:

v DVIPA takeover

v Sysplex Distributor

To support IPSec in conjunction with DVIPA takeover and Sysplex Distributor, some
IKE and IPSec configuration is required. Loss of access to the coupling facility is
also discussed in the following subsections.

For information on diagnosing SWSA problems, see z/OS Communications Server:
IP Diagnosis.

DVIPA takeover
When a DVIPA is moved during DVIPA takeover (planned or unplanned), SWSA
automatically re-establishes new IPSec SAs with the same security service
characteristics as the SAs that existed on the host that previously owned the
DVIPA. The SA re-establishment is transparent to the client that owns the other end
of the SA. That is, the SA re-establishment looks like a normal SA refresh. For
example, as shown in Figure 36 on page 230, during DVIPA takeover, DVIPA
192.168.253.4 is taken over by the backup host, and SAs are transparently
re-established between the client and the backup host.

Chapter 5. Virtual IP Addressing 229

|
|
|

|
|
|

|

|

|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

The IKE running on behalf of the TCP stack of the DVIPA owner is responsible for
all IKE SA negotiations. The TCP stack owning the DVIPA is responsible for
keeping the coupling facility updated with information needed to re-establish the
SAs in the event of a DVIPA takeover. When a takeover occurs, the IKE on the
backup host assumes responsibility for renegotiating new SAs based on the stored
information read from the coupling facility during the takeover by the TCP stack of
the new DVIPA owner.

Sysplex Distributor
TCP traffic protected by an IPSec SA with a sysplex-distributed DVIPA endpoint can
be distributed to target hosts. IPSec cryptography for inbound traffic is performed on
the target host whenever possible. If not possible, the distributor performs the
cryptography before forwarding the packet to the target stack. IPSec cryptography
for outbound traffic is performed on the target host, and then sent directly into the
network without being routed through the distributor. Figure 37 on page 231 shows
the target stack performing the cryptography for the inbound and outbound traffic.

Original Owning Host
MVS A

Security
Associations

MVS Coupling Facility

Client

Security
Associations
Re-established

Backup Host
MVS B

TCP A TCP B

DVIPA
192.168.253.4

192.168.253.4

EZBDVIPA

DVIPA
takeover

DVIPA
192.168.253.4

Figure 36. DVIPA takeover with SWSA

230 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

The IKE running on behalf of the distributor TCP stack (the DVIPA owner) is
responsible for all IKE SA negotiations. The distributor stack keeps the master copy
of the SA associated with the DVIPA. Whenever a new SA is negotiated or
refreshed and the SA is installed in the distributor stack, a copy (shadow) of the SA,
which contains information necessary to perform IPSec cryptography, is sent within
the sysplex to the target hosts. The shadow SAs enable the distribution of
cryptography to the target stacks. The coupling facility is used as a central
repository for SA replay protection sequence numbers used for outbound
operations. The SA lifesizes (bytes sent and received over an SA) are maintained in
the master SA.

Using IPSec with DVIPAs and Sysplex Distributor
To support IPSec in conjunction with DVIPA takeover and Sysplex Distributor, some
IKE and IPSec configuration on the original or distributing host must be replicated
onto all systems that can either serve as a backup host for a VIPA takeover or a
target host for Sysplex Distributor. This includes IP Security policy that affects traffic
using DRVIPA (from an IKE definition perspective).

v From a stack perspective, all anchor rules that are applicable to DRVIPA traffic
must be identical on all systems. In addition, the ordering of the rules must allow
for consistent application of security policy on all systems.

v To be considered a sysplex wide SA, the SA negotiated that applies to DVIPAs
must be at a granularity no coarser than host for the local address. That is, a

Distributing Host
MVS A

Security
Associations

MVS Coupling Facility

Client

Shadow
Security
Associations

Target Host
MVS B

TCP A TCP B

DVIPA
192.168.253.4

192.168.253.4

EZBDVIPA

IPSec Protected
TCP Packet

DVIPA
192.168.253.4

Figure 37. Sysplex Distributor with SWSA

Chapter 5. Virtual IP Addressing 231

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

dynamic SA cannot use a subnet or range that encompasses a DVIPA address.
This rule ensures that on a DVIPA Giveback the SA can be moved from host to
host without concerns about an SA being applicable to both the backup and
primary host simultaneously. If such a dynamic SA is negotiated, the IPSec traffic
using it cannot be distributed or recovered through the DVIPA takeover support.

Loss of access to coupling facility
If access is lost to the coupling facility containing the DVIPA structure EZBDVIPA, it
is possible the TCP connections using this DVIPA could terminate and new
connections needing IPsec will fail to establish. Loss of access could be caused by
any of the following:

v A disconnect from the coupling facility structure.

v The structure is rebuilt.

v The structure encounters a critical storage shortage.

Loss of coupling facility access should only affect connections that are being
encrypted or authenticated and whose filter rule is defined at a host-based
granularity (no ports defined). Once access to EZBDVIPA is restored, the sessions
can be re-established.

Resolution of Dynamic VIPA conflicts
The same Dynamic VIPA can exist on more than one stack in the Sysplex, playing
different roles on the different stacks. The TCP/IP stacks collaborate to prevent
conflicting definitions. For example, at any given time only one stack will advertise a
given Dynamic VIPA to the routers.

Potentially conflicting Dynamic VIPA definitions can arise during profile processing
or as the result of changes within the sysplex due to a stack or application failure or
as the result of movement of workload to a different stack. The following scenarios
are examples of dynamic VIPA conflict resolution handled automatically by the
TCP/IP stacks. For a summary of dynamic VIPA conflict identification and resolution,
see “Dynamic VIPA creation results” on page 236.

Restart of the original VIPADEFINE TCP/IP after an outage
When a dynamic VIPA is defined using VIPADEFINE on one TCP/IP, and other
stacks are designated as backup using VIPABACKUP statements for the same
dynamic VIPA, the stack with the highest backup rank for that DVIPA will activate it
if or when the VIPADEFINE stack fails.

If the failed stack is later restarted with the same VIPADEFINE profile statement, it
is likely that connections to that DVIPA will exist on the backup stack that now has
the DVIPA activated and advertised to the routers. How and when ownership of the
DVIPA is returned to the restarted stack is determined by how the DVIPA was
originally configured.

VIPADEFINE MOVEABLE IMMEDIATE
If the DVIPA was originally configured with MOVEABLE IMMEDIATE, the following
occurs:

v The DVIPA ownership is immediately transferred to the restarting stack which
adds the DVIPA to its HOME list and the routers are dynamically notified. The
restarted stack receives all new connections for that DVIPA. The stack also can
receive packets for existing connections, and it routes these to the backup stack
to preserve those connections.

232 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|

|
|
|
|
|

|

|

|

|
|
|
|

v At the same time, the backup stack notifies the routers that it no longer is the
owner of the DVIPA.

– If there are no current connections to the DVIPA, it is removed from the
HOME list on the backup stack and it reverts to backup status.

– If there are any existing connections, the DVIPA remains in the HOME list of
the backup stack and the DVIPA is put into Moving status until the last
existing connection is terminated. At that time, the DVIPA is removed from the
HOME list and reverts to backup status.

v IBM recommends this form of a planned DVIPA take back occur only during low
periods of connection activity. This gives the attached routers time to update their
routing tables and avoid connections being reset due to receiving an
ICMP_HOST_UNREACH from the router.

Notes:

1. To ensure preservation of existing connections on the prior owning stack, you
must define DYNAMICXCF and DATAGRAMFWD on the IPCONFIG statement.

2. MOVEABLE IMMEDIATE is the default for V2R10 and later.

3. The behavior described for MOVEABLE IMMEDIATE applies only when both the
backup and the restarted stack are running V2R10 or later. If either the
restarted stack or the backup stack is running V2R8, the behavior is the same
as described in “VIPADEFINE MOVEABLE WHENIDLE”.

VIPADEFINE MOVEABLE WHENIDLE
If the DVIPA was originally configured with MOVEABLE WHENIDLE (or the
restarted or backup stack is running V2R8), the following occurs:

v If it appears that there are no active connections to the DVIPA on the backup
stack:

– The DVIPA is removed from the HOME list on the backup stack and reverts to
backup status.

– The restarted stack assumes ownership of the DVIPA by adding it to its
HOME list and notifying the routers.

v If there are existing connections to the DVIPA on the backup stack:

– Ownership of the DVIPA remains with the backup stack. The DVIPA on the
restarting stack is placed in backup status at the head of the backup list for
the DVIPA.

– The backup stack periodically checks to see if it has any active connections to
the DVIPA.

When or if it appears that there are no active connections for the DVIPA, the
following occurs:

- The DVIPA is removed from the HOME list on the backup stack and reverts
to backup status.

- The restarted stack assumes ownership of the DVIPA by adding it to its
HOME list and notifying the routers.

Notes:

1. A small period of time exists between the check for connections and the
movement of the dynamic VIPA to the restarted stack. If connections are
made to the old host (the backup stack) in this interval, they will be
broken.

2. During the time that TCP/IP is periodically checking for connections,
TCP/IP does not refuse new connections because this would be the same
as an outage. If moving the work back to the restarted stack is more
important than maintaining uninterrupted service to all clients, then the

Chapter 5. Virtual IP Addressing 233

system operator can use VARY TCPIP,,OBEYFILE to delete the dynamic
VIPA on the backup stack with the VIPADELETE profile statement. This
causes the restarted stack to immediately activate the DVIPA. (Optionally,
the OBEYFILE data set can contain a VIPABACKUP statement following
the VIPADELETE statement. This will restore the stack as a backup
stack.)

Movement of unique application-instance (BIND)
A dynamic VIPA is created when any application binds to a nonexistent, specific IP
address falling within a configured VIPARANGE on that stack.

In the case of a stack failure, the same application could be started on another
stack and (assuming the new stack also has an appropriate VIPARANGE
configured) when the application binds to the same IP address, the dynamic VIPA is
created on the second stack. Future client connections to that IP address are
routed to the second stack where the application is now running.

However, if the same (or a different) application is started on a second stack and
attempts to create the same dynamic VIPA using a bind() while it exists on the first
stack, the end result is determined by how the VIPARANGE was configured on the
stack where the first bind() occurred.

VIPARANGE (DEFINE) MOVEABLE NONDISRUPTIVE
If the first stack is configured with VIPARANGE MOVEABLE NONDISRUPTIVE, the
following occurs:

v The DVIPA ownership is immediately transferred to the second stack which adds
the DVIPA to its HOME list and dynamically notifies the routers. This stack will
now receive all new connections for the DVIPA.

v At the same time, the first stack notifies the routers that it no longer is the owner
of the DVIPA, and puts the DVIPA into moving status. The DVIPA remains in
moving status (and in the first stacks HOME list) until the application closes the
socket.

v Existing connections on the first stack are preserved. If the second stack
receives packets intended for existing connections, it routes the packets to the
first stack.

Notes:

1. To ensure preservation of existing connections on the prior owning stack, you
must define DYNAMICXCF and DATAGRAMFWD on the IPCONFIG statement.

2. NONDISRUPTIVE is the default for V2R10 and later.

3. The applications that create dynamic VIPAs via BIND() do not have to be
authorized (so you might want to specify DISRUPTIVE).

4. Both stacks must be running V2R10 or later to get non-disruptive behavior. If
either stack is running V2R8, the result will be as described in “VIPARANGE
(DEFINE) MOVEABLE DISRUPTIVE”.

VIPARANGE (DEFINE) MOVEABLE DISRUPTIVE
If the first stack is configured with VIPARANGE MOVEABLE DISRUPTIVE (or if
either stack is running V2R8), the following occurs:

v The bind() request for the application on the second stack will fail.

v The DVIPA on the first stack is not affected.

234 z/OS V1R4.0 CS: IP Configuration Guide

|

|

Note: If movement of the application from the first to the second stack is intended,
the application must be ended on the first stack before it is started on the
second stack.

Movement of a unique APF-authorized application instance (ioctl)
APF-authorized applications running under a user ID with SuperUser authority have
the ability to activate a Dynamic VIPA with the SIOCSVIPA ioctl() either within the
application itself or by invoking the MODDVIPA utility. Because this is a controlled
environment, it is assumed configuration errors are minimized or avoided and the
usage is correct. Thus, even if the requested DVIPA is currently active on another
TCP/IP stack via BIND() or ioctll(), the DVIPA will be immediately activated on this
stack. What happens on the other stack is determined by how the VIPARANGE was
configured on that stack.

VIPARANGE (DEFINE) MOVEABLE NONDISRUPTIVE
If the first stack is configured with VIPARANGE MOVEABLE NONDISRUPTIVE, the
following occurs:

v The DVIPA ownership is immediately transferred to the second stack which adds
the DVIPA to its HOME list and dynamically notifies the routers.

v At the same time, the first stack notifies the routers that it no longer is the owner
of the DVIPA, and puts the DVIPA into moving status. The DVIPA remains in
moving status (and in the first stack’s HOME list) until the DVIPA is deleted on
that stack via the VIPADELETE profile statement or the SIOCSVIPA ioctl
DELETE option.

v Existing connections on the first stack are preserved. If the second stack
receives packets intended for existing connections, it will route the packets to the
first stack.

Notes:

1. NONDISRUPTIVE is the default for V2R10 and later.

2. Both stacks must be running V2R10 or later to get non-disruptive behavior. If
either stack is running V2R8, the result will be as described in “VIPARANGE
(DEFINE) MOVEABLE DISRUPTIVE”.

VIPARANGE (DEFINE) MOVEABLE DISRUPTIVE
If the first stack is configured with VIPARANGE MOVEABLE DISRUPTIVE (or if
either stack is running V2R8), the following occurs:

v The ioctl request for the application on the second stack succeeds. The DVIPA is
added to the HOME list on the second stack, and the routers are dynamically
notified.

v The DVIPA on the first stack is deleted.

Note: Any existing connections to the DVIPA on the first stack are broken.

Same Dynamic VIPA as VIPADEFINE and BIND(), SIOCSVIPA ioctl, or
MODDVIPA utility

Regardless of careful implementation, it is possible that the same IP address is
inadvertently selected for VIPADEFINE and for use with BIND(), SIOCSVIPA ioctl,
or the MODDVIPA utility. Because the application scenarios are quite different, this
must be an error.

If this duplicate DVIPA address conflict occurs on the same TCP/IP, the second
attempt might fail. If an IP address is specified in a VIPADEFINE and that same IP
address has already been activated on the TCP/IP by an application via BIND(), the

Chapter 5. Virtual IP Addressing 235

|
|

SIOCSVIPA ioctl, or the MODDVIPA utility is used, the VIPADEFINE will be rejected
during VARY TCPIP,,OBEYFILE processing. If an IP address is activated via
VIPADEFINE, and the application does a BIND(), ioctl(), or the MODDVIPA utility is
used, the BIND() will succeed, but the ioctl() will fail with a nonzero errno and the
MODDVIPA utility will set a nonzero condition to indicate that the IP address already
exists.

The same situation could also occur on two different TCP/IPs in the sysplex.
Because the TCP/IPs are exchanging information among themselves, if the two
attempts are far enough apart in time, the second attempt will be caught
immediately and rejected. However, it is possible that the attempt will be made
almost simultaneously on two different TCP/IPs, such that neither TCP/IP is yet
aware of the attempt on the other TCP/IP. If both attempt such an activation, and
the exchange of information then shows a conflict, the internal sysplex time stamps
are used to determine which attempt was really first. The one that appears to be
first is allowed to continue, and the Dynamic VIPA is deleted from the later TCP/IP.
While such a simultaneous attempt is somewhat unpredictable in respect to which
one will succeed, the Dynamic VIPA will remain active on only one TCP/IP, and
examination of messages will indicate which TCP/IP successfully created the DVIPA
and on which TCP/IP it was rejected.

Dynamic VIPA creation results
Table 12 summarizes the results of attempting to create a Dynamic VIPA when it (or
the same IP address for HOME statement) already exists in the sysplex.

Table 12. Summary of Dynamic VIPA creation results

First action Second action Result if second action is
on the same stack

Result if the second
action is on a different
stack within the sysplex

bind() bind() Second bind() succeeds,
but no new VIPA is created.

If both stacks are running
V2R10 or later, and the
first BIND DVIPA was
created with MOVEABLE
NONDISRUPTIVE:

v On stack 2, bind()
succeeds

v On stack 1, the BIND
VIPA remains in the
HOME list
(unadvertised) and any
existing connections
are preserved

v New connections to
that IP address go to
the application on stack
2.

Otherwise, second bind
fails.

bind() ioctl() ioctl() fails with warning
condition code, but the
application associated with
the ioctl is still able to use
the Dynamic VIPA.

ioctl() succeeds, bind is
deleted (even if BIND
DVIPA was created as
MOVEABLE
NONDISRUPTIVE)

bind() VIPADEFINE VIPADEFINE fails. VIPADEFINE fails.

bind() VIPABACKUP VIPABACKUP fails. VIPABACKUP fails.

236 z/OS V1R4.0 CS: IP Configuration Guide

|

Table 12. Summary of Dynamic VIPA creation results (continued)

First action Second action Result if second action is
on the same stack

Result if the second
action is on a different
stack within the sysplex

bind() HOME See note. See note.

ioctl() bind() bind() succeeds, no new
VIPA is created.

bind() fails.

ioctl() ioctl() Second ioctl() fails with
warning condition code, but
the application associated
with the ioctl is still able to
use the Dynamic VIPA.

Second ioctl() succeeds.

If both stacks are running
V2R10 or later, and the
ioctl DVIPA on stack 1
was created with
MOVEABLE
NONDISRUPTIVE, the
DVIPA on stack 1 remains
in the HOME list
(unadvertised) and any
existing connections are
preserved. Otherwise, the
ioctl DVIPA on stack 1 is
deleted and any existing
connections are broken.

ioctl() VIPADEFINE VIPADEFINE fails. VIPADEFINE fails.

ioctl() VIPABACKUP VIPABACKUP fails. VIPABACKUP fails.

ioctl() HOME See note. See note.

VIPADEFINE bind() bind() succeeds, but no
new VIPA is created.

bind() fails.

VIPADEFINE ioctl() ioctl() fails. ioctl() fails.

VIPADEFINE VIPADEFINE VIPADEFINE fails if the
VIPADEFINE statement
specifies a different mask
or MOVEABLE setting than
the first VIPADEFINE
specified. If the second
VIPADEFINE statement is
an exact duplicate of the
first, the second
VIPADEFINE is ignored
with no error message.

Second VIPADEFINE
succeeds but activation
on stack 2 might be
deferred.

If both stacks are running
V2R10 or later, and the
DVIPA was created on
stack 1 as MOVEABLE
IMMEDIATE:

v Second VIPADEFINE is
activated immediately

v Any connections to the
DVIPA on stack 1 are
preserved. (DVIPA
stays in HOME list
unadvertised)

Otherwise, the second
VIPADEFINE activation is
deferred until there are no
connections on stack 1, at
which point, stack 1
reverts to backup status.

VIPADEFINE VIPABACKUP VIPABACKUP fails. Both succeed.

VIPADEFINE HOME See note. See note.

Chapter 5. Virtual IP Addressing 237

|

Table 12. Summary of Dynamic VIPA creation results (continued)

First action Second action Result if second action is
on the same stack

Result if the second
action is on a different
stack within the sysplex

VIPABACKUP bind() bind() fails. If the IP address is
already active on the
bind() stack, the bind()
will succeed. Otherwise,
the bind() fails.

VIPABACKUP ioctl() ioctl() fails. ioctl() fails.

VIPABACKUP
is backup
status

VIPADEFINE VIPADEFINE succeeds,
replaces the VIPABACKUP.

VIPADEFINE succeeds.

VIPABACKUP
in active status
(after takeover)

VIPADEFINE VIPADEFINE rejected Note: The VIPABACKUP
DVIPA is MOVEABLE
IMMEDIATE or
WHENIDLE depending
how the original
VIPADEFINE DVIPA was
created.

If both stacks are running
V2R10 or later, and the
VIPABACKUP DVIPA is
MOVEABLE IMMEDIATE:

v The VIPADEFINE is
activated immediately.

v Any connections to the
DVIPA on stack 1 are
preserved (DVIPA stays
in HOME list
unadvertised).

v When there are no
more connections,
stack 1 reverts to
backup status.

Otherwise, the
VIPADEFINE activation
on stack 2 is deferred
until there is no stack 1,
at which point, stack 1
reverts to backup status.

VIPABACKUP VIPABACKUP Second VIPABACKUP
succeeds.

Second VIPABACKUP
succeeds.

VIPABACKUP HOME See note. See note.

HOME bind() bind() succeeds, but no
new VIPA is created.

bind() fails.

HOME ioctl() ioctl() fails. ioctl() fails.

HOME VIPADEFINE VIPADEFINE fails. VIPADEFINE fails.

HOME VIPABACKUP VIPABACKUP fails. VIPABACKUP fails.

Note: Defining the same IP address in the HOME statement as an existing Dynamic VIPA
will not be rejected by the TCP/IP stack, but it is likely to cause routing problems.

238 z/OS V1R4.0 CS: IP Configuration Guide

Other considerations
The following sections describe other considerations you should understand
regarding Dynamic VIPA support.

Mixture of types of Dynamic VIPAs within subnets
Any particular IP address can be used in only one way as a Dynamic VIPA. As
described in previous sections, a Dynamic VIPA can be defined either via
VIPADEFINE or by application action within a valid VIPARANGE, but not both.
However, within a subnet defined as a VIPARANGE, some IP addresses can be
used for VIPADEFINE, and others may be assigned to unique application instances,
without conflict, as long as the limit of a total of 256 active and backup Dynamic
VIPAs on a single TCP/IP is not exceeded. TCP/IP will make no attempt to reject a
VIPADEFINE Dynamic VIPA that also falls within a VIPARANGE. This allows
installations with limited availability of IP addresses to assign individual addresses
to either application scenario, without having to define separate subnets and use up
additional IP addresses in that manner.

MVS failure and Sysplex Failure Management
The TCP/IPs in a Sysplex use MVS XCF Messaging to exchange information about
Dynamic VIPAs. When a TCP/IP fails or is ended by operator command, but the
underlying MVS remains active, the other TCP/IPs are immediately notified, and
takeover of VIPADEFINE Dynamic VIPAs is automated and very fast.

However, when an MVS fails, there is normally an operator message on the
console requiring a response (WTOR). Until this response is made by an operator
or automation, the other MVSs do not notify the remaining TCP/IPs in the sysplex
of the failure of the TCP/IP on the failing MVS. This can delay automated backup of
VIPADEFINED Dynamic VIPAs. Sysplex Failure Management (SFM) can be used to
automate the required response to the console message of the failing MVS. Refer
to z/OS MVS Setting Up a Sysplex for information on how to set up SFM to avoid
the requirement for a manual response and speed backup of VIPADEFINED
Dynamic VIPAs.

For more information, refer to z/OS Communications Server: IP Diagnosis.

Applications and Dynamic VIPAs
While most applications support multiple instances in a sysplex, very few
applications expect IP addresses to move around under them. TCP applications use
TCP connections to form a relationship between particular client and server
instances to exchange data over an extended period. They rely on notification of
TCP connection termination to initiate recovery and to reestablish a new
relationship (possibly from a client to a different server). Conversely, most UDP
applications do the equivalent function at the application layer. Movement of an IP
address to a different server could be confusing to the client, unless the new server
also is aware of the state of the client work.

UDP applications whose interactions consist of atomic interactions (a single request
followed by one or more responses, with no state information maintained at the
server between requests) can use Dynamic VIPAs in the Multiple
Application-Instance Scenario. However, if the server application maintains state
information between interactions (for example, NFS), then moving a Dynamic VIPA
to another server might not work unless the client/server application protocol can

Chapter 5. Virtual IP Addressing 239

detect the discontinuity. In that case, the Unique Application-Instance Scenario
might apply, which would require the restart of the server instance on another
TCP/IP.

In addition, the following types of work are not appropriate for distribution with
distributed dynamic VIPA:

v Applications that establish affinity with a particular TCP/IP stack, such as SNMP.

v Applications that bind to ephemeral ports.

v FTP servers that receive the PASV command for a distributed DVIPA that did not
specify SYSPLEXPORTS. The PASV command is supported when
SYSPLEXPORTS was specified on the VIPADISTribute statement of the
distributed DVIPA that is the destination IP address being used by the FTP
server. This command requests the FTP server to bind() on a data port that is not
the default data port, or the one specified on the VIPADISTribute statement, and
to wait for a connection rather than initiate one on receipt of a transfer command
(for example, RETR).

Example of configuring Dynamic and Distributed VIPAs
The TCP/IP profiles needed to implement Dynamic VIPA(DVIPA) on multiple
systems in a sysplex are shown in the following examples. The VIPADEFINE and
VIPABACKUP statements allow Automatic Dynamic VIPA Takeover to occur if
needed (see “Configuring the Multiple Application-Instance Scenario” on page 219),
and the VIPARANGE statements allow Dynamic VIPAs to be dynamically created by
an application or by the MODDVIPA utility (see “Configuring the Unique
Application-Instance Scenario” on page 219). The VIPADISTRIBUTE statements
allow a single VIPA to be shared among several TCP/IPs. Including the
SOURCEVIPA and TCPSTACKSOURCEVIPA parameters on the IPCONFIG
statement, on each target stack with the same Dynamic VIPA specified, enables a
single DVIPA address to be used as a sysplex-wide source DVIPA address for
outbound TCP connections.
TCPCS
IPCONFIG DATAGRAMFWD SYSPLEXROUTING SOURCEVIPA TCPSTACKSOURCEVIPA 201.2.10.11
DYNAMICXCF 193.9.200.1 255.255.255.240 14
VIPADYNAMIC
VIPADEFINE 255.255.255.240 201.2.10.11 201.2.10.12
VIPADISTRIBUTE 201.2.10.11 SYSPLEXPORTS PORT 20 21 DESTIP ALL
VIPADISTRIBUTE 201.2.10.12 PORT 20 21 DESTIP 193.9.200.2
VIPABACKUP 100 201.2.10.13
VIPABACKUP 80 201.2.10.21
VIPABACKUP 80 201.2.10.22
VIPARANGE DEFINE 255.255.255.192 201.2.10.192
ENDVIPADYNAMIC

TCPCS2
IPCONFIG DATAGRAMFWD SYSPLEXROUTING SOURCEVIPA TCPSTACKSOURCEVIPA 201.2.10.11
DYNAMICXCF 193.9.200.2 255.255.255.240 1
VIPADYNAMIC
VIPADEFINE 255.255.255.192 201.2.10.13
VIPABACKUP 100 201.2.10.11 201.2.10.21
VIPABACKUP 75 201.2.10.12 201.2.10.22
VIPARANGE DEFINE 255.255.255.192 201.2.10.192
ENDVIPADYNAMIC

TCPCS3
IPCONFIG DATAGRAMFWD SYSPLEXROUTING SOURCEVIPA TCPSTACKSOURCEVIPA 201.2.10.11
DYNAMICXCF 193.9.200.3 255.255.255.240 1
VIPADYNAMIC
VIPADEFINE 255.255.255.192 201.2.10.21 201.2.10.22
VIPABACKUP 10 201.2.10.11 201.2.10.12 201.2.10.13
VIPARANGE DEFINE 255.255.255.192 201.2.10.192
ENDVIPADYNAMIC

240 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

TCPCS6
IPCONFIG DATAGRAMFWD SYSPLEXROUTING SOURCEVIPA TCPSTACKSOURCEVIPA 201.2.10.11

DYNAMICXCF 193.9.200.6 255.255.255.224 1

TCPCS6 does not have dynamic VIPAs defined so it does not
contain a VIPADYNAMIC definition. It has a DYNAMICXCF
statement to enable XCF dynamic support, and SOURCEVIPA and
TCPSTACKSOURCEVIPA to enable the distributed DVIPA 201.2.10.11.

Start TCP/IP on each system as shown above.

v On system1, start TCPCS and TCPCS2.

v On system2, start TCPCS3, on system3 start TCPCS6.

v On system1, run the MODDVIPA utility to define the DVIPA 201.2.10.193.
//TCPDVP PROC
//*
//*
//TCPDVP EXEC PGM=MODDVIPA ,REGION=0K,TIME=1440, x
// PARM=’POSIX(ON) ALL31(ON)/-p TCPCS -c 201.2.10.193’
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)
//SYSERR DD SYSOUT=*
//SYSERROR DD SYSOUT=*
//SYSDEBUG DD SYSOUT=*
//SYSUDUMP DD SYSOUT=A
//SYSABEND DD SYSOUT=*
//*
//*Run program here
//*
//TCPDVP EXEC PGM=MODDVIPA ,REGION=0K,TIME=1440, x
// PARM=’POSIX(ON) ALL31(ON)/-p TCPCS -d 201.2.10.193’

The PARM field can be -c for create or -d for delete. The example above will create
DVIPA 201.2.10.193 for the TCP/IP named TCPCS. After intermediate program has
completed (and the comment character is removed), the DVIPA will be deleted.

Verifying the DVIPAs in a sysplex
A display command parameter displays Dynamic VIPAs in the sysplex (see
Figure 35 on page 217). In the following example taken from stack TCPCS, the
ORIGIN lines show that 201.2.10.11 and 201.2.10.12 were created by VIPADEFINE
on this stack, 201.2.10.193 was created by VIPARANGE ioctl (issued through the
MODDVIPA utility), and all of the others were created by VIPABACKUP statements.
The command is:
d tcpip,tcpname,sysplex,vipadyn

The ORIGIN line indicates how the DVIPA is configured on the stack specified by
tcpname. Each stack (TCPNAME) for each system (MVSNAME) is shown with its
status (STATUS). Two other status values not shown in the following example are:

QUIESCING
This DVIPA was a target for distribution and has been removed as a target.
However, it is still servicing one or more connections for this DVIPA. The
DVIPA will be removed when all connections complete.

MOVING
This DVIPA was active on this stack and has been moved to another stack.
Connections on this stack for this DVIPA prior to the move will still be
serviced by this stack until completion.

Chapter 5. Virtual IP Addressing 241

|
|
|
|
|
|
|
|
|

The rank (RANK) indicates which of the stacks is eligible to take over if the stack
on which the DVIPA is active stops. The stack with the highest rank is the one that
will take over the DVIPA.
D TCPIP,TCPCS,SYSPLEX,VIPADYN
EZZ8260I SYSPLEX CS V1R4 874
VIPA DYNAMIC DISPLAY FROM TCPCS AT MVS005
IPADDR: 201.2.10.11 LINKNAME: VIPLC9020A0B

ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS MVS004 ACTIVE 255.255.255.240 201.2.10.0 BOTH
TCPCS2 MVS004 BACKUP 100 DEST
TCPCS3 MVS005 BACKUP 010 DEST
TCPCS6 MVS006 ACTIVE DEST

IPADDR: 201.2.10.12 LINKNAME: VIPLC9020A0C
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS MVS004 ACTIVE 255.255.255.240 201.2.10.0 DIST
TCPCS2 MVS004 BACKUP 075 DEST
TCPCS3 MVS005 BACKUP 010

IPADDR: 201.2.10.13
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS2 MVS004 ACTIVE 255.255.255.192 201.2.10.0
TCPCS MVS004 BACKUP 100
TCPCS3 MVS005 BACKUP 010

IPADDR: 201.2.10.21
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS3 MVS005 ACTIVE 255.255.255.192 201.2.10.0
TCPCS2 MVS004 BACKUP 100
TCPCS MVS004 BACKUP 080

IPADDR: 201.2.10.22
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS3 MVS005 ACTIVE 255.255.255.192 201.2.10.0
TCPCS MVS004 BACKUP 080
TCPCS2 MVS004 BACKUP 075

IPADDR: 201.2.10.193 LINKNAME: VIPLC9020AC1
ORIGIN: VIPARANGE ioctl
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS MVS004 ACTIVE 255.255.255.192 201.2.10.192

TCPCS2, TCPCS3, and TCPCS6 all display the same information about all the
DVIPAs. ORIGIN fields are displayed for the DVIPAs that are configured on this
stack.
D TCPIP,TCPCS2,SYS,VIPAD
EZZ8260I SYSPLEX CS V1R4 877
VIPA DYNAMIC DISPLAY FROM TCPCS2 AT MVS005
IPADDR: 201.2.10.11

ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS MVS004 ACTIVE 255.255.255.240 201.2.10.0 BOTH
TCPCS2 MVS004 BACKUP 100 DEST
TCPCS3 MVS005 BACKUP 010 DEST
TCPCS6 MVS006 ACTIVE DEST

IPADDR: 201.2.10.12
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST

242 z/OS V1R4.0 CS: IP Configuration Guide

|

|

-------- -------- ------ ---- --------------- --------------- ----
TCPCS MVS004 ACTIVE 255.255.255.240 201.2.10.0 DIST
TCPCS2 MVS004 BACKUP 075 DEST
TCPCS3 MVS005 BACKUP 010

IPADDR: 201.2.10.13 LINKNAME: VIPLC9020A0D
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS2 MVS004 ACTIVE 255.255.255.192 201.2.10.0
TCPCS MVS004 BACKUP 100
TCPCS3 MVS005 BACKUP 010

IPADDR: 201.2.10.21
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS3 MVS005 ACTIVE 255.255.255.192 201.2.10.0
TCPCS2 MVS004 BACKUP 100
TCPCS MVS004 BACKUP 080

IPADDR: 201.2.10.22
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS3 MVS005 ACTIVE 255.255.255.192 201.2.10.0
TCPCS MVS004 BACKUP 080
TCPCS2 MVS004 BACKUP 075

IPADDR: 201.2.10.193
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS MVS004 ACTIVE 255.255.255.192 201.2.10.192

In the following example, TCPCS6 knows about the DVIPAs on the other stacks.
There are no DVIPAs configured on TCPCS6, thus, no ORIGIN fields displayed.
D TCPIP,TCPCS6,SYS,VIPAD
EZZ8260I SYSPLEX CS V1R4 880
VIPA DYNAMIC DISPLAY FROM TCPCS6 AT MVS005
IPADDR: 201.2.10.11

TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS MVS004 ACTIVE 255.255.255.240 201.2.10.0 BOTH
TCPCS2 MVS004 BACKUP 100 DEST
TCPCS3 MVS005 BACKUP 010 DEST
TCPCS6 MVS006 ACTIVE DEST

IPADDR: 201.2.10.12
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS MVS004 ACTIVE 255.255.255.240 201.2.10.0 DIST
TCPCS2 MVS004 BACKUP 075 DEST
TCPCS3 MVS005 BACKUP 010

IPADDR: 201.2.10.13
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS2 MVS004 ACTIVE 255.255.255.192 201.2.10.0
TCPCS MVS004 BACKUP 100
TCPCS3 MVS005 BACKUP 010

IPADDR: 201.2.10.21
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS3 MVS005 ACTIVE 255.255.255.192 201.2.10.0
TCPCS2 MVS004 BACKUP 100
TCPCS MVS004 BACKUP 080

IPADDR: 201.2.10.22
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS3 MVS005 ACTIVE 255.255.255.192 201.2.10.0
TCPCS MVS004 BACKUP 080
TCPCS2 MVS004 BACKUP 075

Chapter 5. Virtual IP Addressing 243

|

IPADDR: 201.2.10.193
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS MVS004 ACTIVE 255.255.255.192 201.2.10.192

Using NETSTAT support to verify Dynamic VIPA configuration
The netstat commands (TSO NETSTAT, z/OS UNIX onetstat, and MVS console D
TCPIP,,Netstat) have a VIPADCFG (-F) report and a VIPADYN (-v) report. These
reports show the Dynamic VIPA configuration for a particular TCP/IP.

Note: Use the CONFIG (-f) report to verify the rest of the stack’s configuration,
including SOURCEVIPA and TCPSTACKSOURCEVIPA.

The Dynamic VIPA Information section is only displayed when there are DVIPAs
configured on this stack. The VIPA Range section, displayed only if a VIPARANGE
statement was processed in this stacks profile (or OBEYFILE data set), indicates
only that a range was configured. It does not indicate whether any ioctl or BIND has
actually created a DVIPA in the specified range. The VIPA Distribute section is
displayed only if there are VIPADISTRIBUTE statements configured on this stack.

On stack TCPCS, using netstat on OMVS:
netstat -p tcpcs -F
MVS TCP/IP onetstat CS V1R4 TCPIP Name: TCPCS 12:04:15
Dynamic VIPA Information:

VIPA Backup:
IP Address Rank
---------- ----
201.2.10.13 000100
201.2.10.21 000080
201.2.10.22 000080

VIPA Define:
IP Address AddressMask Moveable SrvMgr
---------- ----------- -------- ------
201.2.10.11 255.255.255.240 Immediate Yes
201.2.10.12 255.255.255.240 Immediate No

VIPA Range:
AddressMask IP Address Moveable
----------- ---------- --------
255.255.255.192 201.2.10.192 NonDisr

VIPA Distribute:
IP Address Port XCF Address SysPt
---------- ---- ----------- -----
201.2.10.11 00020 ALL Yes
201.2.10.11 00021 ALL No
201.2.10.12 00020 193.9.200.2 No
201.2.10.12 00021 193.9.200.2 No

VIPA Service Manager:
McastGroup: 245.10.131.201 Port: 01472 Pwd: Yes

On stack, TCPCS2 from the console:
01.55.13 d tcpip,tcpcs2,net,vipadcfg
01.55.14 EZZ2500I NETSTAT CS V1R4 TCPCS2 764
DYNAMIC VIPA INFORMATION:

VIPA BACKUP:
IP ADDRESS RANK
---------- ----
201.2.10.11 000100

244 z/OS V1R4.0 CS: IP Configuration Guide

|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

201.2.10.12 000075
201.2.10.21 000100
201.2.10.22 000075

VIPA DEFINE:
IP ADDRESS ADDRESSMASK MOVEABLE SrvMgr
---------- ----------- -------- ------
201.2.10.13 255.255.255.192 IMMEDIATE No

VIPA RANGE:
ADDRESSMASK IP ADDRESS MOVEABLE
----------- ---------- --------
255.255.255.192 201.2.10.192 NONDISR

On stack TCPCS3 from the console:
01.56.42 d tcpip,tcpcs3,net,vipadcfg
01.56.43 EZZ2500I NETSTAT CS V1R4 TCPCS3 767
DYNAMIC VIPA INFORMATION:

VIPA BACKUP:
IP ADDRESS RANK
---------- ----
201.2.10.11 000010
201.2.10.12 000010
201.2.10.13 000010

VIPA DEFINE:
IP ADDRESS ADDRESSMASK MOVEABLE SrvMgr
---------- ----------- -------- ------
201.2.10.21 255.255.255.192 IMMEDIATE No
201.2.10.22 255.255.255.192 IMMEDIATE No

VIPA RANGE:
ADDRESSMASK IP ADDRESS MOVEABLE
----------- ---------- --------
255.255.255.192 201.2.10.192 NONDISR

On stack TCPCS6 from the console:
01.57.32 d tcpip,tcpcs6,net,vipadcfg
01.57.32 EZZ2500I NETSTAT CS V1R4 TCPCS6 770

The VIPADYN (-v) report displays all the Dynamic VIPAs available to this stack, as
shown in the following examples.

On stack TCPCS using netstat on OMVS:
netstat -p tcpcs -v
MVS TCP/IP onetstat CS V1R4 TCPIP Name: TCPCS 02:03:07
IP Address AddressMask Status Origination DistStat
---------- ----------- ------ ----------- --------
201.2.10.11 255.255.255.240 Active VIPADefine Dist/Dest
201.2.10.12 255.255.255.240 Active VIPADefine Dist
201.2.10.13 255.255.255.192 Backup VIPABackup
201.2.10.21 255.255.255.192 Backup VIPABackup
201.2.10.22 255.255.255.192 Backup VIPABackup

On stack TCPCS2 from the console:
02.04.09 d tcpip,tcpcs2,net,vipadyn
02.04.09 EZZ2500I NETSTAT CS V1R4 TCPCS2 795
IP ADDRESS ADDRESSMASK STATUS ORIGINATION DISTSTAT
201.2.10.11 255.255.255.240 BACKUP VIPABACKUP DEST
201.2.10.12 255.255.255.240 BACKUP VIPABACKUP DEST
201.2.10.13 255.255.255.192 ACTIVE VIPADEFINE

On stack TCPCS, using the onetstat command:
netstat -p TCPCS2 -v
MVS TCP/IP onetstat CS V1R4 TCPIP Name: TCPCS2 10:20:58
IP Address AddressMask Status Origination DistStat
---------- ----------- ------ ----------- --------

Chapter 5. Virtual IP Addressing 245

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

201.2.10.11 255.255.255.240 Backup VIPABackup Dest
201.2.10.12 255.255.255.240 Backup VIPABackup Dest
201.2.10.13 255.255.255.192 Active VIPADefine
201.2.10.21 255.255.255.192 Backup VIPABackup
201.2.10.22 255.255.255.192 Backup VIPABackup

On stack TCPCS3 from the console:
02.05.21 d tcpip,tcpcs3,net,vipadyn
02.05.21 EZZ2500I NETSTAT CS V1R4 TCPCS3 798
IP ADDRESS ADDRESSMASK STATUS ORIGINATION DISTSTAT
201.2.10.11 255.255.255.240 BACKUP VIPABACKUP DEST
201.2.10.12 255.255.255.240 BACKUP VIPABACKUP
201.2.10.13 255.255.255.192 BACKUP VIPABACKUP
201.2.10.21 255.255.255.192 ACTIVE VIPADEFINE
201.2.10.22 255.255.255.192 ACTIVE VIPADEFINE

On stack TCPCS6 from the console:
02.05.58 d tcpip,tcpcs6,net,vipadyn
02.05.58 EZZ2500I NETSTAT CS V1R4 TCPCS6 801
IP ADDRESS ADDRESSMASK STATUS ORIGINATION DISTSTAT
201.2.10.11 255.255.255.240 ACTIVE DEST

Verifying Sysplex Distributor workload
The netstat commands (TSO NETSTAT, z/OS UNIX onetstat, and MVS console D
TCPIP,,Netstat) have a VDPT (-O) report and a VCRT (-V) report. Refer to z/OS
Communications Server: IP System Administrator’s Commands for more information
on these commands.

Run onetstat -O on the distributing stack to confirm that there are target stacks
available with server applications ready. This display will only show target stacks
that are currently up and have joined the sysplex. The READY field indicates how
many, if any, applications the target TCP/IP, identified by its DestXCF Addr, has
bound to DPort. If none, then this target TCP/IP will not receive any connection
workload. The TotalConn field indicates how many connections this distributing
TCP/IP has forwarded to the target TCP/IP.

Note: TotalConn is a historical count and will wrap.

The following netstat display command on the distributing stack, TCPCS, shows
which target stacks are available with the server applications ready. The target
stack is identified by its Dynamic XCF address (DESTXCF ADDR). The READY
field indicates how many applications on that target stack have bound to the
DPORT. TOTALCONN is the number of all connections the distributing stack,
TCPCS, has routed to the target stack. WLM is the Workload Manager weight value
for the target TCP/IP stack.
d tcpip,tcpcs,net,vdpt

EZZ2500I NETSTAT CS V1R4 TCPSVT
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN WLM
201.2.10.11 00020 193.9.200.1 000 0000003561 01
201.2.10.11 00020 193.9.200.2 000 0000003500 01
201.2.10.11 00020 193.9.200.3 000 0000003700 02
201.2.10.11 00021 193.9.200.1 000 0000000499 01
201.2.10.11 00021 193.9.200.2 000 0000000450 01
201.2.10.11 00021 193.9.200.3 000 0000000415 02
201.2.10.12 00020 193.9.200.2 000 0000000239 01
201.2.10.12 00021 193.9.200.2 000 0000000059 01

246 z/OS V1R4.0 CS: IP Configuration Guide

|

|

|

|

The following netstat display command on the distributing stack displays all current
connections being distributed by TCPCS.
d tcpip,tcpcs,net,vcrt

EZZ2500I NETSTAT CS V1R4 TCPCS 363
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
----------- ----- ---------- ----- ------------
201.2.10.11 00021 193.9.200.5 01029 193.9.200.1
201.2.10.11 00021 193.9.200.8 01050 193.9.200.2
201.2.10.11 00021 193.9.200.11 01079 193.9.200.3
201.2.10.12 00021 193.9.200.9 01030 193.9.200.2

Dynamic VIPAs and routing protocols
With Dynamic VIPAs, IP addresses may move from one stack to another. These
changes need to be communicated to the network. Therefore, dynamic routing
should be implemented when Dynamic VIPAs are being used.

OMPROUTE
The names of Dynamic VIPA interfaces are assigned dynamically by the stack when
a Dynamic VIPA interface is created. Therefore, the Name field set on the Interface
or OSPF_Interface statement for a Dynamic VIPA will be ignored by OMPROUTE.

It is recommended that a host have an Interface or OSPF_Interface definition for
every Dynamic VIPA address which that host might own. Because this could be a
large number of interfaces, additional wildcard capabilities have been added to
OMPROUTE, for Dynamic VIPA interfaces only.

Ranges of Dynamic VIPA interfaces can be defined using the subnet mask
parameter on the OSPF_Interface or Interface statement. The range defined will be
all the IP addresses that fall within the subnet defined by the mask and the IP
address. The following example defines a range of Dynamic VIPA addresses from
10.138.165.80 to 10.138.165.95:
OSPF_Interface

IP_address = 10.138.165.80
Name = dummy_name (see note)
Subnet_mask = 255.255.255.240;

Note: The Name parameter is required and must be unique, but it is not actually
used for Dynamic VIPAs.

For consistency with the VIPARANGE statement in the TCP/IP profile, any value
that may fall within the range can be used with the mask to define a range of
Dynamic VIPAs. The interface statement in the following example has the same
meaning as the one in the example above:
OSPF_Interface

IP_address = 10.138.165.87
Name = dummy_name
Subnet_mask = 255.255.255.240;

Notes:

1. When defining ranges, it is not necessary or desirable to code a destination
address. OMPROUTE will automatically set the destination address of a
Dynamic VIPA to its IP address.

2. There is nothing in the interface definition statements that informs OMPROUTE
that a particular interface definition statement is for a Dynamic VIPA or a range

Chapter 5. Virtual IP Addressing 247

|

of Dynamic VIPAs. Rather, OMPROUTE learns this information from the stack
when these interfaces are created or taken over.

The MTU size defined on OSPF_INTERFACE statements limits the size of
advertisements that can be sent or received over OMPROUTE interfaces.
OMPROUTE cannot build an advertisement whose size would exceed the largest
MTU size of all its interfaces. Also, OMPROUTE cannot receive an advertisement
that is larger than the largest MTU size defined for all its interfaces. In either of
these cases, you will see the following message:
EZZ7967I ADVERTISEMENT DISCARDED, OVERFLOWS BUFFER: LS

TYPE x ID x.x.x.x ORG y.y.y.y

When this happens on an originating host, that host will not be able to send router
Link State Advertisements (LSAs), and therefore other hosts will not be able to
calculate routes to any destinations (for example, VIPAs) owned by the originating
host. OMPROUTE will terminate if it encounters this condition. If it cannot send its
router LSA, it is useless as a router. When this happens on a receiving host, that
host will not be able to compute routes to any destinations advertised in the
discarded LSA. Also note that other OSPF implementations might have similar or
stricter limitations, in which case they would be unable to receive or propagate large
router LSAs received from OMPROUTE. These scenarios can severely affect
network connectivity and routing capability. If large numbers of VIPA interfaces are
going to be used, we recommend you examine OSPF MTU sizes throughout your
network to ensure that large router LSAs can be propagated.

Normally, large router LSAs would not be a problem, as LSAs seldom exceed their
allowed MTU sizes. However, if a large number of VIPA or dynamic VIPA interfaces
are defined on a host, this can become a consideration. The size of the router LSA
will include 52 bytes for headers, plus the number of bytes required to advertise the
host’s owned interfaces. The number of bytes required for each interface is:

VIPA 12 bytes, plus 12 bytes for each VIPA subnet (see
the following example)

Point-to-point 24 bytes

Point-to-multipoint 12 bytes, plus 12 bytes for each neighbor on the
interface

All other types 12 bytes

For owned VIPA interfaces, OMPROUTE normally advertises both host and subnet
routes. The size of router LSAs required can be minimized by careful subnet
planning. For example, assume the following definition exists in the OMPROUTE
configuration file:
OSPF_Interface

IP_Address=3.3.3.*
Name = VIPA1A
Subnet_Mask=255.255.255.252
Attaches_To_Area=1.1.1.1
MTU=1024
Cost0 = 1;

If 101 VIPA interfaces, numbered 3.3.3.1 to 3.3.3.101, are activated, in addition to
the headers and any other owned interfaces, OMPROUTE would need 1512 bytes
to advertise 126 links in its router LSA (1 host route to each of the VIPAs, plus 25
subnet routes since each subnet contains only four addresses).

248 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

||
|

||

||
|

||

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

By contrast, assume the following definition exists in the OMPROUTE configuration
file:
OSPF_Interface

IP_Address=3.3.3.*
Name = VIPA1A
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
MTU=1024
Cost0 = 1;

If the same 101 VIPA interfaces are activated, OMPROUTE would advertise 102
links in its router LSA (1 host route to each VIPA, plus 1 subnet route since all the
VIPAs are in the same subnet). This would only require 1224 bytes to advertise the
VIPAs. If the MTU size on the network is 1500, this can make the difference
between being able to send or receive a router LSA or not being able to send or
receive a router LSA. This limitiation can further be circumvented by suppressing
VIPA host routes by coding SUBNET=YES on the OSPF_INTERFACE statement for
the VIPA interfaces. However, there are limits on when this can be done. For
details, see the z/OS Communications Server: IP Configuration Reference.

RIP (Routing Information Protocol)
If using RIP services and Host Route advertising is not supported by adjacent
routers (that is, inability to learn host routes), the following restrictions for VIPA
addresses must be applied to benefit from fault tolerance support:

v If you use subnetting and VIPA addresses are in the same network as the
physical IP addresses, the subnetwork portion of any VIPA addresses must not
be the subnetwork portion of any physical IP addresses in the network. In this
case, assign a new subnetwork for the VIPA address.

v If subnetting is not used on any physical interface, the network portion of any
VIPA addresses must not be the network portion of any physical IP addresses in
the network. In this case, assign a new network for the VIPA address, preferably
a class C network address.

If using RIP services and Host Route advertising is supported by adjacent routers,
the network or subnetwork portions of VIPA addresses can be the same across
multiple z/OS TCP/IP stacks in the network. To enable Host Route advertising in
OMPROUTE, configure RIP_Interface Send_Host_Routes=YES.

Chapter 5. Virtual IP Addressing 249

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

|
|

250 z/OS V1R4.0 CS: IP Configuration Guide

Chapter 6. TCP/IP in a sysplex

The increasing demands of network servers, and in particular z/Series servers, has
led to the creation of different techniques to address performance requirements
when a single server is not capable of providing the availability and scalability
demands placed on it by its clients. Specifically, network solutions make use of
what is referred to as the clustering technique, whereby multiple servers are
associated together into a cluster to provide sufficient processing power and
availability characteristics to handle the demands of the clients.

In the scope of this chapter, this cluster functionality is provided by the sysplex.
That is, the sysplex provides the necessary capability to cluster together a number
of z/Series servers that cooperate with one another to deliver the processing power
needed to service the demands required of a particular service environment.

Solutions utilizing the clustering approach to increase server availability and
processing capability attempt to provide mechanisms by which they ensure the
viability of the cluster in an environment containing a large number of clients
generating a potentially high number of requests. To do so, the cluster technique
can provide for two main objectives, high availability and load balancing. In some
cases, clustering techniques address only high availability, as is the case with
Dynamic VIPA that provides for availability in spite of potential TCP/IP stack or z/OS
image failures. In other cases, the intent is to provide for both high availability and
load balancing, as is done by the Domain Name System/Workload Manager
solution (DNS/WLM) and Sysplex Distributor.

In general, load balancing refers to the ability to utilize different systems within the
cluster simultaneously, thereby taking advantage of the additional computational
function of each. Further, clustering techniques addressing load balancing lead to
other system requirements, such as that of a single systemwide image (one identity
by which clients access the system), horizontal growth, and ease of management.

The traditional view of a single server has been primarily a single machine with
perhaps a few network interfaces (IP addresses). This tends to lead to many
potential points of failure within the server: the machine itself (hardware), the
operating system (including TCP/IP stack) kernel executing on the machine, or a
network interface (and the IP address associated with it). Static Virtual IP Addresses
(VIPAs) exclude the network interface as a point of failure while Dynamic VIPAs
additionally aid with server (image) or kernel failure. In this way, high availability is
seen as the availability of the entire server cluster and the service it provides.
Further, VIPAs can be used in conjunction with the load balancing solutions
discussed in this document, DNS/WLM and Sysplex Distributor.

Clustering techniques that address the load balancing of connections requests also
typically provide for some high availability. That is, these techniques dispatch
connections to target servers and can exclude failed servers from the list of target
servers that can receive connections. In this way, the dispatching function avoids
routing connections and requests to a server incapable of satisfying such requests.

Load balancing is the ability for a cluster to spread workload evenly (or based on
some policy) to target servers comprising the cluster. Usually, this load balancing is
measured by some notion of perceived load on each of the target servers. This
chapter describes two techniques that provide load balancing: DNS/WLM and
Sysplex Distributor. Each identifies the target zSeries servers willing to receive
client connections based on some specification.

© Copyright IBM Corp. 2000, 2002 251

By providing load balancing, clustering techniques must also provide for other
system requirements in addition to the dispatching of connections. These include
the ability to advertise some single systemwide image or identity so that clients can
uniquely and easily identify the service. Additionally, clustering techniques should
also provide for horizontal growth of the system and ease of management.

There is an excellent description of sysplexes in z/OS Parallel Sysplex Overview.
Refer to the Redbook, TCP/IP in a Sysplex, for more detailed information on
implementing load balancing and availability in your sysplex.

Connectivity in a sysplex
With Dynamic VIPAs, IP addresses may move from one stack to another. These
changes need to be communicated to the network. Therefore, dynamic routing
should be implemented when dynamic VIPAs are being used. Refer to “Dynamic
VIPAs and routing protocols” on page 247 for more detailed information.

Dynamic XCF
The IPCONFIG DYNAMICXCF (Dynamic XCF) statement can be used to create
trusted, internal links to other stacks within a sysplex. Dynamic XCF creates a
single IP address by which all other stacks in the sysplex may reach the stack.
Most point-to-point links have their own unique IP address. A unique pair of IP
addresses is needed for each stack within a sysplex using normal point-to-point
links. This tends to use more IP addresses. IP addresses can be saved by using
Dynamic XCF. Additionally, the Dynamic XCF statement automatically generates the
appropriate DEVICE, LINK, HOME, BSDROUTINGPARMS and BEGINROUTES
definitions (as described below) and activates the devices to enable the stack to
communicate with other stacks in the sysplex.

Dynamic XCF devices and links, when activated, appear to the stack as though
they had been defined in the TCP/IP profile. They can be displayed using standard
commands. Dynamic XCF is activated via the DYNAMICXCF keyword on the
IPCONFIG statement, which is described in detail below.

Dynamic XCF can be used to generate dynamic definitions for TCP/IP stacks that
reside on another z/OS host in a sysplex and for additional TCP/IP stacks that
reside on the same z/OS host.

The minimum requirements in order for TCP/IP stacks to utilize XCF Dynamics
differ based on whether same host or inter-host communication is being used. In
order to generate definitions for two TCP/IP stacks that reside on different MVS
hosts:

v Both MVS hosts must belong to the same sysplex.

v VTAM must have XCF communications enabled by specifying XCFINIT=YES as
a startup parameter or by activating the VTAM major node, ISTLSXCF. For
details about configuration, refer to z/OS Communications Server: SNA Network
Implementation Guide.

v IPCONFIG DYNAMICXCF must be specified in the TCP/IP profile of each stack.

With this configuration, both same host and inter-host communication can be
performed using Dynamic XCF.

In order to generate definitions for two TCP/IP stacks that reside on the same MVS
host, you are required to specify IPCONFIG DYNAMICXCF in the TCP/IP profile of
each stack.

252 z/OS V1R4.0 CS: IP Configuration Guide

At initialization, each TCP/IP stack configured for XCF joins a well-known XCF
group. When other stacks in the group discover the new stack, the definitions are
created automatically, the links are activated, and the remote IP address for each
link is added to the routing table. After the remote IP address has been added, IP
traffic proceeds as usual.

In VTAM, you must activate the XCF major node. You can do this using the start
option XCFINIT=YES. If dynamically defined XCF definitions have been created for
another VTAM in the sysplex that has since stopped and restarted with a different
CPName, Dynamic XCF recognizes this situation and automatically modifies
existing definitions to accommodate the CPName change. If the XCF major node is
inactive when TCP/IP is started and the XCF major is not activated until after
TCP/IP has finished initialization, TCP/IP will not generate any dynamic definitions
for other TCP/IP hosts already started in the sysplex until either:

v A new TCP/IP host is detected

v A profile related operator command is issued (such as VARY TCPIP,,OBEYFILE,
or a START or STOP command)

To request dynamics for XCF or same host connections, enter the following in the
IPCONFIG statement:
DYNAMICXCF IPAddress SubnetMask CostMetric

If TCP/IP detects another instance of TCP/IP on the same z/OS and, if no device
exists with the name IUTSAMEH, and if no link exists with the name
EZASAMEMVS, internal definitions equivalent to the following are created:

DEVICE IUTSAMEH MPCPTP AUTORESTART
Device definition to obtain the most efficient stack-to-stack communications
within the same MVS image.

LINK EZASAMEMVS MPCPTP IUTSAMEH
Link definition for the IUTSAMEH device.

HOME IPAddress EZASAMEMVS
Associates the IP address with the IUTSAMEH link.

BSDROUTINGPARMS EZASAMEMVS 65535 CostMetric SubnetMask
DestIPAddress

Defines a new link to the OROUTED routing daemon.

START IUTSAMEH
Starts the IUTSAMEH device.

Note: The DestIPAddress is always 0.

If TCP/IP detects another instance of TCP/IP in the sysplex, no device with the
name of the CPName of the remote VTAM exists, no iQDIO (internal Queued Direct
Input/Output, or HiperSockets) connectivity between the two images exists, and no
link exists with the name EZAXCFxx [where xx is the value of the MVS system
symbol (SYSCLONE) for the MVS hosting the VTAM with the device name], internal
definitions equivalent to the following are created:

DEVICE CPName MPCPTP AUTORESTART
Device definition to communicate with TCP/IP stacks hosted by the remote
VTAM.

LINK EZAXCFnn MPCPTP CPName
Link definition for the device, where nn is the SYSCLONE value for the
remote VTAM and MVS.

Chapter 6. TCP/IP in a sysplex 253

|

|
|
|
|
|
|

HOME IPAddress EZAXCFnn
Associates the IP address with the dynamic XCF link.

BSDROUTINGPARMS EZAXCFnn 55296 CostMetric SubnetMask
DestIPAddress

Defines the new link to the OROUTED routing daemon.

START CPName
Starts the specified device.

Notes:

1. If EZAXCFnn is already defined as a link name or the CPName is already
defined as a device name, then Dynamic XCF definitions will not be generated
for discovery of another stack in the same MVS image.

2. The DestIPAddress is always zero.

If TCP/IP detects another instance of TCP/IP in the sysplex, the images reside on
the same CEC, iQDIO connectivity between the two images exists, the host
processor supports iQDIO and z/OS CS is properly configured, and no link exists
with the name IQDIOLNKxxxxxxxx (where xxxxxxxx is the hexadecimal
representation of the IP address specified on the IPCONFIG DYNAMICXCF
statement), internal definitions equivalent to the following are created:

DEVICE IUTIQDIO MPCIPA AUTORESTART
Device definition to communicate with TCP/IP stacks hosted by the remote
VTAM.

LINK IQDIOLNKnnnnnnnn IPAQIDIO IUTIQDIO
Link definition for the device, where nnnnnnnn is the hexadecimal
representation of the IP address specified on the IPCONFIG DYNAMICXCF
statement (that is, IPAddress).

HOME IPAddress IQDIOLNKnnnnnnnn
Associates the IP address with the dynamic XCF link.

BSDROUTINGPARMS IQDIOLNKnnnnnnnn 57344 CostMetric SubnetMask
DestIPAddress

Defines the new link to the OROUTED routing daemon.

START IUTIQDIO
Starts the specified device.

Notes:

1. If IQDIOLNKnnnnnnnn is already defined as a link name or IUTIQDIO is already
defined as a device name, Dynamic XCF definitions will not be generated for
discovery of another stack in the same MVS image.

2. The DestIPAddress is always zero.

For details about these XCF-related statements, refer to z/OS Communications
Server: IP Configuration Reference. For information about changes to NETSTAT
displays of Dynamic XCF settings, refer to z/OS Communications Server: IP System
Administrator’s Commands.

IUTSAMEH
Communication Server provides internal links between TCP/IP stacks that are
running within the same MVS image. This support is referred to as a Same Host
(IUTSAMEH) link. If IPCONFIG DYNAMICXCF is defined, TCP/IP always creates
and activates a same host (IUTSAMEH) device and link (unless a static IUTSAMEH
device is already defined) even if this is the only stack on the MVS image. When
TCP/IP activates the IUTSAMEH device, VTAM dynamically builds the IUTSAMEH

254 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|

|

|
|
|

|

TRLE. The generated device name is ″IUTSAMEH″ and the generated link name is
″EZASAMEMVS″. As other stacks are brought up within the same MVS image, a
host route is created to each of these stacks across the same host link. It is
recommended that users do not configure a static device for IUTSAMEH (allow
TCP/IP to dynamically create the device and link). Communications Server also
uses the IUTSAMEH link for Enterprise Extender support.

XCF
When a subsequent stack within the sysplex is started which is not within the same
MVS image, TCP/IP creates and activates an XCF device and link (unless a static
XCF device is already defined). The XCF links connect using the SYSPLEX
Coupling Facility (or CTC links). A new device and link are created for each
corresponding stack within the sysplex. The generated device name is the
(SNA/APPN) CP name of the remote VTAM. The generated link name is
″EZAXCFxx″ where xx = the two-character sysclone value. A host route across the
XCF link is created when the XCF link is successfully activated.

Examples of definitions generated by Dynamic XCF
Example 1:

This configuration consists of two MVS systems (MVS1,MVS2) that are members of
the same sysplex. Each MVS host has one TCP/IP stack (TCPIP1 and TCPIP2,
respectively). From the syntax descriptions described above, the following
information is needed to generate the dynamic definitions:

v MVS sysclone value

v VTAM CPName

v Status of XCF in VTAM

v The values specified on the IPCONFIG DYNAMICXCF keyword

Using the following user definitions:
MVS1:
Sysclone = A1
VTAM Cpname = VTAM1
VTAM has either specified XCFINIT=YES or the major node ISTLSXCF is active
TCPIP1: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.1 255.255.255.248 3

MVS2:
Sysclone = B2 VTAM
Cpname = VTAM2 VTAM has either specified XCFINIT=YES or the major node ISTLSXCF is active
TCPIP2: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.2 255.255.255.248 2

After both TCPIP1 and TCPIP2 have been started, the following definitions will be
generated.

TCPIP1 will generate the equivalent of these definitions:.
DEVICE VTAM2 MPCPTP AUTORESTART
LINK EZAXCFB2 MPCPTP VTAM2
HOME 9.1.1.1 EZAXCFB2
BSDROUTINGPARMS EZAXCFB2 55296 3 255.255.255.248 0
START VTAM2

TCPIP2 will generate:
DEVICE VTAM1 MPCPTP AUTORESTART
LINK EZAXCFA1 MPCPTP VTAM1
HOME 9.1.1.2 EZAXCFA1
BSDROUTINGPARMS EZAXCFA1 55296 2 255.255.255.248 0
START VTAM1

Chapter 6. TCP/IP in a sysplex 255

|

When an XCF link becomes active, each TCPIP will generate a route to the other
TCPIP over the XCF link. In this example, when the XCF link becomes active,
TCPIP1 will generate a route to TCPIP2 over the XCF link and vice versa.

Example 2:

The configuration is the same as Example 1 except a second TCP/IP stack
(TCPIP1A) was added to MVS1.

Using the following user definitions:
MVS1:
Sysclone = A1
VTAM Cpname = VTAM1
VTAM has either specified XCFINIT=YES or the major node ISTLSXCF is active
TCPIP1: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.1 255.255.255.248 3
TCPIP1A: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.3 255.255.255.248 0

MVS2:
Sysclone = B2
VTAM Cpname = VTAM2
VTAM has either specified XCFINIT=YES or the major node ISTLSXCF is active
TCPIP2: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.2 255.255.255.248 2

After both TCPIP1 and TCPIP2 have been started, the following definitions will be
generated, as in Example 1.

TCPIP1 will generate the equivalent of these definitions:
DEVICE VTAM2 MPCPTP AUTORESTART
LINK EZAXCFB2 MPCPTP VTAM2
HOME 9.1.1.1 EZAXCFB2
BSDROUTINGPARMS EZAXCFB2 55296 3 255.255.255.248 0
START VTAM2

TCPIP2 will generate:
DEVICE VTAM1 MPCPTP AUTORESTART
LINK EZAXCFA1 MPCPTP VTAM1
HOME 9.1.1.2 EZAXCFA1
BSDROUTINGPARMS EZAXCFA1 55296 2 255.255.255.248 0
START VTAM1

Now, TCPIP1A is started. TCPIP1 and TCPIP2 recognize that TCPIP1A has
started. TCPIP1A will generate definitions for both TCPIP1 and TCPIP2. TCPIP1
will generate IUTSAMEH definitions for TCPIP1. However, TCPIP2 does not need
to generate and will not generate any new definitions except for routing information
for TCPIP1A. New definitions do not need to be created because the DEVICE and
LINK definitions are based on the discovery of a new VTAM node in the sysplex.
(The DEVICE name is the VTAM CPName.)

TCPIP1 will generate the equivalent of these definitions:
DEVICE IUTSAMEH MPCPTP AUTORESTART
LINK EZASAMEMVS MPCPTP IUTSAMEH
HOME 9.1.1.1 EZASAMEMVS
BSDROUTINGPARMS EZASAMEMVS 65535 3 255.255.255.248 0
START IUTSAMEH

When the IUTSAMEH connection becomes active, each TCPIP will generate a
route to the other TCPIP over the IUTSAMEH connection.

TCPIP2 does not generate anything.

256 z/OS V1R4.0 CS: IP Configuration Guide

|

|

|
|

|

TCPIP1A will generate:
DEVICE IUTSAMEH MPCPTP AUTORESTART
LINK EZASAMEMVS MPCPTP IUTSAMEH
DEVICE VTAM2 MPCPTP AUTORESTART
LINK EZAXCFB2 MPCPTP VTAM2
HOME 9.1.1.3 EZAXCFB2
HOME 9.1.1.3 EZASAMEMVS
BSDROUTINGPARMS EZAXCFB2 55296 0 255.255.255.248 0
BSDROUTINGPARMS EZASAMEMVS 65535 0 255.255.255.248 0
START IUTSAMEH
START VTAM2

When the IUTSAMEH connection becomes active, each TCPIP will generate a
route to the other TCPIP over the IUTSAMEH connection.

Example 3:

To continue Example 2, add another MVS host (MVS3) with a VTAM node (VTAM3)
with one TCP/IP stack (TCPIP3).
MVS3:
Sysclone = C3
VTAM Cpname = VTAM3
VTAM has either specified XCFINIT=YES or the major node ISTLSXCF is active
TCPIP3: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.3 255.255.255.248 0

In this example, the previously active TCP/IP stacks will generate definitions for
TCPIP3 because a new VTAM stack has become active in the sysplex. TCPIP3 will
generate definitions for definitions for TCPIP1/TCPIP1A and TCPIP2.

TCPIP1 will generate the equivalent of these definitions:
DEVICE VTAM3 MPCPTP AUTORESTART
LINK EZAXCFC3 MPCPTP VTAM3
HOME 9.1.1.1 EZAXCFC3
BSDROUTINGPARMS EZAXCFC3 55296 3 255.255.255.248 0
START VTAM3

TCPIP2 will generate:
DEVICE VTAM3 MPCPTP AUTORESTART
LINK EZAXCFC3 MPCPTP VTAM3
HOME 9.1.1.2 EZAXCFC3
BSDROUTINGPARMS EZAXCFC3 55296 2 255.255.255.248 0
START VTAM3

TCPIP1A will generate:
DEVICE VTAM3 MPCPTP AUTORESTART
LINK EZAXCFC3 MPCPTP VTAM3
HOME 9.1.1.3 EZAXCFC3
BSDROUTINGPARMS EZAXCFC3 55296 0 255.255.255.248 0
START VTAM3

TCPIP3 will generate:
DEVICE VTAM1 MPCPTP AUTORESTART
LINK EZAXCFA1 MPCPTP VTAM1
DEVICE VTAM2 MPCPTP AUTORESTART
LINK EZAXCFB2 MPCPTP VTAM2
HOME 9.1.1.3 EZAXCFA1
HOME 9.1.1.3 EZAXCFB2
BSDROUTINGPARMS EZAXCFA1 55296 0 255.255.255.248 0
BSDROUTINGPARMS EZAXCFB2 55296 0 255.255.255.248 0
START VTAM1
START VTAM2

Chapter 6. TCP/IP in a sysplex 257

|

|

|

|
|

|

|

Example 4:

This example illustrates how Dynamic XCF can generate IUTSAMEH definitions
without VTAM having its XCF enabled.
MVS1:
Sysclone = A1 (not used in this example)
VTAM Cpname = VTAM1 (not used in this example)
VTAM has XCFINIT=NO specified and has not activated the major node ISTLSXCF.
TCPIP1: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.1 255.255.255.248 3
TCPIP1A: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.3 255.255.255.248 0

TCPIP1 will generate the equivalent of these definitions:
DEVICE IUTSAMEH MPCPTP AUTORESTART
LINK EZASAMEMVS MPCPTP IUTSAMEH
HOME 9.1.1.1 EZASAMEMVS
BSDROUTINGPARMS EZASAMEMVS 65535 3 255.255.255.248 0
START IUTSAMEH

TCPIP1A will generate:
DEVICE IUTSAMEH MPCPTP AUTORESTART
LINK EZASAMEMVS MPCPTP IUTSAMEH
HOME 9.1.1.3 EZASAMEMVS
BSDROUTINGPARMS EZASAMEMVS 65535 0 255.255.255.248 0
START IUTSAMEH

You can delete dynamically defined XCF devices and links by first stopping the
devices to be deleted and then issuing a VARY TCPIP,,OBEYFILE command that
contains a DELETE LINK EZAXCFxx and DELETE DEVICE. Because the HOME
statement processing does not affect dynamically defined XCF HOME list entries,
the HOME nn.nn.nn.nn EZAXCFxx entry is automatically deleted by DELETE LINK.

Notes:

1. The IP address of the dynamically defined devices can be changed. Because
Dynamic XCF uses the same IP address for all of the dynamically defined
devices, all of the dynamic devices IP addresses will be changed. An individual
dynamic device cannot be changed. To change the IP addresses:

a. Stop all of the dynamically defined devices.

b. Issue the VARY TCPIP,,OBEYFILE command, which contains the changed
IP address on the DYNAMICXCF statement.

After they have all stopped, Dynamic XCF will change the IP address and
automatically restart all of the dynamically defined devices. Dynamic XCF
changes the IP address for dynamically defined XCF, IUTSAMEH links, or
both in exactly the same way (with the same operational characteristics) as
if you had changed the IP address for static XCF or IUTSAMEH definitions
and then executed VARY TCPIP,,OBEYFILE.

2. Because the interfaces generated by Dynamic XCF use a single IP address, the
output of the SIOCGIFCONF ioctl() contains multiple entries with the same IP
address. If an application is using the SIOCGIFCONF output to issue bind() to
all the entries returned, the application could receive EADDRINUSE on a bind()
if there are multiple XCF devices defined by Dynamic XCF in the list.

3. If you want to define a static route to a link which is generated by Dynamic XCF,
you must wait until the dynamic devices are started and then use the VARY
TCPIP,,OBEYFILE command. The GATEWAY or BEGINROUTES statement that
refers to a dynamically defined linkname must be in a separate data set from
the data set used to define the dynamic devices (either initial profile data set or
another OBEYFILE data set).

258 z/OS V1R4.0 CS: IP Configuration Guide

|

|

|

|

|

|
|

|

4. Even though the HOME, BSDROUTINGPARMS and BEGINROUTES definitions
are full replacement keywords, the definitions generated by Dynamic XCF will
not replace any existing definitions. Likewise, user-defined HOME,
BSDROUTINGPARMS and BEGINROUTES definitions will not affect existing or
future definitions generated by Dynamic XCF.

iQDIO (Internal Queued Direct Input/Output or HiperSockets)
iQDIO (Internal Queued Direct Input/Output or HiperSockets) is a new zSeries
hardware feature that provides high performance internal communications between
LPARs within the same CEC without the use of any additional or external hardware
equipment (e.g. channel adapters, LANs, etc.). This support is also referred to as
HiperSocket communications.

If the host processor supports iQDIO and CS is properly configured, CS will attempt
to create XCF connectivity between same CEC LPARs using an iQDIO link. In
cases in which the iQDIO link could not be activated, then TCP/IP will create a
normal XCF link.

The DYNAMICXCF iQDIO device and link are dynamically built and the device is
started during TCP/IP DYNAMICXCF stack initialization. The DYNAMICXCF iQDIO
device and link are not (cannot be) configured by the user. The generated device
name is IUTIQDIO. The generated link name is IQDIOLNKxxxxxxxx where xxxxxxxx
= the character representation of the hexadecimal version of the DYNAMICXCF IP
address. In general where an XCF link would normally have been used (for
intra-CEC) an iQDIO link will be used.

Similar to IUTSAMEH, VTAM will dynamically build the TRLE for IUTIQDIO when
the IUTIQDIO device is started. The TRLE statement is not configured (defined) by
the user.

Although the DYNAMICXCF iQDIO device is not configured with TCP/IP device and
link statements, and the TRLE is not defined by the user, the following steps must
be taken to define the iQDIO subchannel devices and IQD CHPID:

1. Using HCD or IOCP, the system administrator must define (create the IOCDS)
the iQDIO (IQD) CHPID (Channel Path ID) and subchannel devices to the
applicable LPARs. In order to dynamically build the iQDIO TRLE, VTAM requires
a minimum of 3 subchannel devices configured with each IQD CHPID within
HCD. The maximum number of subchannel devices that VTAM will use
(associate with each TRLE or MPC group) is 10. For additional details regarding
configuring the iQDIO subchannel devices and IQD CHPID, refer to z/OS HCD
Planning and Appendix D, “Using HCD” on page 757.

2. When more than one IQD CHPID is configured to a specific LPAR, VTAM start
option IQDCHPID must be used to specify which specific IQD CHPID this LPAR
should use. The VTAM start option controls which IQD CHPID (and related
subchannel devices) VTAM selects to include in the iQDIO (IUTIQDIO) MPC
Group when it is dynamically built for DYNAMICXCF iQDIO connectivity. Start
option IQDCHPID controls the VTAM IQD CHPID selection for the
DYNAMICXCF iQDIO device IUTIQDIO (MPC group) only. It does not control
IQD CHPID selection for a user defined iQDIO (MPCIPA) device. However, a
user defined iQDIO device (IQD CHPID) cannot use (conflict with) the same
IQD CHPID that the DYNAMICXCF iQDIO device is currently using.

For example, if IQD CHPID ’FE’x is currently in use by DYNAMICXCF due to
one of the following:

a. VTAM start option IQDCHPID=FE is currently specified

Chapter 6. TCP/IP in a sysplex 259

b. VTAM start option IQDCHPID=ANY is currently specified, but the
DYNAMICXCF iQDIO device IUTIQDIO is currently using the ’FE’ CHPID

then an attempt to configure and start a user defined iQDIO device IUTIQDFE
will not be allowed (IQD CHPIDs conflict). This option can also be modified with
a VTAM modify command. In most cases, the default setting will be sufficient.
For additional details regarding this start option refer to the z/OS
Communications Server: SNA Resource Definition Reference.

For additional details regarding iQDIO, refer to “HiperSockets concepts and
connectivity” on page 130.

Workload balancing
Load balancing is the ability for a cluster to spread workload evenly (or based on
some policy) to target servers comprising the cluster. Usually, this load balancing is
measured by some notion of perceived load on each of the target servers. This
document describes and compares three techniques that provide load balancing:
DNS/WLM, Network Dispatcher, and Sysplex Distributor. Each identifies the target
z/Series servers willing to receive client connections based on some specification.

By providing load balancing, clustering techniques must also provide for other
system requirements in addition to the dispatching of connections. These include
the ability to advertise some single systemwide image or identity so that clients can
uniquely and easily identify the service. Additionally, clustering techniques should
also provide for horizontal growth of the system and ease of management.

Single systemwide image
Clients connecting to a cluster should not be aware of the internal makeup of a
cluster. More specifically, clients should not even be aware that the service they are
requesting is actually being serviced by a collection or cluster of servers. Instead,
clients must be provided with some single image identifier to be used when
connecting to the service. DNS/WLM uses some specific hostname to identify a
service within the cluster. In this manner, clients making requests of the service use
the hostname as the single systemwide identity. In Network Dispatcher and Sysplex
Distributor (SD), however, the identity is that of some IP address associated with
the cluster. In the case of Sysplex Distributor, this address is a distributed Dynamic
Virtual IP Address (DVIPA).

Horizontal growth
As the clients’ demands on the service increase, clusters must provide a way to
expand the cluster of servers to accommodate for such growing demand. Put in
another way, the cluster must provide a mechanism by which to add servers without
disrupting the operation of the cluster. To this end, the service is made available to
clients at all times and can grow horizontally to accommodate for increased demand
placed on the cluster by the clients.

Ease of management
The administrative burden associated with the cluster should not increase as we
add servers to the cluster. It is desirable to use the same configurations for many
systems in the cluster (sysplex). Within a sysplex, servers are homogenous, since a
sysplex is comprised solely of z/Series servers. As such, many of the configurations
can be shared among the different z/Series servers, thereby reducing the

260 z/OS V1R4.0 CS: IP Configuration Guide

administrative burden associated with the sysplex. Additionally, as the size of the
cluster increases, the administrative overhead in adding systems to the cluster
should be as low as possible.

DNS/WLM
The DNS solution is based on the DNS name server and the z/OS Workload
Manager. This solution is only available with the BIND 4.9.3 name server and not
with the BIND 9 name server. Intelligent sysplex distribution of connections is
provided through cooperation between WLM and DNS. For customers who elect to
place a name server in a z/OS sysplex, the name server can utilize WLM to
determine the best system to service a given client request.

In general, DNS/WLM relies on the hostname to IP address resolution for the
mechanism by which to distribute load among target servers. Hence, the single
system image provided by DNS/WLM is that of a specific hostname. Note that the
system most suitable to receive an incoming client connection is determined only at
connection setup time. Once the connection is made, the system being used cannot
be changed without restarting the connection.

The DNS approach works only in a sysplex environment, because the Workload
Manager requires it. If the server applications are not all in the same sysplex, then
there can be no single WLM policy and no meaningful coordination between WLM
and DNS.

External IP workload balancing
IBM’s Network Dispatcher (part of WebSphere® Edge Server) and Cisco’s
Multi-Node Load Balancer (MNLB) are examples of external IP workload balancing
solutions. Such solutions exist outside the Sysplex, but may direct work into the
Sysplex. Where DNS/WLM resolves a name to different IP addresses as a means
of balancing work, external IP workload balancing solutions define a single IP
address representing all instances of the server, and then balance new work
requests (new TCP connection requests) among available servers. These external
solutions rely on an agent in the Sysplex to deliver workload manager information
for nodes with stacks on which application instances reside. All stacks hosting
application instances have the same IP address defined as a hidden or loopback
address. This means that normal IP routing cannot be used between the decision
point and the target stack, so that either the decision point must be directly
connected with the target stack - with no intervening routers - or another solution
such as Generic Routing Encapsulation or other proprietary solutions must be used.

Sysplex Distributor
Sysplex Distributor is the state of the art in connection dispatching technology
among z/Series IP servers. Essentially, Sysplex Distributor extends the notion of
Dynamic VIPA and Automatic VIPA Takeover to allow for load distribution among
target servers within the sysplex. It combines technology used with Network
Dispatcher for the distribution of incoming connections with that of Dynamic VIPAs
to ensure high availability of a particular service within the sysplex.

Technically speaking, the functionality of Sysplex Distributor is similar to that of
Network Dispatcher in that one IP entity advertises ownership of some IP address
by which a particular service is known. In this fashion, the single system image of
Sysplex Distributor is also that of a special IP address. However, in the case of
Sysplex Distributor, this IP address (known as the cluster address in Network
Dispatcher) is called a distributed DVIPA. Further, in Sysplex Distributor, the IP

Chapter 6. TCP/IP in a sysplex 261

entity advertising the distributed DVIPA and dispatching connections destined for it
is itself a system image within the sysplex, referred to as the distributing stack.

Like Network Dispatcher and DNS/WLM, Sysplex Distributor also makes use of
Workload Manager (WLM) and its ability to gauge server load. In this paradigm,
WLM informs the distributing stacks of this server load so that the distributing stack
may make the most intelligent decision regarding where to send incoming
connection requests. Additionally, Sysplex Distributor has the ability to specify
certain policies within the Policy Agent so that it may use QoS information from
target stacks in addition to WLM server load. Further, these policies can specify
which target stacks are candidates for clients in particular subnetworks.

As with Network Dispatcher, connection requests are directed to the distributed
stack of Sysplex Distributor. The stack selects which target server is the best
candidate to receive an individual request and routes the request to it. It maintains
state so that it can forward data packets associated with this connection to the
correct stack. Additionally, data sent from servers within the sysplex need not travel
through the distributing stack.

Sysplex Distributor also enhances the Dynamic VIPA and Automatic VIPA Takeover
functions introduced in SecureWay® Communications Server for OS/390 V2R8 IP.
The enhancements allow a DVIPA to move nondisruptively to another stack. That is,
in the past, a DVIPA was only allowed to be active on one single stack in the
sysplex. This led to potential disruptions in service when connections existed on
one stack, yet the intent was to move the DVIPA to another stack. With Sysplex
Distributor, the movement of DVIPAs can now occur without disrupting existing
connections on the original DVIPA owning stack.

Refer to “Configuring Distributed DVIPAs — Sysplex Distributor” on page 224 for
more information.

Policy interactions
The Policy Agent interacts with the Sysplex Distributor to assist with workload
balancing. There will be one Policy Agent running on an LPAR regardless of how
many stacks are configured. First, the Policy Agent can be configured to collect
network performance statistics for applications being distributed on target stacks.
These network performance statistics are then used to modify the overall WLM
weight assigned to target stacks. In this way, both processor performance and
application network performance are taken into account when distributing work.
Second, policies established on the distributing stack can be configured to restrict
the set of target stacks to be considered for any given inbound connection request.
In this way, the total set of target stacks can be partitioned among different groups
of users or applications requesting connections to distributed applications.

Previously, the QoS performance data was collected by the Policy Agent on the
target for each DVIPA and port or application. After collecting the QoS information,
the Policy Agent on the target stack pushed this information down to the stack
Sysplex function which then forwarded it to the stack Sysplex function on the
distributing stack. There are two significant additions to Policy Agent and Sysplex
interaction:

v The Policy Agent at each target will collect information with an additional level of
granularity; the QoS performance data will be collected for each service level that
a target’s DVIPA port or application supports.

v The Policy Agent on the distributing stack drives the collection of this information
by pulling it from the Policy Agents on the target stacks:

262 z/OS V1R4.0 CS: IP Configuration Guide

– The Policy Agent on the distributor opens up a TCP connection to each of the
Policy Agents on the target stacks. For more information on how the Sysplex
Distributor determines its targets, refer to “Configuring Distributed DVIPAs —
Sysplex Distributor” on page 224.

– The Policy Agent on the distributing stack will send across a list of QoS
service level names to the Policy Agent on each target.

– The Policy Agent on each target will send back a QoS Policy Action weight
fraction for each requested service level that each target DVIPA
port/application supports. A specific Policy Action weight fraction will not be
sent unless the distributing stack’s Policy Agent requests it.

– Upon receiving the QoS Policy Action weight fraction, the Policy Agent on the
distributing stack will pass this information down to the Sysplex Distribution
function on the stack. The stack Sysplex Distribution function will use this
additional information when it is selecting targets for incoming connections. If
it does not have a QoS Policy Action weight fraction, then it will use the
existing weight fraction described above to make the load distribution decision
instead.

How to enable Policy Agent load distribution functions:

1. Define the PolicyPerfMonitorForSDR statement in the PAGENT configuration file
to enable the policy performance monitor function. This function must be active
on the target and distributing stacks.

2. z/OS CS V1R2 load distribution needs to be specifically enabled for each
service level; a Policy Action with the same service level name needs to be
defined on each of the appropriate target stacks and also on the distributing
stack for these targets. Note that it is reasonable to have a subset of key
service level names defined to the distributing stack. Traffic mapping to those
service level names that are defined to the distributing stack will receive z/OS
CS V1R2 load distribution by service level. All other traffic will receive CS
V2R10 load distribution.

3. A backup distributing stack must have the same Policy Action configuration
definitions as the active distributing stack for the corresponding DVIPA targets
which it is backing up, if it is desired that the Policy Action behavior stay the
same when the backup distributing stack takes ownership of the DVIPA. It will
also need to have the Policy Agent performance monitor function active.

4. Common PAGENT port numbers will be used by the listener
(pagentQosListener) and the collector (pagentQosCollector) They are part of the
/etc/services install file. If PAGENT is running on an LPAR containing a target
stack, it will open a listening connection using the pagentQosListener port
number. PAGENT running on an LPAR containing a distributing stack will
establish a TCP connection with each PAGENT listener using the
pagentQosCollector as the source port and the pagentQosListener as the
destination port. The listener will fail a connect request if the source/destination
port does not match the defined collector/listener port. The /etc/services file on
all LPARs in the sysplex must be updated to contain these port numbers.

5. Define the two port numbers mentioned above as reserved ports for PAGENT
via the PORT statement in the PROFILE.TCPIP data set.

6. Define the DYNAMICXCF parameter on the IPCONFIG statement in
PROFILE.TCPIP. The PAGENT TCP connections use the XCF IP addresses.

For more information on setting up polices, refer to “Sysplex distributor policy
performance monitoring configuration” on page 568, “Sysplex Distributor policy
example” on page 573, or “Sysplex Distributor routing policy example” on page 580.

Chapter 6. TCP/IP in a sysplex 263

Connection load balancing using Sysplex Distributor in a
network with CISCO routers
The IBM Sysplex Distributor (SD) function provides a workload balancing function
within a parallel sysplex. The SD consists of a primary distributor stack (denoted by
a Dynamic VIPA) and a set of target stacks. An inbound packet destined for that
DVIPA flows through the primary distributor stack which then forwards the packet
over an internal link (XCF, IUTSAMEH, or IQDIO) to the selected target stack.

The Cisco Multi-Node Load Balancer (MNLB) provides a workload balancing
function which distributes traffic through Cisco routers across multiple destination
TCP/IP stacks. The MNLB consists of a Service Manager (the Cisco Local Director
which is denoted by a cluster IP address) and a set of Forwarding Agents (Cisco
routers). For a TCP connection to the cluster IP address, the Forwarding Agent
sends the SYN packet to the Service Manager, which then selects a target stack
and notifies the Forwarding Agent of this decision. The Forwarding Agent then
sends all future packets for that TCP connection directly to the target stack.

A solution is available to allow the customer to use a combination of the Sysplex
Distributor and the MNLB to provide workload balancing.

The scope of a cluster IP address managed by Sysplex Distributor is still a single
Sysplex, and integration with Cisco forwarding agents merely allows the Sysplex
Distributor routing stack to be bypassed for inbound traffic. If workload balancing for
a single cluster IP address across nodes in multiple clusters (Sysplexes) is desired,
MNLB using Cisco Local Director as the service manager will continue to be used.
Sysplex Distributor will continue to advertise network ownership of the cluster IP
address with any attached routing daemon so that Sysplex Distributor appearance
and behavior toward the attached routing network is unchanged except for its new
relationship with Cisco forwarding agents.

This solution allows the choice of providing the workload distribution inside the
sysplex, outside the sysplex, or a combination of both.

Setting up Sysplex Distributor to be the service manager for
Cisco’s MNLB
1. The Cisco router must be configured as a forwarding agent. The ip casa control

address (which is NOT the interface address to the forwarding agent) must be
advertised by the Cisco routing daemons. This is not automatically done by
Cisco and must be enabled by a Cisco command. For more information on the
commands, refer to Cisco’s online documentation at:
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t5/ipclus.htm

2. Specify the SERVICEMGR keyword on the VIPADEFine statement in the TCPIP
profile.

3. Specify the VIPASMparms statement in the TCPIP profile. Specify the same
multicast group and UDP port on the VIPASMparms statement in the TCPIP
profile as are configured in the MNLB.

4. Optionally, use MD5 authentication:

Specify the same password (MD5 key) on the VIPASMparms statement in the
TCPIP profile as is configured on the Cisco routers which will communicate with
the Sysplex Distributor. If a password is specified, then the Sysplex Distributor
will perform MD5 authentication for all communications with the Cisco
Forwarding Agents. For more information on MD5 authentication, refer to RFC
1321.

5. If using the Cisco MNLB in a configuration where there is an OSA adapter
between a Cisco router and the destination TCP/IP stacks such that multiple

264 z/OS V1R4.0 CS: IP Configuration Guide

http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t5/ipclus.htm

stacks are sharing the OSA, then configure GRE tunnels on the Cisco routers.
Refer to the Cisco router publications located at
http://www.cisco.com/univercd/cc/td/doc/product/core/index.htm for more detailed
information.

6. If using the Cisco MNLB in a mixed environment where V2R10 targets exist,
routing must be configured so that the selected route from the R10 target to the
routing stack is not through the Cisco MNLB service manager for this distributed
DVIPA.

7. Special consideration must be made for each target stack that will receive data
from an OSA that is not shared with the distributor stack. Connection load
balanced IP packets routed to target stacks that do not use GRE tunnels will
arrive with a destination address of the dynamic VIPA address. Only the OSA
associated with the distributor stack is aware of the dynamic VIPA address. If
the OSA is not the primary router, it will discard the IP packet. In this case, you
must either configure GRE tunnels on the Cisco router or configure the OSA to
be the default router. For more detailed information about GRE, refer to the
Cisco router publications located at
http://www.cisco.com/univercd/cc/td/doc/product/core/index.htm. To configure an
OSA in LCS mode as the default router, use OSA/SF. To configure an
OSA-Express in QDIO mode as the default router, specify PRIROUTER on the
DEVICE statement. For more information on the DEVICE statement, refer to
z/OS Communications Server: IP Configuration Reference.

8. Verification:

The Netstat VIPADCFG/-F report may be used to verify the configuration. Refer
to the z/OS Communications Server: IP System Administrator’s Commands for
more information on this command.

Cisco’s show ip casa commands may be used to display MNLB information.
For more detailed information on these commands, refer to Cisco’s online
documentation at:
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t5/ipclus.htm

Following is a sample VIPADYNAMIC statement:
VIPADYNAMIC

VIPADEFINE MOVEABLE IMMED SERVICEMGR 255.255.255.0 197.11.221.1
VIPASMPARMS SMMCAST 224.0.1.2 SMPORT 1637
VIPADIST 197.11.221.1 PORT 80 20 21 23
DESTIP 199.11.87.104

199.11.87.105
199.11.87.106
199.11.87.108
199.11.87.109
199.11.87.110

ENDVIPADYNAMIC

For more information on the VIPADYNAMIC statement, refer to the z/OS
Communications Server: IP Configuration Reference.

Chapter 6. TCP/IP in a sysplex 265

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

http://www.cisco.com/univercd/cc/td/doc/product/core/index.htm
http://www.cisco.com/univercd/cc/td/doc/product/core/index.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t5/ipclus.htm

266 z/OS V1R4.0 CS: IP Configuration Guide

Part 2. Server applications

© Copyright IBM Corp. 2000, 2002 267

268 z/OS V1R4.0 CS: IP Configuration Guide

Chapter 7. Network connectivity with an SNA network

The objective of this chapter is to guide you through the steps required to
implement:

v SNALINK LU0

v SNALINK LU6.2

v X.25 NPSI

v NCPROUTE

Before you configure:

Read and understand Chapter 1, “Configuration overview” on page 3. It covers
important information about data set naming and search sequences.

SNALINK LU0 environment
SNALINK allows TCP/IP to send and receive packets using SNA sessions instead
of dedicating physical network hardware (such as a channel-to-channel adapter or
channel connection to a 3745/46 Communication Controller).

Prior to NCP V7R3, NCP did not support cross-channel native IP transmission of
the transport PDUs associated with RIP traffic. NCP expects these PDUs to be
carried in SNA frames. SNALINK is therefore still required for installations where
dynamic routing is performed with the NCP (via NCPROUTE). See z/OS
Communications Server: IP Configuration Reference for more information.

SNALINK allows an installation to multiplex SNA and IP traffic over the same I/O
subchannels, rather than requiring separate subchannels dedicated to VTAM and
TCP/IP. While such multiplexing capability may be desirable at some installations,
the native TCP/IP CTC and 3745/46 device drivers will likely outperform SNALINK
connections. Interaction with the SNALINK address space is very CPU-intensive,
and is not required with the native TCP/IP CTC and 3745/46 device drivers. (See
the z/OS Communications Server: IP Configuration Reference for configuration
information.) It is therefore important to weigh the multiplexing capability that
SNALINK provides against its performance cost, in determining whether to use
SNALINK or the native TCP/IP CTC or 3745/46 device drivers.

Understanding the SNALINK environment
The SNALINK environment interfaces between the TCP/IP environment’s SNAIUCV
driver and the customer’s SNA network. SNALINK communicates with one or more
instances of SNALINK at remote nodes, using the SNA LU type 0 protocol. See
Figure 38 on page 270 for a description of the SNALINK environment interfaces.

© Copyright IBM Corp. 2000, 2002 269

Each SNALINK environment can communicate with up to 9999 SNALINKs
simultaneously. The number of connections is determined by the parameters you
pass to the SNALINK cataloged procedure. The default is 6 sessions running in
dual mode for a total of 3 SNALINKs.

v When operating in single mode, SNALINK opens one full duplex session.

v When operating in dual mode, SNALINK opens two System Network Architecture
(SNA) sessions for each remote logical unit (LU) with which it communicates,
one for sending and one for receiving.

Configuring SNALINK LU0
Steps to configure SNALINK LU0:

1. Specify configuration statements in hlq.PROFILE.TCPIP.

2. Update the SNALINK cataloged procedure.

3. Define the SNALINK application to VTAM.

Step 1: Specify configuration statements in hlq.PROFILE.TCPIP
The following sections describe the changes you must make to your TCPIP address
space configuration data set (hlq.PROFILE.TCPIP).

Defining SNA DLC links: SNA DLC links are point-to-point and require DEVICE
and LINK statements in the configuration data set. The DLC link constitutes a
separate network, even though it includes only two hosts. To define a link, each
host to which the DLC link is attached requires:
v A pair of SNA LU0 DEVICE and LINK statements
v A HOME statement
v A BSDROUTINGPARMS or GATEWAY or BEGINROUTES statement

SNA DLC links are defined in one of two ways:

v By unique network or subnetwork numbers, if the hosts to which they connect
are not attached to other networks.

SNA LU0

SNA LU0

MVS MVS

VM

TCPIP #1 TCPIP #2

IUCV IUCV

IUCV

SNALINK #1 SNALINK #2

SNALINK #3

TCPIP #3

Figure 38. SNALINK environment interfaces

270 z/OS V1R4.0 CS: IP Configuration Guide

v By the IP address of the hosts to which they connect, if the hosts are attached to
other networks.

You usually have to assign a unique network or subnetwork number to the
SNALINK. If the link connects 2 hosts that also have other networks attached to
them, the DLC link does not need its own subnetwork number. Figure 39 illustrates
how to define an SNA DLC link if the 2 hosts are connected to other networks in
the following way:
v Host A and Host B are connected by SNA DLC
v Host A is also connected to a token ring, 193.1.1
v Host B is also connected to a token ring, 193.1.2
v Host A’s home address on its token ring is 193.1.1.1
v Host B’s home address on its token ring is 193.1.2.1

Host A’s hlq.PROFILE.TCPIP could contain:
DEVICE LCS1 LCS BA0
LINK TR1 IBMTR 0 LCS1
DEVICE SNALU0 SNAIUCV SNALINK LU000000 SNALINKA
LINK SNAIUCV1 SAMEHOST 1 SNALU0
HOME

193.1.1.1 TR1
193.1.1.2 SNAIUCV1

GATEWAY
; Network First hop Link Packet size Subnet mask

193.1.1.0 = TR1 2000 0
193.1.2.0 = SNAIUCV1 2000 0

Host B’s hlq.PROFILE.TCPIP could contain:
DEVICE LCS2 LCS BE0
LINK TR1 IBMTR 0 LCS2
DEVICE SNALU0 SNAIUCV SNALINK LU000001 SNALINKA
LINK SNAIUCV1 SAMEHOST 1 SNALU0
HOME

193.1.2.1 TR1
193.1.2.2 SNAIUCV1

GATEWAY
; Network First hop Link Packet size Subnet mask

193.1.2.0 = TR1 2000 0
193.1.1.0 = SNAIUCV1 2000 0

SNA
Host A

193.1.2.1

193.1.2193.1.1

193.1.1.1

Host BHost A

Figure 39. SNA DLC link

Chapter 7. Network connectivity with an SNA network 271

Notes:

1. The lu_name must be different on each host. In the example, the lu_name for
Host A is LU000000. The lu_name for Host B is LU000001.

2. In the example, the lu_name is the remote or partner LU.

Hosts A and B are addressed by their token-ring home addresses, even if the
packets reach them through the SNA DLC link.

If Host B had no other network attached to it, you would have to assign a separate
subnetwork number to the SNA DLC link. Even in this case, Host A does not need a
separate home address for its SNA link, because it can be addressed by its
token-ring home address. Host B’s only home address is the home address for the
SNA link.

Note: If you plan to run a network-monitoring protocol that requires each subnet to
have its own subnet number, you can assign a separate subnet network
number to the DLC link.

Defining NCPROUTE and 3745 LAN attachments: If your TCP/IP configuration
supports NCPROUTE or 3745 Communications Controller Ethernet or token-ring
links, you must do the following:

v Match the lu_name on the DEVICE statement to the LU statement in NCST
section of your NCP generation.

The following example shows the LU name A04TOLU1 defined in the
hlq.PROFILE.TCPIP DEVICE statements and in the NCP generation.

DEVICE SNA1LINK SNAIUCV SNALINK A04TOLU1 SNAL1STC
LINK SNALINK SAMEHOST 1 SNA1LINK

HOME
9.67.116.66 SNALINK

GATEWAY
; Network First hop Link Packet size Subnet mask

9.67.116.65 = SNALINK 2000 HOST

START SNA1LINK

* NCST IP INTERFACES**

A04NCSTG GROUP NCST=IP,LNCTL=SDLC,VIRTUAL=YES
A04NCSTL LINE LINEFVT=CXSXFVT,PUFVT=CXSXFVT,LUFVT=(CXSXFVT,CXSXFVT),LIN*

ECB=CXSXLNK
A04NCSTP PU VPACING=0,PUTYPE=2,PUCB=CXSP0000S
*
A04TOLU1 LU INTFACE=(NCSTALU1,1492),REMLU=SNALKLU1,LUCB=(CXSXL0000,CXSS0*

000),LOCADDR=1

v Match the remote LU name SNALKLU1 in the NCP generation to the APPLID in
the SNALINK cataloged procedure parameters and in the VTAM APPL definition.
//SNALINK PROC MODULE=SNALINK,TCPID=’TCPV3’,APPLID=’SNALKLU1’
//SNALINK EXEC PGM=&MODULE<REGION=$4096K,TIME=1440,

PARM=’&TCPID &APPLID C7 6 0003 SINGLE’

For additional information on configuring these links, see z/OS Communications
Server: IP Configuration Reference.

272 z/OS V1R4.0 CS: IP Configuration Guide

Step 2: Update the SNALINK cataloged procedure
Update the SNALINK cataloged procedure by copying the sample in
SEZAINST(SNALPROC) to your system or recognized PROCLIB and modifying it to
suit your local conditions. Specify SNALINK parameters and change the DD
statements, as required. Refer to z/OS Communications Server: IP Configuration
Reference for more information about the SNALINK cataloged procedure.

Step 3: Define the SNALINK application to VTAM
In dual mode, SNALINK opens 2 SNA sessions for each remote logical unit with
which it communicates: one for sending and one for receiving. In single mode,
SNALINK opens one full-duplex session.

Figure 40 is an example of a typical VTAM APPL statement for SNALINK. The
application identifier (SNALKB03 in this example) must match the APPLID specified
in the SNALINK cataloged procedure parameters.

Note: SRBEXIT must be YES.

Refer to z/OS Communications Server: SNA Resource Definition Reference more
information about defining VTAM applications.

VTAM considerations:

v Each connection requires 100KB of virtual storage.

v SNALINK provides its own BIND parameters, so it does not assume or require
any particular LOGMODE entries.

v The EAS value should be two times the number of maximum sessions passed to
the SNALINK cataloged procedure.

v SRBEXIT=YES.

v You might have to specify pacing values (VPACING). Consult your VTAM
network administrator for further details.

v For max_ru_size, be sure to consider the size of the TH, RH, and RU portions. If
the maximum size PIU exceeds MAXRU, the NCP issues a negative response
with sense 800A0000 (PIU too long). The definition used in NCP and SNALINK
must be such that MAXRU is at least 29 bytes less than MAXDATA. Refer to
z/OS Communications Server: SNA Network Implementation Guide for more
information on defining the MAXDATA, MAXBFRU, and UNITSZ operands.

Stopping and starting SNALINK
If necessary, you can immediately retry a session that is waiting for the retry delay
to expire by stopping and starting the SNALINK LU0 interface.

To stop SNALINK and close all connections, use the STOP command on the
operator’s console. For example, if SNALPROC was the name of the cataloged
procedure used to start SNALINK, you enter:
STOP SNALPROC

SNALKB03 APPL ACBNAME=SNALKB03, X
AUTH=(ACQ,VPACE), X
SRBEXIT=YES, X
EAS=12, X
PARSESS=YES, X
SONSCIP=YES, X
VPACING=0

Figure 40. APPL statement for SNALINK

Chapter 7. Network connectivity with an SNA network 273

You can also stop SNALINK with the HALT parameter on the MODIFY command.
See “Controlling the SNALINK LU0 interface with the MODIFY command” on
page 275.

SNALINK can be started by:

v Restarting the TCPIP address space if you have included the SNALINK
procedure in the AUTOLOG statement in the hlq.PROFILE.TCPIP data set.

v Issuing START procname at the command console (where procname is the name
of the cataloged procedure used to start the SNALINK LU0 interface).

For example, to restart SNALPROC, enter
START SNALPROC

Sample console
The example in Figure 41 and the accompanying information illustrate SNALINK
operation.

The line number notations in the example have been added for clarity. They do not
appear in the console output.

Line number Description

Lines 1 and 2 SNALINK displays its startup information from its
command line parameters, which are customized as
described in z/OS Communications Server: IP
Configuration Reference. The maximum RU size
and all other values are displayed in hexadecimal.

Line 1 | Init complete, APPLID SNALKB03, TCPIP id TCPIPB
Line 2 | Maximum RU size is 00000600
Line 3 SNALKC04 | DLC path 00000001 pending
Line 4 SNALKC04 | Ready to accept bind from remote LU
Line 5 SNALKA04 | DLC path 00000002 pending
Line 6 SNALKA04 | Sending BIND request for SNA send session
Line 7 SNALKA04 | OPNDST CHECK err. R15 00000004 R0 00000010 RTNCD 00000010 FDBK2 00000000
Line 8 SNALKA04 | OPNDST sense: SSENSEI,SSENSMI,USENSEI: 00000000
Line 9 SNALKA04 | DLC path 00000002 pending
Line 10 SNALKA04 | Sending BIND request for SNA send session
Line 11 SNALKA04 | OPNDST CHECK err. R15 00000004 R0 00000010 RTNCD 00000010 FDBK2 00000000
Line 12 SNALKA04 | OPNDST sense: SSENSEI,SSENSMI,USENSEI: 00000000
Line 13 SNALKC04 | Received BIND request for SNA receive session
Line 14 SNALKC04 | Sending BIND request for SNA send session
Line 15 SNALKC04 | SNA receive session established
Line 16 SNALKC04 | SNA send session established
Line 17 SNALKC04 | Accepting DLC path 00000001
Line 18 SNALKA04 | DLC path 00000002 pending
Line 19 SNALKA04 | Sending BIND request for SNA send session
Line 20 SNALKA04 | SNA send session established
Line 21 SNALKA04 | Accepting DLC path 00000002
Line 22 SNALKA04 | Received BIND request for SNA receive session
Line 23 SNALKA04 | SNA receive session established
Line 24 SNALKC04 | NSEXIT CLEANUP request for receive session
Line 25 SNALKC04 | RECEIVE CHECK err. R15 00000004 R0 0000000C RTNCD 0000000C FDBK2 0000000B
Line 26 SNALKC04 | RECEIVE sense: SSENSEI,SSENSMI,USENSEI: 00000000
Line 27 SNALKC04 | DLC path 00000001 pending
Line 28 SNALKC04 | Ready to accept bind from remote LU
Line 29 STOP SNALINK
Line 30 | Received STOP command, shutting down

Figure 41. SNALINK console example

274 z/OS V1R4.0 CS: IP Configuration Guide

Lines 3 and 4 The TCPIP address space, TCPIPB, issues a DLC
CONNECT to establish a session with the remote
LU SNALKC04. SNALKC04 is higher in the
collating sequence than the local LU name
SNALKB03. Consequently, SNALKB03 takes the
passive role in connecting to SNALKC04, and waits
for SNALKC04 to establish a session.

Lines 5 and 6 TCP/IP issues another DLC CONNECT to establish
a session with SNALKA04. In this case, SNALKA04
is lower in the collating sequence. Consequently,
SNALKB03 takes an active role in connecting to
SNALKA04.

Lines 7 and 8 The session establishment attempt to SNALKA04
has failed, as indicated by the (nonzero) return
code and the sense information printed.

Lines 9 through 12 Thirty seconds later, TCP/IP again tries to connect
to SNALKA04.

Lines 13 and 14 SNALINK receives a BIND request from
SNALKC04. SNALINK calls the resulting session
the receive session, because it is used only to send
data from SNALKC04. Now that the active end has
initiated communication, SNALKB03 as the passive
end, sends a BIND request to establish a send
session.

Lines 15 through 17 The send and receive sessions are fully
established. Establishment of the send session
causes SNALINK to accept the corresponding DLC
path.

Lines 18 through 23 TCP/IP again tries to connect to SNALKA04. This
time it is successful (success is indicated by no
nonzero return codes).

Lines 24 through 26 SNALKC04 terminates its sessions, and various
error messages result.

Lines 27 and 28 Thirty seconds later, TCP/IP again tries to establish
communication with SNALKC04. As in lines 13 and
14, SNALKB03 is the passive partner.

Lines 29 and 30 The operator issues a STOP SNALINK command,
which causes SNALINK to stop. All DLC paths and
SNA sessions are ended.

Verifying connection status using NETSTAT DEVLINKS
The DLC connect protocol between TCP/IP and SNALINK causes the status of the
SNAIUCV device, reported by NETSTAT DEVLINKS, to reflect the status of the
SNA sessions to the remote LU. Refer to z/OS Communications Server: IP System
Administrator’s Commands for more information on the NETSTAT command.

Controlling the SNALINK LU0 interface with the MODIFY command
Both of the following commands would pass parameters to a SNALINK LU0
address space started with a procedure named SNLK12.TCPSETUP.

Chapter 7. Network connectivity with an SNA network 275

MODIFY SNLK12.TCPSETUP,HALT

F SNLK12.TCPSETUP,PKTTRACE CLEAR *

TCP/IP for MVS allows the configuration of multiple DLC links to the SNALINK LU0,
LU6.2, and X.25 NPSI server address spaces. The PKTTRACE parameter supports
this capability through the LINKNAME parameter. Multiple PKTTRACE parameters
can be issued to define the scope of the tracing by identifying the tracing options
applicable to multiple links.

PKTTRACE considerations:

v Parsing of the parameter halts as soon as an error is detected and the parameter
is ignored.

v Parameters can appear in any order.

v The occurrence of a parameter more than once is an error. In the case of the
special parameters ON, OFF, CLEAR, and LIST, the occurrence of more than
one of these parameters is an error.

v The PKTTRACE parameter must be issued after the corresponding DLC
connection has been accepted from TCPIP.

v Each defined link will have an associated trace profile. The trace profile stores
the effective values of each of the trace options for the link. When created or
reset using the CLEAR parameter, a link’s trace profile is set to the default
values for the trace parameters as follows:
DESTPORT

No checking
FULL Tracing of the whole IP packet
IP All IP addresses (*)
PROT All protocols (*)
SRCPORT

No checking
SUBNET

No checking

v Multiple statements can refer to the same link either by explicitly naming the link
or by defaulting to an asterisk (*), which indicates all links. When multiple
statements refer to the same link, the parameters on the statements are
cumulative, and parameters not specified on the second and subsequent
statements are not changed. If a parameter is specified on one statement and
then appears on a subsequent statement, the value associated with the last
occurrence of the option is used because this is the value that is stored in the
trace.

SNALINK LU6.2
The SNALINK LU6.2 cataloged procedure runs a VTAM application program called
SNALNK62, which is an interface between the TCPIP address space and the SNA
network. SNALNK62 uses SNA LU type 6.2 sessions to pass the TCP/IP data to or
from SNALNK62 devices running on other hosts. Examples of SNALNK62 devices
include an OS/2 workstation running TCP/IP for OS/2 or a host running TCP/IP for
MVS.

Configuring SNALINK LU6.2
Steps to configure SNALINK LU6.2:

1. Specify DEVICE and LINK statements in hlq.PROFILE.TCPIP.

2. Update the SNALINK LU6.2 cataloged procedure.

276 z/OS V1R4.0 CS: IP Configuration Guide

3. Define the SNALINK LU6.2 application to VTAM.

4. Update the SNALINK LU6.2 configuration data set.

Step 1: Specify DEVICE and LINK statements in
hlq.PROFILE.TCPIP
You must update the hlq.PROFILE.TCPIP data set to include a DEVICE and LINK
statement for each DLC connection to be established between the main TCPIP
address space and the SNALINK LU6.2 address space.

Step 2: Update the SNALINK LU6.2 cataloged procedure
Update the SNALINK LU6.2 cataloged procedure by copying the sample in
SEZAINST(LU62PROC) to your system or recognized PROCLIB and modifying it to
suit your local conditions. No system parameters are required for the SNALINK
LU6.2 address space.

The DD statements in the cataloged procedure should be defined as follows:

DD Name Description
SYSTCPD TCPIP.DATA configuration data set
LU62CFG SNALINK LU6.2 configuration data set
SYSPRINT Runtime diagnostic or trace output
SYSUDUMP User abend dump output (optional)

Refer to “Resolver configuration files” on page 27 for information on data set search
sequences.

Step 3: Define the SNALINK LU6.2 application to VTAM
SNALINK LU6.2 opens two SNA LU type 6.2 sessions with each destination node;
one for sending and one for receiving. If a destination node supports parallel SNA
LU type 6.2 sessions (PARSESS=YES), the two sessions use the same remote
logical unit; otherwise, two remote logical units are used. In either case, SNALINK
LU6.2 uses a single local logical unit that must support parallel sessions.

The SNALINK LU6.2 address space must be defined to VTAM as an SNA LU type
6.2 application program. The following APPL statement defines a SNALINK LU6.2
application to VTAM.

Note: SRBEXIT must be NO.

See z/OS Communications Server: SNA Resource Definition Reference for further
information about defining VTAM applications.

The LOGMODE table entry specified by the APPL DLOGMOD parameter should
have the following form:

LU62APPL APPL ACBNAME=LU62APPL, *
PRTCT=QWERTY, *
AUTH=(ACQ,VPACE), *
SRBEXIT=NO, *
EAS=12, *
PARSESS=YES, *
SONSCIP=YES, *
APPC=YES, *
DLOGMOD=LU62MODE, *
VPACING=0

Figure 42. APPL statement for SNALINK LU6.2

Chapter 7. Network connectivity with an SNA network 277

LU62MODE MODEENT LOGMODE=LU62MODE,FMPROF=X’13’,TSPROF=X’07’, *
PRIPROT=X’B0’,SECPROT=X’B0’,COMPROT=X’D0B1’, *
RUSIZES=X’8585’,ENCR=B’0000’, *
PSERVIC=X’060200000000000000000300’

See z/OS Communications Server: SNA Customization for more information about
defining log mode tables and z/OS Communications Server: SNA Programming for
information on PSERVIC values.

Step 4: Update the SNALINK LU6.2 configuration data set
Customize the SNALINK LU6.2 configuration data set by copying the sample
provided in SEZA.INST(LU62CFG) to your system or recognized PROCLIB and
modifying it to suit your local conditions. Add or change the configuration
statements as required. Be sure the //LU62CFG statement in the cataloged
procedure points to this data set. Refer to z/OS Communications Server: IP
Configuration Reference for more information about parameters.

Sample console
The example in Figure 43 shows the messages that are expected when the
SNALINK LU6.2 address space is started and a network connection is established.

The following list explains the MVS system console messages on SNALINK LU6.2
address space startup as shown in Figure 43.

�1� The SNAL621A address space has been started.

�2� The SNALINK LU6.2 configuration data set for the SNAL621A address
space has been successfully parsed.

�3� The SNAL621A address space displays its local VTAM application LU and
the TCP/IP address space name to which it will connect.

�4� The SNAL621A address space establishes a network connection through
the VTAM API.

�5� The SNAL621A address space establishes a DLC connection with its
TCP/IP address space.

X.25 NCP Packet Switching Interface (NPSI)
The X.25 NPSI server runs a VTAM application program called XNX25IPI, which is
the interface between the TCPIP address space’s DLC driver and your X.25
network. XNX25IPI communicates with the X.25 NCP Packet Switching Interface in
a front-end IBM 37xx Communications Controller.

S SNAL621A
$HASP100 SNAL621A ON STCINRDR
$HASP373 SNAL621A STARTED
�1�IEF403I SNAL621A - STARTED - TIME=15.26.03
�2�EZA5927I LU62CFG : NO ERRORS DETECTED - INITIALIZATION WILL CONTINUE
�3�EZA5932I INITIALIZATION COMPLETE - APPLID: SNAL621A TCP/IP: TCPCS
�4�EZA5935I SEND CONVERSATION ALLOCATED FOR 9.67.22.2
�5�EZA5933I LINK SNALU62L OPENED
EZZ4313I INITIALIZATION COMPLETE FOR DEVICE SNALU621
�4�EZA5936I RECEIVE CONVERSATION ALLOCATED FOR 9.67.22.2

Figure 43. Sample MVS system console messages on SNALINK LU6.2 address space
startup

278 z/OS V1R4.0 CS: IP Configuration Guide

Large scale X.25 network applications often require multiple physical lines to the
network switch for increased capacity and reliability. You can configure the X.25
NPSI server to support multiple lines as a group, rather than individually. In this
configuration, the collection of lines is assigned a single address called a hunt
group address. Incoming X.25 calls are distributed among the lines in either rotary
or traffic balancing fashion, depending on the services offered by the X.25 network
provider.

For information about improving the performance of the X.25 NPSI network, see the
options on the PORT statement and GATEWAY statement in the
hlq.PROFILE.TCPIP and the explanation provided in the TCP/IP: Performance
Tuning Guide.

Configuring X.25 NPSI
This section describes how to configure the X.25 NPSI server.

Steps to configure the X.25 NPSI server:

1. Specify X.25 configuration statements in hlq.PROFILE.TCPIP.

2. Update the X.25 NPSI cataloged procedure.

3. Update the X.25 NPSI server configuration data set.

4. Define the X.25 NPSI configuration.

5. Define the X.25 NPSI application to VTAM.

6. Define VTAM Switched Circuits.

If you want to run the X.25 NPSI cataloged procedure in a different domain than the
X.25 NPSI communication controller, see z/OS Communications Server: IP
Configuration Reference.

For information about operating the X.25 NPSI server with the MODIFY command,
see z/OS Communications Server: IP Configuration Reference.

Step 1: Specify X.25 configuration statements in
hlq.PROFILE.TCPIP
To configure the hlq.PROFILE.TCPIP data set for X.25 NPSI, include appropriate
DEVICE, LINK, HOME, GATEWAY, and START statements. The following example
shows the statements that would correspond with the other X.25 samples in this
chapter.
;
DEVICE X25DEV X25NPSI TCPIPX25
LINK X25LINK SAMEHOST 1 X25DEV
;
HOME

199.005.058.23 X25LINK
;
GATEWAY
;
; Network First hop Link name Packet size Subnet mask Subnet value

192.005 = X25LINK 2000 0.0.255.0 0.0.58.0
;
START X25DEV
;

Note: Only one DEVICE and LINK statement per TCPIPX25 address space is
allowed.

Chapter 7. Network connectivity with an SNA network 279

Step 2: Update the X.25 NPSI cataloged procedure
Update the X.25 NPSI cataloged procedure by copying the sample provided in
SEZAINST(X25PROC) to your system or recognized PROCLIB and modifying it to
suit your local conditions.

Change the data set names as needed:

v Refer to “Resolver configuration files” on page 27 for data set search sequence
information.

v Modify the //X25IPI DD statement to point to your X.25 configuration data set.

Step 3: Update the X.25 NPSI server configuration data set
A sample configuration data set provided in SEZAINST(X25CONF) gives examples
of how to define a public network connection, a Defense Data Network connection,
and private point-to-point connection to a router. Copy this sample to the data set
pointed to by the //X25IPI DD statement in your X.25 NPSI cataloged procedure.
Update this sample to define your X.25 connections using the statements listed in
the z/OS Communications Server: IP Configuration Reference.

Each connection must have a LINK and at least one DEST statement. You can
optionally define hunt groups, fast connects, and call handling options for each link,
and global options such as trace levels, when to clear inactive connections, and the
buffer size to use for IP datagrams. You can find complete syntax for each of these
statements in z/OS Communications Server: IP Configuration Reference.

Step 4: Define the X.25 NPSI configuration
Define the X.25 NPSI configuration according to the information in X.25 NPSI
Planning and Installation. The X.25 NPSI server supports use of the LOGAPPL
operand on the X25.MCH definition in the X.25 NPSI configuration to allow
automatic recovery. You can use either the Generalized Access to X.25 Transport
Extension (GATE) or Dedicated Access to X.25 Transport Extension (DATE).

IBM recommends using the X.25 NPSI GATE configuration which allows sharing of
an X.25 physical link and provides better error recovery. A sample is provided in
SEZAINST(NPSIGATE). NPSI GATE requires that you include the OPTIONS GATE
statement in the X.25 NPSI configuration data set after the LINK statement, as
shown in this portion of the X25CONF sample:
*
* NPSI MCH DTE Window Packet Logical
* LU Name DNIC Address Size Size Channels
* -------- ---- --------------- - ---- ---
Link XU024 PRIV 1 2 1024 2
Options GATE
*
* IP address X.25 DTE addr C.U.D.
* --------------- --------------- --------
Dest 192.5.57.2 2

Sites that need to use the X.25 NPSI DATE configuration can find a sample in PV
SEZAINST(NPSIDATE). See X.25 NPSI Host Programming for information about
the definitions and parameters used in these configurations.

The following example shows portions of the sample NPSI GATE configuration
(NPSIGATE). Ellipses (....) indicate code that has been omitted.
**

OPTIONS NEWDEFN=YES,USERGEN=X25NPSI
**
·...
·...

280 z/OS V1R4.0 CS: IP Configuration Guide

NPSIV32 BUILD ADDSESS=400, +
AUXADDR=800, +
ERLIMIT=16, +
NAMTAB=120, +
MAXSESS=250, +
USGTIER=5, +
BRANCH=8000, +
BFRS=104, BUFFER SIZE TO BE GENED +
CATRACE=(YES,255), CHAN.ADAPTER TRACE OPTION +
CSMSG=C3D9C9E340E2C9E340D4C5E2E2C1C7C540C6D6D940E2E24040+
40C2C340E3C5D9D4C9D5C1D3, +
CWALL=26, +
ENABLTO=30.0, +
ERASE=YES, +
LOADLIB=NCPLOAD, TARGET OF FINAL LINKEDIT +
LTRACE=8, LINES TRACED SIMULTANEOUSLY +
MAXSSCP=8, NUMBER OF CONCURRENT SSCP’S +
MODEL=3745, +
VERSION=V5R2.1, +
NEWNAME=NPSITCP, NAME OF NCP LOAD MODULE +
NUMHSAS=8, HOST SA IN CONCURRENT COMMUNICATION +
OLT=YES, ONLINE TERMINAL TEST +
PWROFF=YES, +
BACKUP=500, +
SALIMIT=511, +
SLODOWN=12, BUFFER SLOWDOWN THRESHOLD (PERCENT) +
SUBAREA=03, +
TRACE=(YES,100), ADDRESS TRACE OPTION IN CORE TABLE +
TYPGEN=NCP, +
TYPSYS=MVS, NCP TO BE GENERATED ON MVS +
TWXID=(E8D6E4C3C1D3D311,C2C9C7D5C3D7C3C1D3D325), +
VRPOOL=30, +
TRANSFR=32, +
NETID=NETA, +
X25.USGTIER=5, +
X25.IDNUMH=01, +
X25.MCHCNT=4, +
X25.MAXPIU=64K

·...
·...

*
* NPSI DEFINITIONS
*

X25XXX X25.NET CPHINDX=1, +

NETTYPE=1, +
DM=YES, +
OUHINDX=1

X25.VCCPT INDEX=1, +
MAXPKTL=128, +
VWINDOW=2

X25.OUFT INDEX=1

* Hunt group primary line 021 with fast connect *

HGRP01A X25.MCH ADDRESS=21, +

FRMLGTH=131, 128 byte packet + 3 byte header +
PKTMODL=8, +
ANS=CONT, +
LCGDEF=(0,16), 16 logical channels in group 0 +
MWINDOW=2, +
STATION=DTE, +
SPEED=9600, +
LCN0=NOTUSED, +
GATE=GENERAL, GATE +
LLCLIST=(LLC4), +

Chapter 7. Network connectivity with an SNA network 281

CONNECT=YES, Fast connect +
LOGAPPL=TCPIPX25, +
DBIT=NO, +
DIRECT=NO, +
SUBADDR=NO

X25.LCG LCGN=0
X25.VC LCN=(1,16), +

MAXDATA=1034, MAXDATA only with Fast connect! +
TYPE=SWITCHED, +
CALL=INOUT, +
OUFINDX=1, +
VCCINDX=1

* Hunt group secondary line 022 with fast connect *

HGRP01B X25.MCH ADDRESS=22, +

FRMLGTH=131, 128 byte packet + 3 byte header +
PKTMODL=8, +
ANS=CONT, +
LCGDEF=(0,16), 16 logical channels in group 0 +
MWINDOW=2, +
STATION=DTE, +
SPEED=9600, +
LCN0=NOTUSED, +
GATE=GENERAL, GATE +
LLCLIST=(LLC4), +
CONNECT=YES, Fast connect +
LOGAPPL=TCPIPX25, +
DBIT=NO, +
DIRECT=NO, +
SUBADDR=NO

X25.LCG LCGN=0
X25.VC LCN=(1,16), +

MAXDATA=1034, MAXDATA only with Fast connect! +
TYPE=SWITCHED, +
CALL=INOUT, +
OUFINDX=1, +
VCCINDX=1

* DDN line 023 *

DTE01 X25.MCH ADDRESS=23, +

FRMLGTH=131, 128 byte packet + 3 byte header +
PKTMODL=8, +
ANS=CONT, +
LCGDEF=(0,16), 16 logical channels in group 0 +
MWINDOW=2, +
STATION=DTE, +
SPEED=9600, +
LCN0=NOTUSED, +
GATE=GENERAL, GATE +
LLCLIST=(LLC4), +
LOGAPPL=TCPIPX25, +
CTCP=(00), paired with CUD list +
CUD0=(CC), incoming CUD selects CTCP +
DBIT=NO, +
DIRECT=NO, +
SUBADDR=NO

X25.LCG LCGN=0
X25.VC LCN=(1,16), +

TYPE=SWITCHED, +
CALL=INOUT, +
OUFINDX=1, +
VCCINDX=1

* Private line 024: DCE station to router *

282 z/OS V1R4.0 CS: IP Configuration Guide

DCE01 X25.MCH ADDRESS=24, 1024 byte packet + 3 byte header +
FRMLGTH=1027, +
PKTMODL=8, +
ANS=CONT, +
LCGDEF=(0,2), +
MWINDOW=2, +
STATION=DCE, +
SPEED=9600, +
LCN0=NOTUSED, +
GATE=GENERAL, +
LLCLIST=(LLC4), +
CTCP=(00), paired with CUD list +
CUD0=(CC), incoming CUD selects CTCP +
DBIT=NO, +
DIRECT=NO, +
SUBADDR=NO

X25.LCG LCGN=0
X25.VC LCN=(1,2), +

TYPE=SWITCHED, +
CALL=INOUT, +
OUFINDX=1, +
VCCINDX=1

X25.END

·...
·...
GENEND GENEND

Step 5: Define the X.25 NPSI application to VTAM
Define the X.25 NPSI VTAM application with an APPL statement in VTAMLST.
Following is an example of a VTAM APPL statement for X.25 NPSI.

VBUILD TYPE=APPL +
TCPIPX25 APPL ACBNAME=TCPIPX25, +

PRTCT=TCPX25, +
AUTH=(ACQ), +
PARSESS=YES, +
EAS=20

Step 6: Define VTAM switched circuits
X.25 NPSI switched virtual circuits (SVCs) appear to VTAM as switched links, 1

requiring a switched circuit definition of a physical unit (PU) and logical unit (LU) for
each SVC. The sample provided in SEZAINST(X25VSVC) shows the definitions of
a VTAM switched circuit corresponding to the sample X.25 NPSI GATE
configuration.

The definitions are associated with the SVCs by identifying numbers (IDNUMs)
created automatically during X.25 NPSI generation. The entries, in hexadecimal, run
in steps of 2, by default, in the opposite order of the MCH and SVC definitions in
the X.25 NPSI configuration.

Notes:

1. Permanent virtual circuits (PVCs) are not supported.

2. If you specify a local version of the z/OS UNIX table with the SSCPFM operand,
the table must not have an entry for message 10 (the welcome message);
otherwise, the X.25 NPSI server does not operate correctly.

Following is a sample SVC configuration data set (X25VSVC):

1. Except when using fast connect, where they appear as leased lines to VTAM. For more information, see z/OS Communications
Server: IP Configuration Reference.

Chapter 7. Network connectivity with an SNA network 283

VBUILD TYPE=SWNET,MAXGRP=1,MAXNO=1

* Switched circuits for DDN line 023 (16 VCs, IDNUMS 006-024) *
* *
* COPYRIGHT = NONE. *

VP023001 PU ADDR=23,IDBLK=003,IDNUM=01024, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023001 LU LOCADDR=0
VP023002 PU ADDR=23,IDBLK=003,IDNUM=01022, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023002 LU LOCADDR=0
VP023003 PU ADDR=23,IDBLK=003,IDNUM=01020, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023003 LU LOCADDR=0
VP023004 PU ADDR=23,IDBLK=003,IDNUM=0101E, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023004 LU LOCADDR=0
VP023005 PU ADDR=23,IDBLK=003,IDNUM=0101C, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023005 LU LOCADDR=0
VP023006 PU ADDR=23,IDBLK=003,IDNUM=0101A, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023006 LU LOCADDR=0
VP023007 PU ADDR=23,IDBLK=003,IDNUM=01018, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023007 LU LOCADDR=0
VP023008 PU ADDR=23,IDBLK=003,IDNUM=01016, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023008 LU LOCADDR=0
VP023009 PU ADDR=23,IDBLK=003,IDNUM=01014, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023009 LU LOCADDR=0
VP023010 PU ADDR=23,IDBLK=003,IDNUM=01012, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023010 LU LOCADDR=0
VP023011 PU ADDR=23,IDBLK=003,IDNUM=01010, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023011 LU LOCADDR=0
VP023012 PU ADDR=23,IDBLK=003,IDNUM=0100E, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023012 LU LOCADDR=0
VP023013 PU ADDR=23,IDBLK=003,IDNUM=0100C, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023013 LU LOCADDR=0
VP023014 PU ADDR=23,IDBLK=003,IDNUM=0100A, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023014 LU LOCADDR=0
VP023015 PU ADDR=23,IDBLK=003,IDNUM=01008, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023015 LU LOCADDR=0
VP023016 PU ADDR=23,IDBLK=003,IDNUM=01006, +

284 z/OS V1R4.0 CS: IP Configuration Guide

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023016 LU LOCADDR=0

* Switched circuits for private line 024 (2 VCs, IDNUMS 002-004) *

VP024001 PU ADDR=24,IDBLK=003,IDNUM=01004, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL024001 LU LOCADDR=0
VP024002 PU ADDR=24,IDBLK=003,IDNUM=01002, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL024002 LU LOCADDR=0

NCPROUTE
NCPROUTE is a server that provides an alternative to using the Network Control
Program (NCP) as a static host-independent IP router. NCPROUTE has the
following effects:
v NCP becomes an active RIP router on a TCP/IP network.
v NCP becomes responsive to SNMP route table queries.

Notes:

1. NCPROUTE requires NCP V7R1, or later.

2. NCPROUTE requires SNALINK LU0 when using NCP V7R3 or previous.

3. SNALINK and IP over CDLC is supported for ESCON®, BCCA, and CADS
channels.

4. IP over CDLC can be used instead of SNALINK when using NCP V7R4, or
later.

5. If using RIP Version 2, NCPROUTE requires NCP V7R6, or later. Also, the NCP
generation definition must have VSUBNETS=YES specified on the BUILD
statement.

6. NCP versions V6R1 and V6R2 support static IP routing only. NCP uses these
static route tables to deliver datagrams over connected TCP/IP networks. NCP
V7R1 can be specified only as a host-dependent router and it requires the
NCPROUTE server to function as a RIP router.

7. If using NCPROUTE with SNALINK, IP over CDLC channels, and OROUTED,
you should customize the NCST interface metric on the NCP client side for the
SNALINK NCST connection so the routes will be less preferred. This causes
RouteD to prefer routes from the IP over CDLC interface over the ones from the
SNALINK interface. To customize the interface metric, see the interface metric
option in “Step 8: Configure the NCPROUTE gateways data set (Optional)” on
page 300. Do the same for the SNALINK interface on the MVS host side by
customizing the metric in the BSDROUTINGPARMS statement. RIP traffic will
be carried over the IP over CDLC interface, while transport PDUs (for example,
Hello, Add Route Request, Delete Route Request) will be carried over the
SNALINK interface.

8. NCPROUTE does not support zero subnets.

NCPROUTE provides dynamic route table updates for one or more NCP clients that
have been generated as IP routers and have NCPROUTE specified as the
NCPROUTE server. NCPROUTE tables are updated periodically in the NCP client
based on updates sent by the NCPROUTE server. These updates reflect dynamic
changes in route states.

Chapter 7. Network connectivity with an SNA network 285

An NCPROUTE server at the host uses the Routing Information Protocol (RIP),
described in RFC 1058 (RIP version 1) and in RFC 1723 (RIP version 2). The same
routing protocols are used by the OROUTED server. NCPROUTE is implemented
as a RIP server operating on an MVS host connected to a RIP client in the NCP.
Together they provide the appearance to the TCP/IP network of an IP router using
the RIP protocol. The same client/server pair also provides SNMP agent support for
network management route table queries. RIP Versions 1 and 2 are currently
supported by NCPROUTE. For a brief description of RIP (Versions 1 and 2), see
Chapter 4, “Routing” on page 155.

Understanding the NCPROUTE environment
The NCPROUTE server:
v Supports multiple host-attached, link-attached, and remote link-attached NCP

clients as illustrated in Figure 44
v Generates RIP datagrams for the NCP to send
v Maintains separate routing tables for each NCP client
v Generates SNMP route table responses for each NCP SNMP agent

The client NCP unit appears as an active router to other RIP routers on the
network. Multiple NCP clients can connect to the same NCPROUTE server. Each
NCP appears as an IP router to the rest of the network. Each NCP client must have
one or more LU0 sessions established with SNALINK. One LU0 session per client
is used as the primary session, with the remaining sessions serving as backups.

Figure 44 illustrates the different ways the NCPROUTE server can support NCP
clients. NCP3 and NCP4 are host-attached NCP clients, NCP5 and NCP6 are
link-attached NCP clients, and NCP1 and NCP2 are remote link-attached NCP
clients.

MVS

3172

NCP3NCP2NCP1 NCP4

NCP6

NCP5

NCPROUTE

Figure 44. NCPROUTE environment

286 z/OS V1R4.0 CS: IP Configuration Guide

Server requirements
NCPROUTE processes RIP and SNMP datagrams addressed to all attached NCP
units, generates datagrams for the NCP units, and maintains the state of each NCP
unit’s routing tables.

SNMP support is limited to route table queries. Queries are made to the NCP, which
sends the request to the NCPROUTE server for processing.

NCPROUTE operation
An NCP’s IPOWNER statement defines the controlling host and the interface this
NCP client must use to reach the host. The NCP client initiates contact with
NCPROUTE by sending a datagram, known as a “Hello” message, to the controlling
host. It transmits this datagram on UDP port 580.

Note: The port number is generated in the NCP (using the UDPPORT keyword on
the IPOWNER statement) and configured in NCPROUTE.

The “Hello” message identifies the client NCP and determines which member from
the hlq.NCPROUTE.GATEWAYS partitioned data set to use for this NCP’s route
table. Any valid MVS data set name can be used for the gateways data set.

The NCP client then sends a list of its inactive links to NCPROUTE. NCPROUTE
uses additional routes defined for this NCP in the NCPROUTE gateways data set,
as defined in the NCPROUTE profile. It also uses the inactive links provided
dynamically by the NCP to build the current route table for this NCP. The following
process is repeated for each NCP that has been generated to act as a RIP router:
1. A RIP packet arrives at the NCP client from a foreign router.
2. The NCP client sends this datagram to the NCPROUTE server.
3. The NCPROUTE server processes the RIP packet.
4. The NCPROUTE server creates a RIP update for an NCP client.
5. This update is sent to the NCP client.
6. The NCP client transmits the datagram to the network.

NCPROUTE sends route table updates to each NCP client every 30 seconds. After
a client has been activated, updates must be supplied over each of its interfaces
every 30 seconds. The NCPROUTE server creates these updates and sends them
to the NCP client along with the IP addresses of other RIP routers that the NCP
client should send them to.

At the same time, adjacent RIP routers are providing periodic updates every 30
seconds to NCPROUTE. These updates are sent by the NCP client to the
NCPROUTE server, where they are processed, and the results are reflected in
future updates back to the NCP client.

The NCP client sends all SNMP and RIP datagrams to the NCPROUTE server for
processing. The NCPROUTE server provides RIP packets and SNMP replies to the
NCP client to send to their final destination.

NCPROUTE gateways:

Passive RIP route: Information about passive routes is put in NCP’s and
NCPROUTE’s routing tables. A passive entry in NCPROUTE’s routing table is used
as a placeholder to prevent a route from being propagated and from being
overwritten by a competing RIP route. With the exception of directly-connected
passive routes, passive routes are not propagated; they are known only by this
router.

Chapter 7. Network connectivity with an SNA network 287

Using passive routes can create routing loops, so care must be taken when
creating them.

Do not define passive routes such as these:
v A to C is via B.
v B to C is via A.

Passive routes should be used when adding routes where the host or network is
not running RIP. Passive routes should also be used when adding a default route,
because this is the only way to prevent a route from timing out.

External RIP route: External routes are managed by other protocols, for example,
the External Gateway Protocol (EGP). NCPROUTE needs to know not to interfere
with these routes and not to delete them.

An external entry exists in the NCPROUTE routing table as a place holder to
prevent a route from being overwritten by a competing RIP route. External routes
are not propagated. NCPROUTE does not manage an external route. Therefore,
NCPROUTE only knows that there is an existing route to the host or network and
that is the route known by NCP.

External routes should be used when the local machine is running a non-RIP
routing protocol that dynamically changes the TCP/IP routing tables. The remote
machine does not need to run any routing protocol, since the only concerns are
how to route traffic from the local machine to the remote machine, and how to
prevent multiple routing protocols from interfering with each other.

RIP route advertising rules:

Note: RIPv1 and RIPv2 protocols are mutually exclusive; you cannot run RIPv1
and RIPv2 simultaneously.

Table 13 illustrates the differences between routing rules on the basis of RIP
version.

Table 13. RIP route advertising rules

Version2 Advertised
destination
route1

Same
subnet
as
interface

Different
network
from
interface
with
same
subnet
mask

Same
network as
interface
regardless
of subnet
mask

Different
network
from
interface

Same
supernet
as
interface

Different
supernet
from
interface

RIPv1 Host Yes3 Yes3 Yes3 Yes3

Subnet No Yes No No

Network No Yes

Supernet

Default Yes3

288 z/OS V1R4.0 CS: IP Configuration Guide

Table 13. RIP route advertising rules (continued)

Version2 Advertised
destination
route1

Same
subnet
as
interface

Different
network
from
interface
with
same
subnet
mask

Same
network as
interface
regardless
of subnet
mask

Different
network
from
interface

Same
supernet
as
interface

Different
supernet
from
interface

RIPv2 Host Yes3 Yes3 Yes3 Yes3 Yes3 Yes3

Subnet No Yes Yes Yes Yes Yes

Network No Yes No Yes

Supernet No Yes No Yes

Default Yes5

Notes:

1. According to RIP design, route advertising relies on network-specific routes
because they are the lowest common denominator. The network-specific routes
consist of supernet, network, and subnet routes. The advertising of host specific
routes is optional.

2. RIPv1 is the default setting for the RIP version. To set to RIPv2, specify the
RIP2 parameter in NCPROUTE Profile and/or on interface options in the
NCPROUTE Gateways data set.

3. The optional host specific routes are allowed to be advertised outside networks,
and they are advertised in addition to the network specific routes. The option is
enabled when the system -h parameter (or SUPPLY HOSTS option in
NCPROUTE Gateways data set) is specified.

4. Although it is possible to advertise only the host specific routes using the RIP
filters, doing so creates network unreachable problems when some routers in
the network do not support the host specific routes. These routers rely on
network-specific routes.

5. A default route has a network number of zero and is usually advertised over all
network interfaces.

6. It does not matter whether the advertised route is VIPA or not. VIPA routes
follow the same advertising rules as the non-VIPA routes.

7. Routes that are subjected to RIP filters may not be advertised at all over certain
network interfaces.

NCPROUTE active gateways: Active gateways are treated as remote network
interfaces. Active gateways are routers that are running RIP, but are reached
through a medium that does not allow broadcasting or multicasting and is not
point-to-point, for example, Hyperchannel. NCPROUTE normally requires that
routers be reachable by broadcast or multicast for non-point-to-point links or by
unicast addresses for point-to-point links. If the interface is neither, then an active
gateway entry can add the gateway to NCPROUTE’s interface list. NCPROUTE will
treat the active gateway as a remote network interface. Note that the active
gateway must be directly connected.

Active gateways should be used when the foreign router is reachable over a
non-broadcast-capable, non-multicast-capable, and non-point-to-point network, and
is directly connected to the local host.

Chapter 7. Network connectivity with an SNA network 289

NCPROUTE communicates with active routes by unicast transmissions to the
gateway address. Routes are not added immediately to either NCPROUTE or the
NCP routing table. They are added and propagated normally when route
advertisements arrive from an active gateway. The sole effect of an active gateway
statement is to bypass the requirement for broadcast communication on
non-point-to-point links. Interfaces that are not broadcast, non-point-to-point, and
are not active gateways are assumed to be loopback interfaces to the local
machine. Also, while a route to an active gateway might timeout, the interface entry
is never removed. If transmissions resume, then the new routes will still be
available to the active gateways.

NCPROUTE gateways summary
Table 14 provides a list of NCPROUTE gateways and their characteristics.

Table 14. NCPROUTE gateways summary

Propagate Kernel NCPROUTE Timeout

Dynamic (1) Yes Yes Yes Yes

Passive No (2) Yes Yes No

External No No Yes No

Active Yes Yes Yes Yes

1 Dynamic routing is provided by NCPROUTE.

2 Except directly-connected passive routes. Directly-connected passive routes are
propagated to other network interfaces for network reachability. A directly-connected passive
route is one where the gateway address is one of the local interfaces in an NCP client.

RIP input/output filters
The RIP input/output filters provide routing table manipulation and routing control.
The filters are provided by NCPROUTE and consist of:

v Route receiving (unconditional and conditional)

v Route noreceiving

v Route forwarding (unconditional and conditional)

v Route noforwarding

v Interface Supply switch

v Interface RIP On/Off switch

v Gateway noreceiving

For more information on these filters, see “Step 8: Configure the NCPROUTE
gateways data set (Optional)” on page 300.

Configuring NCPROUTE
Steps to configure NCPROUTE:

1. Specify configuration statements in hlq.PROFILE.TCPIP.

2. If using SNALINK, configure VTAM and SNALINK applications.

3. If using IP over CDLC, configure IP over CDLC DEVICE and LINK statements.

4. Update the NCPROUTE cataloged procedure.

5. Update hlq.ETC.SERVICES.

6. Configure the host-dependent NCP clients.

7. Configure the NCPROUTE profile data set for SNMP support and specification
of an NCPROUTE gateways data set (optional).

8. Configure the NCPROUTE gateways data set for each NCP client (optional).

290 z/OS V1R4.0 CS: IP Configuration Guide

9. If RouteD is not used, define a directly-connected host route to each NCP client.

Figure 45 shows the network addresses used in the configuration examples:

Step 1: Specify configuration statements in hlq.PROFILE.TCPIP
1. To have the NCPROUTE server started automatically when the TCPIP address

space is started, include the name of the member containing the NCPROUTE
cataloged procedure in the AUTOLOG statement in hlq.PROFILE.TCPIP:

AUTOLOG
NCPROUT

ENDAUTOLOG

2. To ensure that UDP port 580 is reserved for the NCPROUTE server, also add
the name of the member containing the NCPROUTE cataloged procedure to the
PORT statement in hlq.PROFILE.TCPIP:

PORT
580 UDP NCPROUT

Note: This port number must match the one defined in the NCP generation
definition (using the UDPPORT keyword on the IPOWNER statement)
and assigned in hlq.ETC.SERVICES.

MVS1 Host

OS/2 Host

10.68.0.1

10.68.0.88

9.67.116.65

9.67.116.66

RouteD
(optional)

RouteD

NCPROUTE

SNALINK

NCST

NCP1

Token
Ring

Ethernet

192.1.2.1

192.1.2.99

SOCPU1 SOCPU2

NCP2

12.1.1.98

12.1.1.99

13.1.1.99

MVS2 Host

12.1.1.1

RouteD
(optional)

NCPROUTE

IPC1

MVS3 Host

13.1.1.1

RouteD
(optional)

IPC3IPC2

12.1.1.2

ESCON
Director

Figure 45. NCPROUTE example configuration

Chapter 7. Network connectivity with an SNA network 291

3. NCPROUTE also requires HOME and BSDROUTINGPARMS statements for the
SNALINK type LU0 and IP over CDLC connections. For example, you would
use this HOME and BSDROUTINGPARMS statement and, optionally, the
GATEWAY statement for the configuration shown in Figure 45 on page 291:

MVS1: HOME
9.67.116.66 SNALINK
BSDROUTINGPARMS false

SNALINK 2000 0 255.255.240.0 9.67.116.65
ENDBSDROUTINGPARMS

MVS2: HOME
12.1.1.1 IPC1
12.1.1.2 IPC2
BSDROUTINGPARMS false

IPC1 1000 0 255.255.255.0 12.1.1.98
IPC2 1000 0 255.255.255.0 12.1.1.99

ENDBSDROUTINGPARMS
MVS3: HOME

13.1.1.1 IPC3
BSDROUTINGPARMS false

IPC3 1000 0 255.255.255.128 13.1.1.99
ENDBSDROUTINGPARMS

Notes:

a. If you are not using RouteD to manage the host routes, configure static
routes to the NCP client or clients in the GATEWAY statement in
hlq.PROFILE.TCPIP. If using NCPROUTE with OMPROUTE,
BSDROUTINGPARMS is required to route Transport PDUs prior to
OMPROUTE activation. Since the BSDROUTINGPARMS parameters are
overridden by the interface parameters defined in the OMPROUTE
configuration, ensure that the interface parameters for the SNALINK or
IP/CDLC channel connections are identical in both BSDROUTINGPARMS
statement and the OMPROUTE configuration file. See “Step 9: Define a
directly connected host route for the NCST session” on page 304 for sample
definition. For more information on the GATEWAY statement, see z/OS
Communications Server: IP Configuration Reference for each NCP client.

b. A BSDROUTINGPARMS statement is required even though RouteD is not
used.

You can find a complete explanation of these configuration statements in z/OS
Communications Server: IP Configuration Reference.

Step 2: Configure VTAM and SNALINK applications
If you are using NCP V7R3 or previous, NCPROUTE requires SNALINK type LU0
to run. To use SNALINK LU0, verify that you have configured the SNALINK LU0
interface, defined it to VTAM with a VTAM APPL definition, and included the correct
DEVICE and LINK statements in hlq.PROFILE.TCPIP. For NCP V7R4, or later, IP
over CDLC can be used instead of SNALINK.

If you are using the Cross Domain Resource (CDRSC), verify that the cross-domain
resource managers are configured in VTAM.

Following is an example of an appropriate VTAM APPL definition:

* SNALINK VTAM APPL DEFINITION *

SNALKLU1 APPL AUTH=(ACQ,VPACE),ACBNAME=SNALKLU1,EAS=12,PARSESS=YES, *

SONSCIP=YES,VPACING=0,SRBEXIT=YES

292 z/OS V1R4.0 CS: IP Configuration Guide

Note: The application name (the ACBNAME value, SNALKLU1, in this example)
must match the REMLU interface definition in the NCP clients generation
program. See the example in “Step 6: Configure the host-dependent NCP
clients” on page 294 for more information.

Following is an example of corresponding DEVICE and LINK statements:
;
; DEVICE AND LINK DEFINITIONS FOR SNALINK LU0
;
DEVICE SNA1LINK SNAIUCV SNALINK A04TOLU1 SNALPROC
LINK SNALINK SAMEHOST 1 SNA1LINK
;

Note: The LU name on the DEVICE statement (A04TOLU1 in this example) must
match the LU name of the NCST interface definition in the NCP clients
generation program. See the example in “Step 6: Configure the
host-dependent NCP clients” on page 294 for more information.

If you want the SNALINK device to start automatically, verify that you have a
START statement for this device in hlq.PROFILE.TCPIP. For example,
START SNA1LINK. Otherwise, you will have to start the device manually.

Step 3: Configure the IP over CDLC DEVICE and LINK
statements
For NCPROUTE, IP over CDLC can be configured along with SNALINK for NCP
V7R3, or later, or it can be used to replace SNALINK for NCP V7R4, or later.

Following is an example of corresponding DEVICE and LINK statements for the
configuration shown in Figure 45 on page 291 for the MVS2 host:
;
; DEVICE AND LINK DEFINITIONS FOR IP OVER CDLC
;
DEVICE IPC1NCP CDLC 013 40 40 1024 1024
LINK IPC1 CDLC 0 IPC1NCP
;
DEVICE IPC2NCP CDLC 014 40 40 1024 1024
LINK IPC2 CDLC 0 IPC2NCP

Note: If you want a CDLC device to start automatically, verify that you have a
START statement for this device in hlq.PROFILE.TCPIP, for example, START
IPC1NCP. Otherwise, you will have to start the device manually.

Step 4: Update the NCPROUTE cataloged procedure
Update the NCPROUTE cataloged procedure by copying the sample in
SEZAINST(NCPROUT) to your system or recognized PROCLIB. Specify
NCPROUTE parameters and change the data set names to suit your local
configuration. See Figure 46 on page 300 for an illustration of NCPROUTE data set
relationships.

Step 5: Update hlq.ETC.SERVICES
NCPROUTE uses the hlq.ETC.SERVICES data set to determine the port number
on which to run. This data set can be used to define a port number other than the
reserved well-known port for NCPROUTE. This data set must exist for NCPROUTE
to run.

The ETC.SERVICES data set is dynamically allocated using the standard search
sequence for data set names. This data set also can be explicitly allocated in the
NCPROUTE cataloged procedure using the //SERVICES DD statement.

Chapter 7. Network connectivity with an SNA network 293

The entries in hlq.ETC.SERVICES are case and column sensitive. They must be in
lowercase and begin in column 1.

Add the following lines to the hlq.ETC.SERVICES data set:
ncproute 580/udp
router 520/udp

Note: Verify that the NCPROUTE service port number is the port being used by the
NCP clients. This number should match the port number defined in the NCP
generation definition using the UDPPORT keyword on the IPOWNER
statement. This port number does not necessarily have to match the
reserved port number for NCPROUTE on the PORT statement in
hlq.PROFILE.TCPIP.

The reserved router service port number is 520. It is required for the NCPROUTE
transport of RIP packets to NCP clients which are responsible for broadcasting the
packets to other RIP routers. It cannot be overridden.

If you want to use name aliases, refer to INFO APAR II08205 for information.

Step 6: Configure the host-dependent NCP clients
You should refer to the appropriate NCP documentation for more information about
defining and generating the NCP and creating route information tables.

v For more information about defining IP, refer to NCP, SSP, and EP Resource
Definition Guide.

v For more information about the IP Dynamics function, refer to NCP and EP
Reference.

v For more information about NCP generation definitions for IP, refer to NCP, SSP,
and EP Resource Definition Reference.

v For more information about generating NCP as an IP router, refer to NCP, SSP,
and EP Generation and Loading Guide.

Note: See NCPROUTE notes in on page 285.

Generating the routing information tables: To support IP dynamics, NCP’s
Network Definition Facility (NDF) builds a routing information table (RIT) for
networks and subnetworks for use by TCP/IP at NCP generation time.

The RIT consists of routing tables that are generated from the NCP IPROUTE and
IPLOCAL statements. During NCP generation, the RIT is added as a member of the
NCP load library partitioned data set ncp.v7r1.ncpload. You identify the member
name of ncp.v7r1.ncpload that NCPROUTE uses at execution time with the
NEWNAME parameter of the BUILD statement for each NCP client generation.

Determining the gateway route table name: There is one RIT in the
ncp.v7r1.ncpload data set for each NCP client this server supports. The
NCPROUTE server receives the NCP name from an NCP client in the “Hello”
message. This name is used as the base to determine the member name in the
ncp.v7r1.ncpload partitioned data set to use for the initial RIT for this NCP client.
The RIT member name in the ncp.v7r1.ncpload data set is the NEWNAME
parameter of the BUILD statement for the NCP generation with a suffix of P added.
Specify a unique name on the NEWNAME parameter of the BUILD statement for
each NCP client. This name is also used as the member name if the optional
gateways data set (GATEWAYS_PDS) is specified in the NCPROUTE profile. The

294 z/OS V1R4.0 CS: IP Configuration Guide

RIT is accessed by NCPROUTE from a //STEPLIB DD statement in the
NCPROUTE cataloged procedure, LINKLST, or authorized library.

NCST session interface definition: The NCP Connectionless SNA Transport
(NCST) interface is used to establish a session that can provide a connection to
another IP node (NCP or z/OS) over a SNA network. Use this definition when using
NCST PU interfaces to communicate with NCPROUTE using SNALINK devices with
the MVS host. The NCST interface must be defined to match the SNALINK LU0
interface in VTAM so that an NCP client can establish a connection with
NCPROUTE. The LU statement in the NCST interface definition tells VTAM which
interface to use for the SNALINK application. The following are important keywords
in this definition:

NCST
Specifies the protocol type. Must be coded as IP for internet protocol.

INTFACE
Specifies the name of the interface and the maximum transfer unit (MTU) size
for the NCST session to the VTAM owner (IPOWNER).

REMLU
Specifies the name of the remote LU for the SNALINK LU0 VTAM connection.
This name must match:
v The APPLID in the PROC statement of the SNALINK cataloged procedure
v The application name in the VTAM APPL definition

Note: If you define a backup NCST SNALINK session, the REMLU can specify the
primary logical name for the remote LU or a different remote LU. Ensure that
the MTU sizes are the same for the backup NCST sessions.

Following is an example of an NCST session interface definition:
**
* NCST IP INTERFACES *
**
A04NCSTG GROUP NCST=IP,LNCTL=SDLC,VIRTUAL=YES
A04NCSTL LINE LINEFVT=CXSXFVT,PUFVT=CXSXFVT,LUFVT=(CXSXFVT,CXSXFVT), *

LINECB=CXSXLNK
A04NCSTP PU VPACING=0,PUTYPE=2,PUCB=CXSP0000
*
A04TOLU1 LU INTFACE=(NCSTALU1,1492),REMLU=SNALKLU1,LUCB=(CXSL0000,CXSS0*

000),LOCADDR=1
*

Note: The NCST LU name (A04TOLU1 in this example) must match the LU name
on the SNALINK LU0 DEVICE statement in hlq.PROFILE.TCPIP. See the
example in “Step 2: Configure VTAM and SNALINK applications” on
page 292 for more information.

Channel PU interface definition: Use this definition with channel PU interfaces
(ESCON, BCCA, or CADS) to communicate with NCPROUTE using IP over CDLC
devices with the MVS host.

Following is an example of channel PU interface definition using the ESCON
channel type:
**
* PHYSICAL ESCON CHANNEL DEFINITIONS *
**
*
A04PSOC1 GROUP LNCTL=CA,MONLINK=NO,NPACOLL=NO,XMONLNK=YES

SPEED=144000000,SRT=(32768,32768)

Chapter 7. Network connectivity with an SNA network 295

*
A04S2240 LINE ADDRESS=2240
A04P2240 PU ANS=CONTINUE,PUTYPE=1
*
**
* LOGICAL ESCON CHANNEL DEFINITIONS *
**
*
A04PSOCB GROUP LNCTL=CA,PHYSRSC=A04P2240,NPACOLL=NO,

DELAY=0.2,MAXPU=16,MODETAB=AMODETAB,
DLOGMOD=INTERACT,SPEED=144000000,
SRT=(21000,20000),PUDR=YES,
TIMEOUT=150.0,CASDL=0.0

*
A04LSOC2 LINE ADDRESS=NONE,HOSTLINK=1
A04L2S1 PU ADDR=01,PUTYPE=1,ARPTAB=(10,,NOTCANON),

INTFACE=SOCPU1
A04L2S2 PU ADDR=02,PUTYPE=1,ARPTAB=(10,,NOTCANON),

INTFACE=SOCPU2

NCP host interface definition: The IPOWNER statement in the NCP generation
definition contains the TCP/IP host information and tells NCP which interface to use
for NCPROUTE. The following are important keywords on the IPOWNER statement:

INTFACE
Specifies the name of the interface to the owning TCP/IP host that is running
NCPROUTE.

HOSTADDR
Specifies the IP address of the owning TCP/IP. This address must match the IP
address in the HOME statement in hlq.PROFILE.TCPIP data set for a SNALINK
or IP over CDLC interface.

UDPPORT
Specifies the UDP port number for NCPROUTE. The default is 580. This port
number must match the NCPROUTE service port number defined in the
hlq.ETC.SERVICES data set. See “Step 5: Update hlq.ETC.SERVICES” on
page 293 for more information.

The IPLOCAL statement in the NCP generation definition contains the NCP routing
information for the local attached routes. During NCP generation, this information
gets included in the Routing Information Table (RIT) which NCPROUTE uses to
build the interface and routing tables. IPLOCAL routes are predefined as permanent
or static to prevent modification by NCPROUTE. The following are important
keywords on the IPLOCAL:

INTFACE
Specifies the name of the locally attached interface.

LADDR
Specifies the IP address of the locally attached interface.

P2PDEST
For point-to-point interfaces only. Specifies the IP address of the remote end of
the point-to-point link.

PROTOCOL
Specifies the type of protocol to be used for the interface. The default is RIP
which indicates that the interface is RIP-managed by NCPROUTE.

SNETMASK
Specifies the subnetwork mask for a route to a network that is subnetted.

296 z/OS V1R4.0 CS: IP Configuration Guide

Because RIP does not support variable subnetwork masking, this value must be
equal to the subnetwork mask of the route’s destination.

The IPROUTE statement in the NCP generation definition contains the NCP routing
information for optional predefined routes. During NCP generation, this information
gets included in RIT which NCPROUTE uses to add the routes to its routing tables.
IPROUTE routes can be predefined as permanent or non-permanent for route
management control by NCPROUTE. The following are important keywords on the
IPROUTE statement:

INTFACE
Specifies the name of the locally attached interface for the route.

DESTADDR
Specifies the route’s destination IP address.

DISP
Specifies the disposition for the route. A disposition of PERM indicates that this
route is a permanent route and will not be modified by NCPROUTE. The default
is NONPERM.

HOSTRT
Indicates whether this is a host route. The default is NO.

NEXTADDR
Specifies the IP address of the gateway through which the route can reach its
destination. A value of 0 indicates that there is no gateway.

The following example shows typical NCP RIP router generation source statements.

* IP ROUTING DEFINITIONS *

*

IPOWNER INTFACE=NCSTALU1,HOSTADDR=9.67.116.66, *
NUMROUTE=(100,100,100),MAXHELLO=25,UDPPORT=580

*
IPLOCAL LADDR=9.67.116.65,INTFACE=NCSTALU1,METRIC=1, *

P2PDEST=9.67.116.66,PROTOCOL=RIP,SNETMASK=FFFFF000
IPLOCAL LADDR=10.68.0.88,INTFACE=TR88,METRIC=1, *

SNETMASK=FFFFF000
IPLOCAL LADDR=10.68.0.92,INTFACE=TR92,METRIC=1, *

SNETMASK=FFFFF000
*

IPROUTE DESTADDR=11.0.0.1,NEXTADDR=0,INTFACE=TR88,METRIC=2, *
DISP=PERM,HOSTRT=YES

IPROUTE DESTADDR=12.0.0.0,NEXTADDR=13.0.0.1,INTFACE=TR92, *
METRIC=2,DISP=NONPERM

The following example shows IPOWNER and IPLOCAL statements for the ESCON
channel PU interfaces in the configuration for NCP2 as shown in Figure 45 on
page 291.

* IP ROUTING DEFINITIONS USING ESCON CHANNEL INTERFACES *

*
IPOWNER INTFACE=SOCPU1,UDPPORT=580,NUMROUTE=(110,120,130),

HOSTADDR=12.1.1.1
*
IPLOCAL LADDR=12.1.1.98,INTFACE=SOCPU1,METRIC=1,

P2PDEST=12.1.1.1,PROTOCOL=RIP,SUBNETMASK=FFFFFF00
*
IPLOCAL LADDR=12.1.1.99,INTFACE=SOCPU1,METRIC=1,

P2PDEST=12.1.1.2,PROTOCOL=RIP,SUBNETMASK=FFFFFF00

Chapter 7. Network connectivity with an SNA network 297

*
IPLOCAL LADDR=13.1.1.99,INTFACE=SOCPU2,METRIC=1,

P2PDEST=13.1.1.1,PROTOCOL=RIP,SUBNETMASK=FFFFFF80

Step 7: Configure the NCPROUTE profile data set (Optional)
To build the NCPROUTE profile, create a data set and specify its name in the
//NCPRPROF DD statement in the NCPROUTE cataloged procedure. You can find
a sample in SEZAINST(EZBNRPRF). Include configuration statements in this data
set to define SNMP functions and to identify the NCPROUTE gateways data set.
For more information, refer to z/OS Communications Server: IP Configuration
Reference.

RIP_SUPPLY_CONTROL supply_control
Specifies one of the following options on a server-wide basis:

v RIP1—Unicast/Broadcast RIP Version 1 packets (Default)

v RIP2B—Unicast/Broadcast RIP Version 2 packets (Not Recommended)

v RIP2M—Unicast/Multicast/Broadcast RIP packets (Migration)

v RIP2—Unicast/Multicast RIP Version 2 packets

v NONE—Disables sending RIP packets

Note: If RIP2 is specified, the RIP Version 2 packets are multicast over
multicast-capable interfaces only. No RIP packets are sent over
multicast-incapable interfaces. For RIP2M, the RIP Version 2 packets are
multicast over multicast-capable interfaces and RIP Version 1 packets
over multicast-incapable interfaces. For RIP2B, the RIP Version 2
packets are unicast or broadcast; this option is not recommended since
host route misinterpretations by adjacent routers running RIP Version 1
can occur. For this reason, RIP2B may become obsolete in a future
release. For point-to-point interfaces that are non-broadcast and
multicast-incapable, the RIP Version 2 packets are unicast.

RIP_RECEIVE_CONTROL receive_control
Specifies one of the following options on a server-wide basis:

v RIP1—Receive RIP Version 1 packets only

v RIP2—Receive RIP Version 2 packets only

v ANY—Receive any RIP Version 1 and 2 packets (Default)

v NONE—Disables receiving RIP packets

Note: If the client NCP does not support variable subnetting, the default of ANY
is changed to RIP1.

RIP2_AUTHENTICATION_KEY authentication_key
Specifies a plain text password authentication_key containing up to 16
characters. The key is used on a router-wide basis and can contain mixed case
and blank characters. Single quotes (’) can be included as delimiters to include
leading and trailing blanks. The key will be used to authenticate RIP Version 2
packets and be included in the RIP updates for authentication by adjacent
routers running RIP Version 2. For maximum security, set
RIP_SUPPLY_CONTROL and RIP_RECEIVE_CONTROL to RIP2. This will
discard RIP1 and unauthenticated RIP2 packets. A blank key indicates that
authentication is disabled. Following are examples of authentication passwords:
my password (no leading or trailing blanks)
’ my password ’ (leading and trailing blanks)
’’abc’’ (single quotes part of password)
’ ’ (5-character blanks)

298 z/OS V1R4.0 CS: IP Configuration Guide

SNMP_AGENT host_name
Specifies the host name or IP address of the host running an SNMP daemon.
Only one NCPROUTE server can use a particular SNMP agent at a time.

SNMP_COMMUNITY community_name
Specifies a community name that SNMP applications must use to access data
that the agent manages. Protect this information accordingly.

GATEWAY_PDS dsname
Specifies the optional partitioned data set that contains GATEWAY information
for each client NCP. Quotation marks are not needed when specifying dsname.
One member for each NCP client of this data set must be configured to match
the NCP NEWNAME parameter with the P suffix which is the same as the
NCP’s RIT member name. See “Step 8: Configure the NCPROUTE gateways
data set (Optional)” on page 300 for information on defining the statements
necessary for the members of this data set.

Note: You can use a semicolon in column 1 to permit comments in the profile.
Blank lines are also permitted.

Figure 46 on page 300 shows the relationship between the data set names
specified in the NCPROUTE cataloged procedure and the NCPROUTE profile, as
well as the relationship between the members of the gateways PDS and the
ncpload PDS.

Chapter 7. Network connectivity with an SNA network 299

Step 8: Configure the NCPROUTE gateways data set (Optional)
The gateways data set is used to identify routes not defined in the NCP routing
information table.

NCPROUTE and ROUTED require separate gateways data sets. The two servers
cannot share the same data set. The NCPROUTE gateways data set is optional.
However, if you use it, you must include the GATEWAY_PDS statement in the
NCPROUTE profile to specify the gateway data set name. The NCPROUTE server
queries the gateways data set for static routing information. It also dynamically
receives routing information from the NCP client portion of this RIP router.

Allocate the gateways data set with partitioned organization (PO), a fixed block
format (FB), a logical record length of 80 (LRECL), and any valid block size value
for a fixed block, such as 3120.

A passive entry in the gateways data set is used to add a route to a part of the
network that does not support RIP. An external entry in the gateways data set
indicates a route that should never be added to the routing tables. If another RIP
server offers this route to your host, the route is discarded and not added to the

ncprte.profile

SNMP AGENT xyzhost

SNMP COMMUNITY xyz=comm

GAREWAYS PDS ncpgate

ncpload

ncpgate

(members of ncpgate)

(RIT members of ncpload)

route1p

route1p

NCPROUTE catalogued procedure

//STEPLIB DD DSN=ncp.v7r1.ncpload//NCPRPROF DD DSN=ncprte.profile

route2p

route2p

route3p

route3p

Figure 46. NCPROUTE data sets relationship

300 z/OS V1R4.0 CS: IP Configuration Guide

routing tables. An active entry indicates a gateway that can only be reached
through a network that does not allow or support link-level broadcasting or
multicasting.

Note: The gateways data set is not related to the GATEWAY statement used in
hlq.PROFILE.TCPIP data set.

To configure NCPROUTE, add an entry to the gateways data set for each route not
defined in the NCP RIT. Use the options statement to define the characteristics of
the routes in this member of the PDS.

Configuring a passive route: Figure 47 illustrates an NCPROUTE configuration
using NCP as the destination hosts. In other configurations, destination hosts might
not necessarily be NCPs.

Using Figure 47, assume that your NCP client ncp1 is channel-attached to an MVS
host running an NCPROUTE server. The other two NCP clients, ncp2 and ncp3, are
not running a RIP server. Also assume that permanent routes to ncp2 and ncp3 are
not defined with the IPROUTE definitions in the NCP generation definition for ncp1.
Your NCPROUTE server cannot learn a route to ncp3, because ncp2 is not running
a RIP server. Your NCPROUTE server sends routing updates to ncp3 over the link
to ncp2, but never receives a routing update from ncp2. After 180 seconds, your
NCPROUTE server deletes the route to ncp2. This problem is inherent to the RIP
protocol and cannot be prevented. Therefore, you need to add a passive route to
ncp3 in the NCPROUTE gateways data set for the NCP client ncp1. This is the data
set defined by the GATEWAYS_PDS statement in the NCPROUTE profile.

You can use either of the following gateway statements:
host ncp3 gateway ncp2 metric 2 passive

host 192.10.10.2 gateway 192.10.20.2 metric 2 passive

Similarly, because ncp2 is not running an RIP server supported by NCPROUTE, you
need to add a directly-connected passive route as follows:

host ncp2 gateway ncp1 metric 1 passive

A directly-connected passive route is one where the gateway address or name is
one of the local interfaces in the NCP generation.

Assume that your NCP client is now ncp2 and is running an NCPROUTE server.
ncp1 is also running a RIP server, but ncp3 is not. Your NCPROUTE server sends

.1

.1 .2

.2

192.10.20

192.10.10

ncp1 ncp3ncp2

Figure 47. NCPROUTE configuration example of a passive route

Chapter 7. Network connectivity with an SNA network 301

routing information updates to ncp3 over the link to ncp3 but never receives a
routing update from ncp3. After 180 seconds, your NCPROUTE server deletes the
route to ncp3.

You should add a passive route to ncp3 as follows:
host ncp3 gateway ncp2 metric 1 passive

ncp1 cannot reach ncp3 unless a passive routing entry is added to ncp1. For
example:
host ncp3 gateway ncp2 metric 2 passive

or
host 192.10.10.2 gateway 192.10.20.2 metric 2 passive

Configuring an external route: Using Figure 47, assume that your NCP client
ncp1 is channel-attached to an MVS host running an NCPROUTE server. The other
two NCP clients, ncp2 and ncp3, are also running a RIP server. Your NCPROUTE
server normally learns a route to ncp3 from ncp2, because ncp2 is running a RIP
server. You might not want ncp1 to route to ncp3 for security reasons. For example,
a university might want to prevent student hosts from routing to administrative
hosts.

To prevent your NCPROUTE server from adding a route to ncp3, add an external
route to the NCPROUTE gateways data set. This is the data set defined by the
GATEWAYS_PDS statement in the NCPROUTE profile. You can use either of the
following gateway statements:

host ncp3 gateway ncp2 metric 2 external

host 192.10.10.2 gateway 192.10.20.2 metric 2 external

Configuring an active gateway:

As shown in Figure 48, assume that your NCP client is ncp1, which is
channel-attached to an MVS host running an NCPROUTE server and that it has a
network attachment adapter that does not support link-level broadcasting or one
that does not support ARP processing. Also, assume that there are routers Router1
and Router2 on the local area network. Because the IP addresses Router1 and
Router2 are unknown by ncp1, they have to be manually configured in NCPROUTE
for NCPROUTE to communicate with them. Configuring active gateways for Router1
and Router2 as remote network interfaces enables NCPROUTE to send RIP
responses to the target addresses.

155.80.20

155.80.10

LAN

NCP 1

Host 1

Router 1
.2

.1.1 .2

.3 Router 2

Figure 48. Configuring an active gateway

302 z/OS V1R4.0 CS: IP Configuration Guide

1. Specify IP addresses for each network adapter (without link-level broadcasting
or ARP support) attached to the local network in the NCP client according to the
NCP generation definition. For example, 155.80.20.1 is the IP address for the
local network adapter attachment in ncp1.

2. Define active gateways for the remote routers in the NCPROUTE gateways data
set specified on the GATEWAYS_PDS statement in the NCPROUTE profile:
active active gateway 155.80.20.2 metric 1 active
active active gateway 155.80.20.3 metric 1 active

NCPROUTE will use these active gateway addresses as the destination addresses
to send RIP responses to the remote routers. In addition, NCPROUTE will continue
to receive RIP responses from the active gateways over the NCP client.

Configuring a default route: A default route is typically used on a gateway or
router to an internet, or on a gateway or router that uses another routing protocol,
whose routes are not reported to other local gateways or routers.

To configure a route to a default destination, add a default route using the
IPROUTE statement in the NCP generation definition. For example, if the default
destination router has a gateway address 9.67.112.1, an IPROUTE statement might
look like:

IPROUTE DESTADDR=0.0.0.0,NEXTADDR=9.67.112.1,INTFACE=TR88,
METRIC=1,DISP=PERM

An easier way would be to use the passive route definition specified in the
NCPROUTE gateways data set for the NCP client. For example, the gateways entry
would look like:

net 0.0.0.0 gateway 9.67.112.1 metric 1 passive

Only one default route to a destination gateway or router can be specified. For an
NCP client, NCPROUTE currently does not support multiple default routes.

Configuration examples: The following example shows the contents of an
NCPROUTE gateways data set containing multiple entries:

options default.router no trace.level 4 supply on
net testnet gateway 9.0.0.100 metric 1 passive
net 2.0.0.2 gateway 9.0.0.101 metric 2 external
host 2.0.0.3 gateway 9.0.0.102 metric 3 passive
host 2.0.0.4 gateway 9.0.0.103 metric 2 external
active active gateway 2.0.1.1 metric 1 active

In the second entry, the route indicates that NCPROUTE can reach network
testnet through the gateway 9.0.0.100, and that it is one hop away. This passive
route is not broadcast to other RIP routers.

In the third entry, the route indicates that NCPROUTE can reach network 2.0.0.2
through the gateway 9.0.0.101, and that it is two hops away. Because this route is
external, NCPROUTE should not add routes for this network to the routing tables
and routes received from other RIP routers for this network should not be accepted.

In the fourth entry, the route indicates that NCPROUTE can reach host 2.0.0.3
through gateway 9.0.0.102, and that it is one hop away. This passive route is not
broadcast to other RIP routers.

In the fifth entry, the route indicates that NCPROUTE can reach host 2.0.0.4
through gateway 9.0.0.103, and that it is two hops away. Because this route is

Chapter 7. Network connectivity with an SNA network 303

external, NCPROUTE should not add routes for this network to the routing tables,
and routes received from other RIP routers for this network should not be accepted.

The sixth entry shows an active gateway. Note that it is specified as the last entry in
the data set.

Note: If a default route is to be defined to a destination gateway or router,
configure a default route in this gateways data set (if the default route is not
defined in a NCP client’s generation definition).

Step 9: Define a directly connected host route for the NCST
session
If you are not using RouteD, you need to configure a directly-connected static host
route using the GATEWAY statement in hlq.PROFILE.TCPIP. For example, if you
are using SNALINK as the host route and have the IP addresses shown in
Figure 45 on page 291, the GATEWAY statement might look like this:

GATEWAY
; net_number first_hop link_name packet_size subnet_mask subnet_value

9.67.116.65 = SNALINK 32758 HOST

See z/OS Communications Server: IP Configuration Reference and the GATEWAY
syntax information in “Step 8: Configure the NCPROUTE gateways data set
(Optional)” on page 300 for more information about configuring GATEWAYS
statements.

Note: The host routes on the MVS host are managed by TCP/IP as defined on the
GATEWAY statement or by RouteD as defined on the BSDROUTINGPARMS
statement. NCPROUTE does not manage the host routes on the MVS host.
It only manages the routes on the NCP clients.

Controlling the NCPROUTE address space with the MODIFY
command
You can control most of the functions of the NCPROUTE address space from the
operator’s console using the MODIFY command.

For information about modifying the NCPROUTE address space with the MODIFY
command, refer to z/OS Communications Server: IP System Administrator’s
Commands.

304 z/OS V1R4.0 CS: IP Configuration Guide

Chapter 8. Accessing remote hosts using Telnet

Telnet is a terminal emulation protocol that allows end users to log on to remote
host applications as though they were directly attached to that host. Telnet protocol
requires that the end user has a Telnet client emulating a type of terminal the host
application will understand. The client connects to a Telnet server, which
communicates with the host application. The Telnet server acts as an interface
between the client and host application. A PC can support several clients
simultaneously, each with its own connection to any Telnet server. This chapter
describes how to set up and use the following:

TN3270 Telnet server
Provides access to z/OS VTAM SNA applications on the MVS host using
Telnet TN3270E, TN3270, or linemode protocol.

z/OS UNIX Telnet server
Provides access to z/OS UNIX shell applications on the MVS host using
Telnet linemode protocol.

It is possible to use the same port for both Telnet servers. For an overview of port
management, see “Port management overview” on page 55. For more specific
information on the PORT BIND statement, refer to “Setting up reserved port number
definitions in PROFILE.TCPIP” on page 139.

TN3270 Telnet server
The TN3270 Telnet server acts as an interface between IP and SNA networks. End
users in an IP network connect to the server which is also a VTAM application. The
server activates one SNA application minor node logical unit (LU) to represent each
Telnet IP client. The Telnet application LU establishes a session with a VTAM host
application (for example, CICS), simulating a terminal (LU0 or LU2) or a printer
(LU1 or LU3). The TN3270 Telnet server runs in the TCP/IP address space as part
of TCP/IP. The Telnet server is started as part of the TCP/IP startup procedure. To
enable connections, the VTAM and TCP/IP configuration data sets must be modified
with Telnet statements. These statements describe the Telnet LUs, a listening port,
and the characteristics of that port. After TCP/IP is started, VARY and DISPLAY
commands specifically related to the Telnet server can be used to alter the state of
Telnet or display information about Telnet. For more information about these
command sets, refer to z/OS Communications Server: IP System Administrator’s
Commands.

z/OS
Client

T
C
P
/
I
P

TCP/IP
NETWORK

V
T
A
M

A
P
P
L

T
e
l
n
e
t

Figure 49. Telnet connectivity

© Copyright IBM Corp. 2000, 2002 305

|
|
|

|
|
|

Getting started
Telnet is part of the Initial Verification Procedure (IVP). With the IVP, an end user
can:

v Start the TSO Telnet client

v Establish a Telnet connection to the Telnet server using loopback

v Begin a session with another TSO user ID on the same host

Establishing a new session confirms that the Telnet server is working properly. The
VTAM configuration data set for Telnet is hlq.SEZAINST(IVPLU), and the Telnet
configuration statements are part of the hlq.SEZAINST(SAMPPROF) TCP/IP
configuration data set. For more information on IVP, refer to z/OS Communications
Server: IP Programmer’s Reference.

Starting a Telnet session
You can use the IVP sample configuration data sets to start a simple Telnet. Follow
these steps to establish a TSO session over a Telnet connection:

1. Ensure the sample hlq.SEZAINST(IVPLU) member is in the concatenation of
data sets specified on the VTAMLST DD statement in the procedure used to
start VTAM. The LUs need to be in a connectable state. To do this, activate the
major node.

2. When the TCP/IP stack is started using hlq.SEZAINST(SAMPPROF), message
EZZ6003I is displayed. This indicates that Telnet is ready to accept connections.

3. To start a TSO Telnet client emulator, issue the TSO command: TELNET ipaddr
where ipaddr is the TCP/IP loopback address. The command defaults to port
23. The Telnet server will use the first Telnet LU to establish a session with
TSO.

4. Enter any valid TSO user ID.

This sample is designed to verify that the basic Telnet requirements are in place
and functioning. Several features are not included in this sample, but you should
consider them before using Telnet in production. For example, LU and application
mapping, security, and connection persistence are some of the Telnet features. To
learn more about Telnet capabilities and better understand TN3270, read the
remainder of this chapter.

Customizing the VTAM configuration data sets
Telnet uses application LUs to represent clients that are defined in VTAM
application (APPL) major nodes. Their definition members must be made available
to VTAM by being in the list of data sets specified on the VTAMLST DD statement
in the procedure used to start VTAM. This member contains the Telnet application
LUs, and ensures that these LUs will be available for activation after VTAM is
started. To automatically activate the application definition deck, include it in
ATCCONxx. If multiple Telnet servers are used, for example multiple TCP/IP stacks
in a sysplex distributor environment, ensure each server uses unique LU names.
Otherwise, the second server that uses the same LU name will be unable to
establish a session. Either the OPEN ACB request will fail, or the cross-domain
session request will fail. A sample VTAM configuration data set can be found in
hlq.SEZAINST(IVPLU).

Telnet LUs, representing either terminal or printer emulators, can be defined in the
VTAM configuration data set using a wildcard character instead of coding individual
Telnet application LU statements. The Model Application Names function allows
system administrators to code a generic APPL name with an asterisk (*) or question
mark (?). Refer to z/OS Communications Server: SNA Resource Definition
Reference for detailed information. Use * as a wildcard character to replace a

306 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|

|

character string at the same position anywhere within the minor node name. This
can produce a significant administration savings. For example, assume Telnet LUs
are needed in the range of TCPABC01 through TCPABC99. The sample
configuration data set has a single VTAM application definition statement with a
Telnet application minor node (Telnet LU) name of TCPABC* which supports all 99
LUs.

Because Telnet server LUs do not support multiple concurrent sessions, VTAM will
automatically set SESSLIM=YES for Telnet LUs defined to VTAM.

Code LOSTERM=IMMED to ensure quickest Telnet LU ACB cleanup. Without this,
Telnet LUs in session with same-domain VTAM applications wait for an UNBIND
response from the application.

Code EAS=1 to minimize Common Service Area (CSA) storage use. If EAS is
allowed to default, excessive CSA storage will be used.

Customizing the TCP/IP configuration data sets
Telnet configuration statements are processed during initialization of the TCP/IP
address space or when using the VARY TCPIP,,OBEYFILE command. The purpose
of the Telnet configuration statements is to:

1. Define connection characteristics

2. Facilitate session setup with MVS host VTAM applications

3. Assign an LU name to represent the client

Telnet configuration uses the following statement blocks:

TELNETGLOBALS/ENDTELNETGLOBALS
An optional statement block containing Telnet parameter statements. The
parameters define connection characteristics for all ports.

TELNETPARMS/ENDTELNETPARMS
A required statement block containing Telnet parameter statements. The
parameters define connection characteristics for the specified port.

PARMSGROUP/ENDPARMSGROUP
An optional parameter group statement within BEGINVTAM containing
Telnet parameter statements. The parameters define connection
characteristics for the mapped clients.

BEGINVTAM/ENDVTAM
A required statement block containing Telnet mapping statements. The
mapping statements define how applications and LU names are mapped
(assigned) to clients.

Refer to z/OS Communications Server: IP Configuration Reference for exact syntax
rules.

TELNETPARMS and BEGINVTAM blocks are required for each port started or
modified by the VARY TCPIP,,OBEYFILE command. See “Complete profile
replacement” on page 313 for details on complete profile processing. It is
recommended, but not required, that you reserve the Telnet port or ports by using
the stand-alone PORT num INTCLIEN statement in the TCP/IP startup profile. If
you do not code the PORT num INTCLIEN statement, another application might use
the port before the Telnet application can claim it.

Use a separate profile member with only Telnet statements (TELNETGLOBALS,
TELNETPARMS and BEGINVTAM blocks) to keep TCP/IP configuration more

Chapter 8. Accessing remote hosts using Telnet 307

|
|

|

|

|

|

|

|
|
|
|

|
|

|

|
|

organized and allow for easy Telnet updates with the VARY TCPIP,,OBEYFILE
command. To validate a Telnet profile without applying the profile, specify
TESTMODE (a TELNETPARMS-only parameter). When no errors are reported,
remove the TESTMODE statement and use the INCLUDE statement to add it to the
TCP/IP startup profile. A sample TCP/IP configuration data set can be found in
hlq.SEZAINST(SAMPPROF).

Telnet LUs can be defined to the Telnet configuration data set using several
different wildcard notations instead of coding individual LU names. The
DEFAULTLUS statement can be used to define terminal emulator LUs. The sample
profile defines to Telnet application LUs TCPABC01 through TCPABC99 to
represent clients connecting to port 23 of the stack IP address. The last two fields
are defined to be numeric variables. If multiple Telnet servers are used, for example
multiple TCP/IP stacks in a sysplex distributor environment, ensure each server
uses unique LU names. Otherwise, the second server that uses the same LU name
will be unable to establish a session. Either the OPEN ACB request will fail, or the
cross-domain session request will fail. After connecting, the DEFAULTAPPL
statement maps the TSO application to the client and causes the Telnet server to
immediately initiate a session between the Telnet LU and TSO. If an error occurs
during session initiation, the MSG07 statement allows an error message to be sent
to the client. If MSG07 is not coded, the connection is dropped. The sample profile
contains additional statements that are included as comments. These statements
provide examples of advanced functions. Many of these statements are
installation-specific and will require modification.

Connection characteristic parameters: Telnet initially sets all connection
parameters to default values. Parameters can then be changed at three levels.
Each level provides a different scope of coverage. Parameters merge down as
shown in Figure 50. Parameters coded in TELNETGLOBALS will be applied to all
connections on all ports, unless overridden by parameters in either TELNETPARMS
or PARMSGROUP. Parameters coded in TELNETPARMS will be applied to all
connections on the specified port, unless overridden by parameters in
PARMSGROUP. Parameters coded in PARMSGROUP will be applied to
connections whose clients are mapped to that PARMSGROUP. Telnet parameters
are described throughout this chapter where appropriate. For a complete list, see
z/OS Communications Server: IP Configuration Reference.

TelnetGlobals

TelnetParms
(port 23)

TelnetParms
(port 2023)

ParmsGroup
(Client ID)

ParmsGroup
(LUMAP-PMAP)

ParmsGroup
(PRTMAP)-PMAP

ParmsGroup
(Client ID)

Figure 50. Telnet parameter placement

308 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|

|
|
|

|
|

|
|

|

|
|
|
|
|
|
|
|

|
|

Session setup and LU assignment: There are ten mapping statements available
in the BEGINVTAM block, which map ten different Objects to clients. Five are
application setup related, four are LU name assignment related, and one maps
connection parameters to specified Client Identifiers within the port. Shortly after a
connection request is accepted, the mapping statements are used by Telnet to map,
or assign, as many of the ten Objects to the client as possible. This set of Objects
is used for the duration of the connection. For more detailed information, refer to
“Mapping Objects to Client Identifiers” on page 325.

Managing the Telnet server

Commands
Many networking products (such as VTAM) use VARY commands to change the
state of a device and DISPLAY commands to show information. The Telnet server
also uses VARY and DISPLAY commands to change and monitor Telnet functions
and debug problems.

Note that when a VARY TCPIP,,OBEYFILE command is issued, TELNETPARMS
and BEGINVTAM blocks are both required for each port started or modified.

The following commands help manage the Telnet server. Syntax and examples can
be found in z/OS Communications Server: IP System Administrator’s Commands.

v Telnet VARY commands allow the operator to change the state of Telnet ports,
enable or disable the use of certain Telnet LU names, and manage diagnostic
tools. These commands include:

– VARY TCPIP,,TELNET,QUIESCE a port to block any new connection requests
but allow existing connections to continue activity.

– VARY TCPIP,,TELNET,RESUME a port to end the QUIESCEd state and allow
new connection requests.

– VARY TCPIP,,TELNET,STOP a port to end connections on the port and close
the port.

– VARY TCPIP,,OBEYFILE a profile to start, restart or change a port by
updating the Telnet profile. The VARY TCPIP,,TELNET,STOP and VARY
TCPIP,,OBEYFILE commands can be used to stop a Telnet port and then
restart that port or a new port without stopping the TCP/IP stack.

– VARY TCPIP,,TELNET,ACT and VARY TCPIP,,TELNET,INACT LUs for use by
the Telnet server. If an LU is already in use, the INACT command fails.
Specify the name ALL to activate all inactive LUs with one command. These
commands have no effect on the VTAM state of the LU.

– VARY TCPIP,,TELNET,DEBUG,OFF turns off all debug activity that might have
been turned on to debug a problem.

– VARY TCPIP,,TELNET,ABENDTRAP sets an abend trap based on unique
Telnet return codes set in Telnet modules.

WLM registration is affected by port changes. See “WorkLoad Manager for Telnet
(WLM)” on page 372 for more information.

v Telnet DISPLAY commands are discussed in “Telnet diagnostics” on page 367.

Qualified ports
In some cases all clients need to use the same port number, but the Telnet
parameters need to be differentiated by destination IP address or destination
linkname.

Chapter 8. Accessing remote hosts using Telnet 309

|
|
|
|
|
|
|
|

|
|

|
|
|

|

|
|

|

|
|
|
|

|
|

|
|

|
|

|

|
|
|
|

For example, two stacks are running with a Telnet server on each stack, and the
two stacks are going to be merged into one stack. Currently, stack 1 has a home
address of 1.1.1.1 and has Telnet running with a set of definitions for port 23. Stack
2 has a home address of 2.2.2.2 and has Telnet running with a different set of
definitions for port 23. Before the stacks are merged into one, end users connect to
either 1.1.1.1,port 23 or 2.2.2.2,port 23, depending on which Telnet services are
desired. The sample definition statements are:
Stack 1

TelnetParms
Port 23
Inactive 600 ; Drop after 10 minutes of no activity
EndTelnetParms

BeginVTAM
Port 23
DefaultLus TCPABC01..TCPABC49 EndDefaultLus
DefaultAppl TSO
EndVTAM

Stack 2

TelnetParms
Port 23
Inactive 0 ; Never drop
EndTelnetParms

BeginVTAM
Port 23
DefaultLus TCPABC50..TCPABC99 EndDefaultLus
DefaultAppl CICS
EndVTAM

After the merge, both home addresses exist in a single stack. One way to keep the
Telnet definitions separate would be to change the port number in one of the
definition sets. For instance, the port 23 definitions associated with the old stack 2
could be changed to be port 223. The end result is one TCPIP stack and one Telnet
server with port 23 and port 223, where port 23 has the definitions used in the old
stack 1 and port 223 has the definitions used in the old stack 2. The definitions are
still separate. However, all the end users who were connecting to 2.2.2.2 port 23
now have to change their clients to port 223. The sample definition statements
would be changed to:
Merged Stack

TelnetParms
Port 23
Inactive 600 ; Drop after 10 minutes of no activity
EndTelnetParms

BeginVTAM
Port 23
DefaultLus TCPABC01..TCPABC49 EndDefaultLus
DefaultAppl TSO
EndVTAM

TelnetParms
Port 223
Inactive 0 ; Never drop
EndTelnetParms

BeginVTAM

310 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Port 223
DefaultLus TCPABC50..TCPABC99 EndDefaultLus
DefaultAppl CICS
EndVTAM

With port qualification, the system administrator can qualify the port number with the
destination IP address or linkname to keep the Telnet services separate. In this
case, the destination IP address is used. The qualified port allows the users of
either old stack to connect without making any changes to their client. The sample
definition statements would be changed to:
Merged Stack

TelnetParms
Port 23,1.1.1.1
Inactive 600 ; Drop after 10 minutes of no activity
EndTelnetParms

BeginVTAM
Port 23,1.1.1.1
DefaultLus TCPABC01..TCPABC49 EndDefaultLus
DefaultAppl TSO
EndVTAM

TelnetParms
Port 23,2.2.2.2
Inactive 0 ; Never drop
EndTelnetParms

BeginVTAM
Port 23,2.2.2.2
DefaultLus TCPABC50..TCPABC99 EndDefaultLus
DefaultAppl CICS
EndVTAM

You cannot QUIESCE, RESUME, or STOP a qualified portion of a port. If the port
has several qualified port profiles, the VARY TCPIP,,QUIESCE, the VARY
TCPIP,,RESUME, and the VARY TCPIP,,STOP commands affect all qualified port
profiles associated with the port being quiesced, resumed, or stopped. In the
example above, V TCPIP,,T,STOP,PORT=23 will stop port 23,1.1.1.1 and port
23,2.2.2.2. It is not possible to stop port 23,1.1.1.1 or port 23,2.2.2.2 individually. All
display commands that allow port specification allow you to specify a qualified port.
If just the port number is specified, all qualified port profiles are displayed.
DBCSTRANSFORM can be active on only one port, but can be active on one,
some, or all of the qualified profiles of that port.

Multiple ports
Telnet supports up to 255 ports on one TCP/IP stack. A unique TELNETPARMS
block must be created for each port or qualified port. Telnet allows the use of the
same BEGINVTAM block for all ports, some ports, or a unique BEGINVTAM block
for each port. Both TELNETPARMS and BEGINVTAM blocks are required for each
port started or modified by a VARY TCPIP,,OBEYFILE command. One or more
PORT num TCP INTCLIEN reservation statements can be specified. The first PORT
num TCP INTCLIEN specified will generate a default TELNETPARMS block and
combine with a single BEGINVTAM block to start Telnet. It is recommended that
every port be defined with explicit TELNETPARMS blocks to avoid confusion. There
are several reasons more than one Telnet port or qualified port might be needed.
The two most common reasons are discussed in the following sections.

Assigning a single application to a port simplifies the setup of clients on the
workstation and the logon process. Workstation clients can be labeled with the

Chapter 8. Accessing remote hosts using Telnet 311

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

associated application name and then be set up to connect to the appropriate port
or qualified port. With a client per application on the workstation, the end user can
select the needed client, connect, and be immediately in session with the
application defined on the DEFAULTAPPL statement in BEGINVTAM. This
implementation requires a unique BEGINVTAM block for each port due to the
unique DEFAULTAPPL statements. The example below shows how to set up TSO,
IMS, and CICS on ports 23, 223, and 423, respectively. The same LU names are
used in each BEGINVTAM block. Telnet maintains a master LU ″in-use″ registry
across all ports so that the same LU name will not be used by two different ports.
TELNETPARMS

PORT 23
ENDTELNETPARMS
TELNETPARMS

PORT 223
ENDTELNETPARMS
TELNETPARMS

PORT 423
ENDTELNETPARMS

BEGINVTAM
PORT 23
DEFAULTLUS TCPABC01..TCPABC99 ENDDEFAULTLUS
DEFAULTAPPL TSO

ENDVTAM
BEGINVTAM

PORT 223
DEFAULTLUS TCPABC01..TCPABC99 ENDDEFAULTLUS
DEFAULTAPPL IMS

ENDVTAM
BEGINVTAM

PORT 423
DEFAULTLUS TCPABC01..TCPABC99 ENDDEFAULTLUS
DEFAULTAPPL CICS

ENDVTAM

Assigning different security levels to different ports is an easy way to differentiate
client security needs. External connections might require SSL security, while internal
connections do not. Other than that difference, all other aspects of the Telnet profile
can be the same. For example, external clients can connect to port 23 of a firewall
that converts the request to the Telnet secure port 992. Internal clients would
connect directly to the Telnet basic port 23. The statements below show how two
ports allow implementation of different security levels. Note the same BEGINVTAM
block is used for both ports, which can significantly reduce profile maintenance
complexity. The PORT statement in BEGINVTAM links the BEGINVTAM block to the
multiple TELNETPARMS blocks defined.
TELNETPARMS

PORT 23
ENDTELNETPARMS
TELNETPARMS

SECUREPORT 992
KEYRING hfs /use/keyring/tcpcs.kdb

ENDTELNETPARMS
BEGINVTAM

PORT 23 992
DEFAULTLUS TCPABC01..TCPABC99 ENDDEFAULTLUS
ALLOWAPPL *

ENDVTAM

If a profile that contains a new port number is processed, it is treated as an
additional port, and the VARY TCPIP,,OBEYFILE request will succeed if all

312 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

parameters for the new port are correctly specified. Existing, non-referenced ports
remain active and unchanged. You can use the VARY TCPIP,,TELNET,STOP
command to stop a port.

See “WorkLoad Manager for Telnet (WLM)” on page 372 for more information about
multiport considerations.

Complete profile replacement
When using VARY TCPIP,,OBEYFILE to update the Telnet configuration, new profile
statements completely replace the profile statements that were in use before the
update. For a successful port update, both TELNETPARMS and BEGINVTAM
blocks are required for each port started or modified. The updates are not
cumulative from the previous profile. If only one change is needed in the new
profile, change the old profile or copy the profile to another data set member and
make the change. After VARY TCPIP,,OBEYFILE processing, the new profile is
labeled the CURRent profile, and the replaced profile becomes profile 0001. If
another update is done, the new update becomes the current profile and the
replaced profile becomes profile 0002. If the profile update is for a subset of the
active ports, the ports not being updated remain unchanged. Profile debug
messages can be suppressed by coding DEBUG OFF or DEBUG SUMMARY in
TELNETGLOBALS and placing it before all other Telnet statement blocks. The
structural layout of the profiles and how connections are associated with profiles are
shown in the following figure.

Connection association
New connections are associated with the current profile and use the mappings and
parameters defined by that profile. Even if a VARY TCPIP,,OBEYFILE command

NOT
QUAL

QUAL2

QUAL1

Port
2023

Port
23

QualifiersPort Profiles

CURR
(0004)

CURR
(0003)

CURR
(0002)

0003

0001

0002

0002

0001

0001

Conn6 Conn2 Conn1

Conn5

Conn4

Conn3

active active activeinact

Connections

Figure 51. Telnet profiles and connections

Chapter 8. Accessing remote hosts using Telnet 313

|

|

|
|

|
|
|
|
|
|
|

|

updates the port, existing connections remain associated with the same profile. The
statements of non-current profiles remain in effect and continue to support all
connections that were established when the non-current profile was the CURRent
profile. When all connections associated with a non-current profile have ended, the
storage for the non-current profile mapping rules is freed and the profile is
considered INACTIVE.

Connection mode choices
The TN3270 Telnet server supports several connection types. The negotiation
process is hierarchical in the order listed below:

v TN3270 Enhanced (TN3270E)

v TN3270

v Linemode

– Standard

– Binary

– Transform

TN3270E is the default connection mode for the TN3270 Telnet server. If the client
refuses TN3270E mode, the server tries TN3270 mode. If the client refuses TN3270
mode, the server then tries Linemode. The TN3270 Telnet Server does not support
Network Virtual Terminal (NVT) mode, except to allow the negotiation of TN3270E,
TN3270, or linemode connections.

Note: The Type of Service (ToS) byte, also known as the Differentiated Services
field, is not managed directly by the Telnet server. If you want to use
Differentiated Services for Telnet, use the Quality of Service (QoS) support
discussed in Chapter 12, “Quality of Service (QoS)” on page 565.

TN3270E and TN3270 are very similar. If the TN3270E functions described in the
following sections are not needed, the end user does not notice any difference
between TN3270E and TN3270 connections. In some cases, older clients do not
properly refuse the server request for a TN3270E connection, and the connection is
dropped. In these unusual cases, use the NOTN3270E parameter to disable the
TN3270E function for those clients. Similarly, use the NOSNAEXT parameter for
any client that does not properly negotiate the extension functions (Contention
Resolution and SNA Sense). TN3270E/NOTN3270E and SNAEXT/NOSNAEXT
parameters can be coded at all three parameter block levels for different levels of
granularity.

TN3270E and TN3270 clients can receive a Telnet solicitor panel to submit an
application name, User ID, and password to the server. The cursor is positioned on
the application line unless the OLDSOLICITOR parameter is specified which causes
the cursor to be positioned on the user line. Refer to “Using the Telnet Solicitor or
USS logon panel” on page 362 for detailed information.

The ATTN key function is supported over TN3270, TN3270E, and Transform
Linemode connections. It is not supported over Standard or Binary Linemode.
Default LOGMODEs for TN3270E connections are SNA, and default LOGMODEs
for TN3270 and Transform connections are non-SNA. Telnet processes the ATTN
key differently for SNA and non-SNA LOGMODEs. In addition, the Telnet server can
be configured to handle double ATTNs sent by some clients by specifying
SINGLEATTN. See “Device types and logmode considerations” on page 361 for
more information.

314 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|

|
|
|
|

|

For TN3270E, LU assignment is done during connection negotiation. For TN3270,
LU assignment is done at application selection time. To delay LU assignment until
application selection time for TN3270E, specify the SIMCLIENTLU parameter. Refer
to “LU mapping by application name” on page 349 and “LU mapping selection rules”
on page 352 for details.

You might experience unexpected results if you start a Telnet session from within an
application that is already connected using Telnet. For example, if you start a new
Telnet session from within a TSO session that was established on a TN3270E
connection, the keyboard will unlock when it seems it should not. This happens
when an unlock keyboard intended for only the original, first session is sent from
Telnet. The second session should remain locked but does not. An unlock keyboard
intended for only the first session has the affect of unlocking the keyboard for both
the first and second session since both are represented by the same client.

TN3270 Enhanced (TN3270E)
TN3270E connections support full-screen 3270 emulation that is sometimes referred
to as TN3270 Extended. Do not confuse TN3270E function with the IBM 327x
device types that end in -E (for example, 3278-2-E). In these cases, the E indicates
that the terminal supports Extended field attributes such as color and highlighting
and is not related to Telnet functions.

Telnet is often used as the primary method of connection between client
workstations and the SNA mainframe environment. To make this form of remote
connection as seamless as possible, Telnet terminal emulation simulates actual
SNA terminals as closely as possible. To accomplish this, RFC1647 and RFC2355
(both known as TN3270E) add the ability to specify device names at connection
time, add support for printer devices, and add additional SNA functions. An Internet
draft, RFC 2355 Extensions, adds Contention Resolution and SNA Sense code
support.

Device name specification
The Telnet server assigns LUs based on the LU mapping statements
supplied. Clients are assigned a device name (Telnet LU name) based on
those statements. However, a TN3270E client can optionally specify that a
particular device name be assigned, or it can specify that a device name
from a pool of LUs be assigned. If the specified device name is allowed for
this client based on the LU mapping statements and the LU is available, the
server assigns the specified device name. If the specified device pool is
allowed for this client based on the LU mapping statements and an LU
within the pool is available, the server assigns a device name from the
specified pool. Otherwise, the request is rejected with an appropriate
reason code, and the connection is dropped. See “Mapping Objects to
Client Identifiers” on page 325 for additional LU mapping information.

328x printer support
Many Telnet clients emulate 328x class printers (device type IBM-3287-1).
Most support both SNA Character Stream (SCS) as an LU1 and 3270 data
stream as an LU3. The support of each is negotiated at connection time.
When connected in TN3270E mode, the Telnet server supports these
emulators in a manner similar to terminal LUs. Telnet can be configured to
initiate a session at connection time or simply open an ACB to let the
application initiate the session. The bind initiating each session is sent to
the client, and the bind informs the emulator which data stream to expect.
The VTAM application perceives the Telnet LU to be an an actual
3287-class printer and sends the SCS or 3270 data to the Telnet LU. Telnet

Chapter 8. Accessing remote hosts using Telnet 315

|
|
|
|
|
|
|
|

|

|
|
|

|
|

|

|
|
|

|

passes the data on to the client, which prints the data. Telnet printer
support allows you to use a single product, Telnet, to control both SNA
terminals and SNA printers.

Some Telnet client printer emulators can request to be associated with a
terminal device name by specifying the terminal device name during
connection negotiation. Using printer association, end users can connect
their Telnet terminals to an application and then have Telnet assign an
associated printer device name based on the terminal name. To associate
printers with terminals, Telnet must have a printer device pool of LUs
defined and a terminal device pool of LUs defined with each having the
same number of device names.

Additional negotiated 3270 support
Responses and SysReq functions are supported by most clients that
support TN3270E connections. Contention Resolution and SNA Sense
support are newer and less prevalent.

v Responses - The client or host VTAM application can request that it
receive and provide definite, exception, or no response. Client responses
to application requests provide more accurate response information. For
TN3270 connections, the server must intercept response requests from
the host and respond on behalf of the client, incorrectly reducing
measured response time.

v SysReq function - The end user can request that a current session be
dropped by entering LOGOFF (in upper, lower, or mixed case) after
pressing the SysReq key. If LUSESSIONPEND is not mapped to the
client, the connection will be dropped. Otherwise, a USSMSG10 screen
is sent to the client. If, instead of entering LOGOFF, the SysReq key is
pressed a second time and if the application supports LUSTAT 082B
(presentation screen is lost), the previous screen is resent to the client
emulator.

v Contention Resolution - Improves communication between the client and
host VTAM application regarding which owns the send state. Contention
Resolution includes the following:

– Start Data Indicator (SDI) - When the host sends change direction or
end bracket, the server sends the SDI to the client. This allows the
client to know exactly when data can be sent to the server.

– BID - A BID sent from the host VTAM application is forwarded to the
client instead of being intercepted and handled by the server. This
allows the client to manage the BID process for itself.

– Signal Indicator - A signal received from the host VTAM application is
forwarded to the client. When the client responds to the signal, the
server sends a change direction indicator to the host VTAM
application.

v SNA Sense Support - Allows the client to include SNA sense codes in a
response message. The client retains the option of letting the server map
the errors to an appropriate sense code by not turning on the
SNA-Sense-Code indicator in the response message.

TN3270
TN3270 connections support full-screen 3270 emulation. TN3270 connections do
not support:

v Device name or pool name specification

v Printers

316 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|

|

|

|

|

v Client involvement with responses, SysReq, Start Data Indicator, BID, Signal or
SNA Sense data.

RFC1646 defines device name specification and printer support for TN3270
connections. However, this RFC is not supported on the TN3270 Telnet server. If
either of these requests is received on a TN3270 connection, the server will drop
the connection.

Linemode
In some cases, the client or the application does not support full-screen
presentation, or the end user needs to work in a linemode environment. For these
reasons, most emulators support linemode. Linemode supports a go-ahead function
to simulate a half-duplex format. With go-ahead negotiated, the partner cannot send
data until it receives a go-ahead from the current sender of data. In most cases,
sessions are naturally half-duplex and the go-ahead adds unneeded transmissions.
Therefore, the Telnet default is to Suppress Go Ahead (SGA). If go-ahead is
needed to maintain a half-duplex format, use the NOSGA parameter. SGA or
NOSGA can be coded at all three parameter block levels for different levels of
granularity.

Telnet supports the following types of Linemode connections:

v Standard

v Binary

v Transform

Standard Linemode is assumed if neither DBCS transform nor BINARY linemode
parameters are specified, or if the device type is not supported by transform.
Standard Linemode is the only connection mode that requires translation by Telnet.
Telnet supports NLS for standard Linemode connections. ASCII and EBCDIC code
pages are the basis for translation. Telnet makes use of the National Language
Support ICONV services available in the C runtime library. For custom code page
information, refer to the ICONV services in z/OS C/C++ Programming Guide. When
ASCII and EBCDIC code pages are specified, a conversion descriptor will be given
to Telnet. Telnet creates ASCII-EBCDIC and EBCDIC-ASCII translation tables based
on the conversion descriptor. The CODEPAGE parameter is used to specify the
code page names. For example:
CODEPAGE ISO8859-1 IBM1047

The possible results from CODEPAGE processing are:

v If a conversion descriptor is not returned, CODEPAGE is not coded, or there is
an error in the syntax, a default code page of ISO8859-1 will be used for ASCII,
and the language environment code page taken from locale information will be
used as the EBCDIC code page.

v If a conversion descriptor is not returned again, a default code page of IBM-1047
will be used for EBCDIC.

v If a conversion descriptor is not returned again, predefined translation tables
within Telnet will be used. These tables are similar, but not exactly the same as
the tables which would have been generated if ISO8859-1 and IBM-1047 had
worked. Some of the differences are noted below:
EBCDIC ASCII
x’0D25’ -----> x’0D0085’ using ISO8859-1/IBM-1047
x’0D25’ -----> x’0D0A’ using internal tables
x’15’ <---- x’0A’ using ISO8859-1/IBM-1047
x’25’ <---- x’0A’ using internal tables

Chapter 8. Accessing remote hosts using Telnet 317

|
|
|
|

|

|

No message is issued to the console if the first conversion succeeds. If there is any
conversion failure a message is issued. If one of the later conversions succeeds, a
message is issued indicating success.

If your Linemode connection does not perform correctly, the default translation
tables may be causing the problem. Try the internal Telnet translation tables by
specifying TNSTD for both ASCII and EBCDIC choices. For example:
CodePage TNSTD TNSTD

The internal code pages must be used together. If only one of the two internal
tables is specified, then the other internal table will also be used.

CODEPAGE can be coded at all three parameter block levels for different levels of
granularity.

Binary Linemode is set using the BINARYLINEMODE parameter in
TELNETPARMS. It indicates that Telnet should not do translation. The ASCII data
from the client should be passed as-is to the VTAM application. BINARYLINEMODE
or NOBINARYLINEMODE can be coded at all three parameter block levels for
different levels of granularity.

Transform Linemode is set using the DBCSTRANSFORM parameter. When
coded, all data that passes through Telnet will be transformed from DBCS or SBCS
ASCII full screen to 3270 full screen for all supported device types. If the device
type is not supported, Standard or Binary Linemode is used. DBCSTRANSFORM
can be coded in TELNETPARMS or PARMSGROUP for different levels of
granularity. It cannot be coded in TELNETGLOBALS. A unique logmode for
transform can be set using TELNETDEVICE with a device type of TRANSFORM.
Any logmode used must not support extended graphics.

Note: Transform can be used by only one port when multiple ports are active on
one TCP/IP stack. DBCSTRANSFORM supports a maximum of 250
concurrent connections.

DBCSTRANSFORM can be used for either the VT100 single-byte character set
(SBCS) or VT282 double-byte character set (DBCS) transform mode. When
DBCSTRANSFORM is specified and the TCP/IP procedure JCL has been modified
as shown below, ASCII-based terminal emulators (VT100 or VT282) will appear as
full-screen 3270 terminals. The Telnet server receives ASCII data from the client
and transforms it into SBCS or DBCS EBCDIC data, depending on the terminal
type. Telnet adds appropriate SNA control bytes to give the appearance that the
data is coming from a 3270 terminal. The Telnet server receives EBCDIC data from
the host application and transforms the SNA control bytes and data into appropriate
ASCII control bytes and data. The data is sent to the ASCII-based terminal where it
is displayed in 3270 full-screen emulation. DBCSTRANSFORM requires additional
special Data Definition (DD) statements in the TCP/IP procedure.

You must add the following three DD statements to the TCP/IP procedure JCL to
support Transform:
//TNDBCSCN DD DSN=hlq.SEZAINST(TNDBCSCN),DISP=SHR
//TNDBCSXL DD DSN=hlq.SEZAXLD2,DISP=SHR
//TNDBCSER DD SYSOUT=*

v The TNDBCSCN DD statement must point to the configuration data set for 3270
DBCS transform mode. This configuration data set specifies the default DBCS
conversion mode that will take effect at initialization time. Specify the CODEKIND
and CHARMODE parameters according to the required DBCS code page. If

318 z/OS V1R4.0 CS: IP Configuration Guide

|
|

|
|
|

|
|
|
|
|

|
|
|

CODEKIND and CHARMODE are not specified, or if the TNDBCSCN DD
statement is not added, CODEKIND defaults to SJISKANJI and CHARMODE
defaults to ALPHABET. A sample can be found in hlq.SEZAINST(TNDBCSCN).

v The TNDBCSXL DD statement must point to the data set containing binary
translation table code files for 3270 DBCS transform mode. The installation data
set, hlq.SEZAXLD2, contains the default binary translation table code files. The
binary translation table code files for 3270 Transform can be customized by using
the CONVXLAT command. Refer to z/OS Communications Server: IP
Configuration Reference for more information about customizing translation table
code files. If the TNDBCSXL DD statement is not added, an abend will occur.

v The TNDBCSER DD statement defines where Transform-specific error messages
are recorded. This DD statement can specify an output data set or SYSOUT=*. If
the TNDBCSER DD statement is not added, transform initialization will fail.

Specifying the DBCSTRACE parameter sends detailed trace output from 3270
Transform to the location specified in the SYSPRINT output DD statement.
Additional detailed trace output is also sent to TNDBCSER. Both data sets will
contain detailed trace data. DBCSTRACE or NODBCSTRACE can be coded in
TELNETPARMS or PARMSGROUP for different levels of granularity. They cannot
be coded in TELNETGLOBALS.

Connection security
This section describes data overrun security and transport layer security (TLS).

Data overrun security

MAXRECEIVE: This parameter in TELNETPARMS limits the number of bytes
received from a client without an End Of Record (EOR) being received. If the data
received exceeds the limit, the connection is dropped. This parameter protects
against a client stuck in a send-data loop. In general, large file transfers will not be
affected because the sending client typically divides the file into smaller records that
are sent. The receiving application rebuilds the file as the smaller records are
received.

MAXVTAMSENDQ: This parameter in TELNETPARMS limits the number of data
segments (RPLs) queued to be sent to VTAM. If the queue size exceeds the limit,
the connection is dropped. This parameter protects against using up large amounts
of storage to hold data destined for a host application that is not receiving data.

MAXREQSESS: This parameter in TELNETPARMS limits the number of session
requests received by Telnet in a 10–second period. For this parameter, a BIND
received by Telnet defines a session request. If the number of BINDs received in a
10–second period exceeds the limit, an error is reported. This parameter protects
against session logon loops that are possibly created by an automatic
CLSDST-PASS to an inactive session. This parameter cannot protect against logon
loops caused by an inactive default application and a client using auto-reconnect.

The MAXRECEIVE, MAXVTAMSENDQ, and MAXREQSESS parameters can be
coded at all three parameter block levels for different levels of granularity.

Auto-reconnect loop: Without MSG07 coded a client connection error causes
Telnet to drop the connection. The error may be an inactive DEFAULTAPPL or an
LU assignment error. If the client has AUTO-RECONNECT specified, a continuous
loop of retries occurs. The best protection against this is to code the MSG07
parameter which keeps the client from being disconnected. However, other

Chapter 8. Accessing remote hosts using Telnet 319

|

|

|

|
|

|
|
|

|
|

|
|

applications can be chosen from the error screen returned to the end user. To block
end users from other applications, use the DEFONLY parameter.

Transport layer security

TN3270 transport layer security overview: The TN3270 server provides the
ability to secure Telnet connections with the transport layer security (TLS) or secure
sockets layer (SSL) protocol. References to RACF apply to any other
SAF-compliant security products which contain the required support. In this chapter,
a port that is configured to use the TLS/SSL protocol is referred to as a secure port
or SECUREPORT. A connection that does not use the TLS/SSL protocol is referred
to as a basic connection. The flows between Telnet and VTAM are unchanged.

The Internet Engineering Task Force (IETF) TLS-based Telnet Security Draft is
supported. This Draft allows a TN3270 negotiation to determine if the client wants
or supports TLS/SSL prior to beginning the handshake. The default action that the
TN3270 server will take for a secure port is to first attempt a TLS/SSL handshake.
If the client does not start the handshake within the time specified by SSLTIMEOUT,
an attempt will be made to negotiateTLS/SSL as defined by the TLS-based Telnet
Security Draft. If the client responds that a secure connection is desired, the
handshake is started; if the client rejects TLS/SSL, the connection will be closed.
This allows installations to support both types of secure clients without knowing
which protocol the client is using. The default action can be changed by specifying
the CONNTYPE parameter described later in this section.

Telnet server authentication and client authentication are described in Appendix B,
“TLS/SSL security” on page 721. The Telnet server supports level 1, level 2 and
level 3 client authentication. Client authentication is done with the CLIENTAUTH
parameter. Level 2 and level 3 client authentication use RACF services to translate
the client certificate to an associated user ID. That user ID is used as a client
identifier.

The Telnet server supports limiting and ordering the encryption algorithms. Use the
ENCRYPTION parameter to define the number and order of encryption algorithms.
The ENCRYPTION parameter can be coded in TELNETGLOBALS, TELNETPARMS
or PARMSGROUP, providing a high level of granularity.

Initialization occurs when the first secure port is activated and is not done again
unless all secure ports are stopped (V TCPIP,,T,STOP,PORT=SECURE). Whether
or not hardware encryption is used is based on its availability at the time of Telnet
initialization with System SSL. If all secure ports are stopped, the check for
cryptographic hardware presence and validity will be done again when the next
TN3270 secure port is brought online. For more information on hardware
encryption, see Appendix B, “TLS/SSL security” on page 721.

Configuring the TN3270 server to support TLS/SSL connections: To
implement secure connections, TCP must have APF authorized access to the
System SSL DLLs. The System SSL DLLs are located in hlq.SGSKLOAD by
default. System SSL uses the C runtime library (SCEERUN) and the C/C++ IBM
Open class library (SCLBDLL) which must also be accessible to TCP. To access
these libraries, either add them to the linklist or specify them in the TCP procedure’s
STEPLIB. If accessed via the linklist, the linklist must be authorized
(LNKAUTH=LNKLST specified in the IEASYSxx parmlib member) or the libraries
explicitly APF authorized. If accessed via a STEPLIB, the libraries must be APF
authorized and DISP=SHR specified. The TCP/IP profile must also be updated. An

320 z/OS V1R4.0 CS: IP Configuration Guide

|
|

|
|

|
|
|
|
|
|
|

|

|

|
|

|

overview of the SSL related profile parameters follows. For a detailed description of
the parameters, refer to z/OS Communications Server: IP Configuration Reference.

The two essential parameters that must be specified are:

v SECUREPORT – All TLS/SSL enabled TN3270 ports must be defined by
specifying a TELNETPARMS block for each port. The SECUREPORT port
designation statement in the TELNETPARMS block indicates the port is capable
of handling SSL connections.

v KEYRING – As mentioned in the overview section, a server certificate is required
for the server authentication process defined by the SSL protocol. This certificate
is stored in a keyring. The keyring type and location is specified in the KEYRING
statement. Only one keyring can be used by the TN3270 server.

The keyring can be defined in the TELNETGLOBALS or TELNETPARMS block.
TELNETGLOBALS is the preferred definition method since it ensures that the same
keyring has been defined for all SECUREPORTs. If specified in TELNETPARMS,
the same keyring type and file must be specified for each SECUREPORT. The first
keyring file name read is considered the correct keyring file name. The
TELNETGLOBALS keyring is read first and then the TELNETPARMS keyrings are
read in reverse order. Any keyring that does not match the first is rejected and the
port update fails.

The following steps are required to enable TLS/SSL support for Telnet, with server
authentication.

1. Generate the Telnet server private key and server certificate.

2. Configure Telnet to include one or more TLS/SSL enabled ports and specify the
name of the keyring created in the step above in the TELNETGLOBALS block
or the TELNETPARMS block. For example:

v KEYRING HFS /usr/ssl/server.kdb (In this example 2 files, server.kdb and
server.sth, were created using the gskkyman utility. The server’s certificate is
contained in the server.kdb file and designated as the default certificate.) The
key database and the password stash file must reside in the same directory.

v KEYRING MVS tcpip.mvs180.kdb (In this example 2 files, mvs180.kdb and
mvs180.sth, were converted to MVS data sets from gskkyman files.)

v KEYRING SAF serverkeyring (In this example, RACF is used to manage
keys and certificates. The server certificate is connected to a keyring called
SERVERKEYRING and designated as the default certificate.)

3. Restart TCP/IP or issue VARY TCPIP,,OBEYFILE with the updated configuration
files.

Optional security parameters: Optional security parameters can only be specified
for SECUREPORTs and can be specified in the TELNETGLOBALS,
TELNETPARMS or PARMSGROUP blocks. The parameters specified in the
PARMSGROUP block apply only to the clients mapped to the PARMSGROUP block
by the PARMSMAP statement and override the parameters specified in the
TELNETPARMS or TELNETGLOBALS block. The parameters specified in the
TELNETPARMS block apply to any connection for that port if not overridden by a
PARMSGROUP parameter. The parameters specified in the TELNETGLOBALS
block apply to any connection for any port if not overridden by a TELNETPARMS or
PARMSGROUP parameter.

The ENCRYPTION parameter is used to limit the encryption algorithms to only
those included in parameter statement. If this parameter is not specified, any
encryption algorithm supported by the installed level of System SSL is available for

Chapter 8. Accessing remote hosts using Telnet 321

|

|

|

|
|
|
|

|
|

|

|

use. See the z/OS Communications Server: IP Configuration Reference for the
encryption algorithms that can be specified. The following are some reasons to use
this parameter:

v The applications supported on this port require a high level of security and the
installation wants all data encrypted using a particular encryption algorithm

v Certain connections are local and the installation does not require encryption for
local clients. NULL encryption can be specified for this subset of connections.

The CONNTYPE parameter sets the level of security for connections. If
CONNTYPE is not specified, a SECUREPORT defaults to CONNTYPE SECURE
and a basic port defaults to CONNTYPE BASIC.

Valid CONNTYPE options are:

v SECURE – Indicates that the TLS/SSL handshake will be used to start the
connection. If the client does not start the handshake within the time specified by
SSLTIMEOUT, an attempt will be made to do a negotiated TLS/SSL handshake
(as defined by the IETF TLS-based Telnet Security Draft); if the client rejects
TLS/SSL, the connection will be closed.

v NEGTSECURE – Indicates the client supports the IETF TLS-based Telnet
Security Draft. A TN3270 negotiation with the client first determines if the client is
willing to enter into a secure connection. If the client agrees, a TLS/SSL
handshake is started and secure protocols will be used for all subsequent
communication. If the client rejects TLS/SSL, the connection will be closed.

If you know that the TN3270 secure clients connecting into the port are using the
protocol defined by the TLS-based Telnet Security Draft, you should consider
using this option. With this option the TLS/SSL handshake is not attempted until
after a positive response to the TN3270 DO STARTTLS IAC is received. This
avoids the timeout delay that can occur when a TLS/SSL handshake is
immediately started (as done with CONNTYPE SECURE) but the client is
expecting the protocol used by the TLS-based Telnet Security Draft.

v BASIC – Indicates that a basic (non-secure) connection will be used.

v ANY – Indicates that the connection can be either secure or basic. The TN3270
server will first try a standard TLS/SSL handshake. If the handshake times out, a
negotiated TLS/SSL (see CONNTYPE NEGTSECURE) is attempted.

– If the client is willing to enter into a secure connection, secure protocols will
be used for all subsequent communication.

– If the client is not willing to enter into a secure connection, a basic
(non-secure) connection is used.

v NONE – Indicates that no connection is allowed and the connection will be
closed. If this option is specified in TELNETPARMS, a PARMSMAP must cover
every allowable connection and the related PARMSGROUP must specify the
desired CONNTYPE.

The CLIENTAUTH parameter indicates that the client must send a client certificate
to the server. If this parameter is not specified, a client certificate is not requested
during the SSL handshake and no certificate based client authentication is done.
The level of validation done depends on the option specified.

Valid CLIENTAUTH options are:

v SSLCERT (Level 1) – To pass authentication, the Certificate Authority (CA) that
signed the client certificate must be considered trusted by the server (that is, a
certificate for the CA that issued the client certificate is listed as trusted in the
server’s keyring).

322 z/OS V1R4.0 CS: IP Configuration Guide

|

|

|

|
|
|

|

|

|

|

|
|

|

|

v SAFCERT (Level 2 and 3) – The level 1 checking provided by SSLCERT is done
and level 2 checking is done to verify that the certificate has been registered with
RACF (or other SAF compliant security product that supports certificate
registration). Additionally, if the SERVAUTH RACF class is active and a RACF
resource has been defined for the port, level 3 client authentication is in effect
and the connection is allowed only if the user ID associated with the client
certificate has READ access to the RACF resource.

v NONE – No client certificate is requested.

The CRLLDAPSERVER parameter is specified in the TELNETGLOBALS block. It
defines the name or IP address and port of the Certificate Revocation List (CRL)
LDAP server. The CRL LDAP server is used only if client certificates are received
(CLIENTAUTH specified). If CLIENTAUTH and the CRLLDAPSERVER have been
specified, the certificate revocation list is checked during client authentication. If the
client’s certificate is found on the certificate revocation list, the connection is closed.
Only one CRL LDAP server can be defined to the Telnet server.

Changing the Keyring (name, type or contents) or the CRL LDAP server (name or
location) cannot be done using VARY TCPIP,,OBEYFILE while secure ports are
active. To change the Keyring or the CRL LDAP server, all secure ports must first
be stopped (V TCPIP,tcpname,T,STOP,PORT=S). VARY TCPIP,,OBEYFILE can
then be used to restart the secure ports with a new keyring or CRL LDAP server. If
the CRL LDAP server is stopped or connectivity is lost, System SSL may not
recognize a subsequent reconnection. This situation must be handled like the CRL
LDAP server change.

Using one port for both basic and SSL connections: SECUREPORT indicates
that a port is capable of supporting SSL connections. The default connection type
for SECUREPORT is SECURE. CONNTYPE can be used to modify connection
types on a single port. Allowing a port to support both basic and secure connections
assumes that either:

v The installation will allow the client to determine the connection type desired.

v A subset of the connections that should use a particular connection security type
can be identified by Client Identifier.

In the first case, CONNTYPE ANY can be specified. If the port was defined as a
SECUREPORT but the client wants a basic connection, there will be a slight delay
before connection negotiation begins. This is because when CONNTYPE ANY is
coded, the Telnet server will first attempt an SSL handshake to ensure the client is
not requesting SSL support. It is only after the SSL handshake times out and
negotiated security is rejected that the basic connection negotiation begins.

In the second case, the TELNETPARMS block should specify the default connection
security type (see the CONNTYPE parameter). For connections with different
connection security requirements:

v Identify the clients by Client Identifier.

v Create a PARMSGROUP with the alternate CONNTYPE definitions.

v Map the PARMSGROUP to the clients using the PARMSMAP statement.

Telnet profile example: The following example defines three ports with the
characteristics discussed below.

v Port 23 allows only basic (non-secure) connections.

v Ports 992 and 1023 are enabled for secure connections and use the keyring
defined in the TELNETGLOBALS block.

Chapter 8. Accessing remote hosts using Telnet 323

|

|

|

|

v Port 992 allows only secure connections. No client authentication is requested.

v Port 1023 allows both basic and secure connections. The installation desires the
following characteristics for port 1023:

– The system administrator is at IP address 9.37.88.1 and wants the capability
to choose to connect with secure or non-secure connections.

– Building A and B are local and do not need connection security. The clients in
these buildings have identifiable host names. The installation wants only these
clients to use basic connections to avoid the encryption overhead.

– Connection security is desired on all other connections.

– All secure connections require client authentication and will use the DES or
triple DES encryption algorithms.

Note: Only the definitions applicable to TLS/SSL connection security are shown;
additional parameters might be needed.

TELNETGLOBALS
KEYRING hfs /usr/keyring/tcpcs.kdb ;keyring used by all SECUREPORTs
ENDTELNETGLOBALS

TELNETPARMS ; basic port does not support secure connections
Port 23
ENDTELNETPARMS

TELNETPARMS ; port that allows only secure connections
SECUREPORT 992 ; no client authentication requested
ENDTELNETPARMS ; any supported encryption algorithm

TELNETPARMS ; port that allows secure and BASIC connections.
SECUREPORT 1023 ; note: BEGINVTAM block has PARMSGROUP that may override CONNTYPE
CONNTYPE SECURE ; SECURE is default
CLIENTAUTH SSLCERT ; client certificate must be issued by a trusted CA
ENCRYPT SSL_DES_SHA SSL_3DES_SHA ENDENCRYPT ; only encrypt with DES or
ENDTELNETPARMS ;triple DES

BEGINVTAM
Port 1023
... ;Mapping statements
HNGROUP localHN

*.BLDGA.IBM.COM
*.BLDGB.IBM.COM

ENDHNGROUP

will use parmsgroup
Adminpg

user
determined

Telnet server

will use parmsgroup
BasicPG

HNgroup is localHN

SSL

basic

1023

9.37.88.1

*BLDGA.IBM.COM
*BLDGB.IBM.COM

Figure 52. Port 1023 connection characteristics

324 z/OS V1R4.0 CS: IP Configuration Guide

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

PARMSGROUP BasicPG ; override telnetparms definitions
CONNTYPE BASIC ; support non-secure connections mapped to this group

ENDPARMSGROUP
PARMSGROUP AdminPG

CONNTYPE ANY ; connections mapped to this group allow any type of connection
ENDPARMSGROUP

PARMSMAP AdminPG 9.37.88.1 ; this ip address can use secure or non-secure connections
PARMSMAP BasicPG localHN ; hosts defined in HNGROUP localHN,

;will use non -SSL connections as defined in PARMSGROUP BasicPG
ENDVTAM

BEGINVTAM
Port 992 23
... ;Mapping statements

;no PARMSGROUP defined for these ports
;TELNETPARMS definitions used for all connections

ENDVTAM

Mapping Objects to Client Identifiers
The TN3270 Telnet server provides flexibility for mapping Objects to clients based
on Client Identifiers. This section provides definitions, rules, and examples of many
mapping methods. Examples start with simple concepts, then progress to more
complicated concepts showing interaction between mapping statements. All
mapping statements are specified in the BEGINVTAM block. Refer to z/OS
Communications Server: IP Configuration Reference for statement rules not
discussed here.

The general relationship of mapping statements is:

MAP OBJECTS to clients based on CLIENT IDENTIFIER

Telnet tries to assign all ten Objects to a client based on the mapping statements
when the connection is accepted. The search for Objects continues until all Objects
are found or until all mapping statements are checked.

Objects
When a client connection request is made, Telnet must assign an LU name to
represent the client. Optionally, a USS table, default application, or unique
parameters defined in the PARMSGROUP statement can be assigned to the
connection. See “Mapping methods” on page 335 for details about how these
objects are mapped to clients. The complete list of object follows:

v TN3270(E) terminal application name – The DEFAULTAPPL mapping statement
maps the TN3270(E) terminal application Object to a terminal client. When a

Map Objects To Client Identifiers
• DEFAULTAPPL
• PRTDEFAULTAPPL
• LINEMODEAPPL
• USSTCP
• INTERPTCP

• LUMAP Generic
• LUMAP Specific
• PRTMAP Generic
• PRTMAP Specific

• PARMSMAP

TN3270(E) Terminal APPL name
TN3270E Printer APPL name
Line Mode APPL name
USS table name
Interpret table name

Terminal LUs or LUGROUPs
Terminal LUs or LUGROUPs
Printer LUs or PRTGROUPs
Printer LUs or PRTGROUPs

Telnet PARMSGROUP

• user ID
• Host name
• Client IP address
• Group of user IDs (USERGROUP)
• Group of host names (HNGROUP)
• Group of client IPs (IPGROUP)
• Destination IP address
• Link name
• Group of destination IPs (DESTIPGROUP)
• Group of link names (LINKGROUP)
• Null

• DEFAULTUS/DEFAULTUSSPEC - default terminal LU GROUP
• DEFAULTPRT/DEFAULTPRTSPEC - default printer LU GROUP

Figure 53. Mapping model

Chapter 8. Accessing remote hosts using Telnet 325

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

TN3270 or TN3270E connection is negotiated, Telnet immediately initiates a
session request to the VTAM application.

v TN3270E printer application name – The PRTDEFAULTAPPL mapping statement
maps the TN3270E printer application Object to a printer client. When a
TN3270E printer connection is negotiated, Telnet immediately initiates a session
request to the VTAM application.

v Line Mode application name – The LINEMODEAPPL mapping statement maps
the linemode application Object to a client. When a linemode connection is
negotiated, Telnet will immediately initiate a session request to the VTAM
application.

v USS table name – The USSTCP mapping statement maps the USS table Object
to a client. When a TN3270 or a TN3270E connection is negotiated, Telnet will
send a USSMSG10 screen to the client. A special case condition exists when an
application name and a USS table are both mapped to the client by the exact
same Client Identifier. In this case, Telnet will immediately initiate a session
request to the VTAM application and use the USS table for error messages.

v Interpret table name – The INTERPTCP mapping statement maps the Interpret
table Object to a client. When a TN3270 or a TN3270E connection is negotiated,
Telnet uses the Interpret table to modify USS commands. The client must have a
USS table mapped to it for the Interpret table to be used.

v Terminal LUs or LUGROUPs (Generic) – The Generic LUMAP mapping
statement maps a single LU or LUGROUP Object to a client. For single LU
mappings, Telnet will assign the LU name to the connection if the LU is available.
For LUGROUP mappings, Telnet will assign an available LU from the group to
the connection. An LU is required to represent the client when initiating a VTAM
session. DEFAULTLUS is a default terminal LUGROUP Object mapped
generically to the NULL Client Identifier.

v Terminal LUs or LUGROUPs (Specific) – The Specific LUMAP mapping
statement maps a single LU or LUGROUP Object to a client. Unlike the Generic
mapping in which Telnet assigns the LU, the Specific mapping requires the client
to specify the LU name it wants. Telnet verifies the LU is mapped and available.
The specified LU name can be either a mapped single LU, an LU within a
mapped LUGROUP, or the LUGROUP name of the mapped LUGROUP. If the
client specifies an LUGROUP name, Telnet assigns an available LU from within
the group. DEFAULTLUSSPEC is a default terminal LUGROUP Object mapped
specifically to the NULL Client Identifier.

v Printer LUs or PRTGROUPs (Generic) – The Generic PRTMAP mapping
statement maps a single LU or PRTGROUP Object to a client. For single LU
mappings, Telnet will assign the LU name to the connection if the LU is available.
For PRTGROUP mappings, Telnet will assign an available LU from the group to
the connection. An LU is required to represent the client when initiating a VTAM
session. DEFAULTPRT is a default printer PRTGROUP Object mapped
generically to the NULL Client Identifier.

v Printer LUs or PRTGROUPs (Specific) – The Specific PRTMAP mapping
statement maps a single LU or PRTGROUP Object to a client. Unlike the
Generic mapping in which Telnet assigns the LU, the Specific mapping requires
the client to specify the LU name it wants. Telnet verifies the LU is mapped and
available. The specified LU name can be either a mapped single LU, an LU
within a mapped PRTGROUP, or the PRTGROUP name of the mapped
PRTGROUP. If the client specifies a PRTGROUP name, Telnet assigns an
available LU from within the group. DEFAULTPRTSPEC is a default printer
PRTGROUP Object mapped specifically to the NULL Client Identifier.

326 z/OS V1R4.0 CS: IP Configuration Guide

|
|

|
|
|
|

v Telnet PARMSGROUP – The PARMSMAP mapping statement maps the
PARMSGROUP Object to a client. The parameters in the group override
parameter values specified in either TELNETGLOBALS or TELNETPARMS.

v ALLOWAPPL – This statement allows client access to applications and optionally
maps or confirms the mapping of an LU name to the client based on the
application name chosen. DEFAULTAPPL application names are presumed
allowed and do not require the ALLOWAPPL statement for Telnet acceptance.
However, ALLOWAPPL may be used by default applications for LU assignment
and other advanced functions.

v RESTRICTAPPL – This statement restricts Telnet acceptance of application
names to only users that specify an acceptable User ID and password. It also
optionally maps or confirms the mapping of an LU name to the client based on
the application name and User ID chosen.

Client Identifiers
One client can be represented by many different Client Identifiers. For example,
Telnet might assign an LU based on client host name, assign an application based
on a client IP address, and assign a USS table based on connection link name.
Refer to “Mapping methods” on page 335 for details about how these Client
Identifiers are used to map Objects. In some cases, two different Client Identifiers
that represent the same client are used on mapping statements to map the same
type of Object. In these cases, Telnet must determine which Client Identifier to use
when assigning the Object. See “Client Identifier selection rules” on page 329 for
more details. The complete list of Client Identifiers and mapping examples follow:

v User ID or USERGROUP name - If the CLIENTAUTH SAFCERT parameter is
used with a secure connection, the client is required to send its client certificate
to the Telnet server for client authentication. The SAFCERT option indicates that
the client certificate can be translated to a User ID by a security product such as
RACF. Telnet translates the certificate as soon as the SSL handshake is done.
The resulting User ID is associated with the connection. Objects can be mapped
to the connection based on an exact User ID, or Objects can be mapped to a
USERGROUP name containing exact User IDs and wildcarded User IDs. For
example, mobile employees need to be assigned a unique set of LU names and
the manager must always be assigned LU name LUMOBL01. These employees
are not within a secure network and always use client authenticated secure
connections. Their certificates are translated to User IDs by Telnet. Note the
required use of the Client Identifier type USERID on the mapping statement. If it
were not used, Telnet would assume the name is a linkname.
USERGROUP USGMOBL1

MOBL0002 MOBL0003
MOBL1%%C

ENDUSERGROUP
LUGROUP LUGMOBL1

LUMOBL02..LUMOBL20
ENDLUGROUP
LUMAP LUMOBL01 USERID,MOBL0001 ; mgr mapping
LUMAP LUGMOBL1 USGMOBL1 ; employee mapping

v Host name or HNGROUP name - If the network dynamically assigns IP
addresses, the same client will not have the same IP address from one
connection to the next. However, if Dynamic Domain Name System (DDNS) and
Dynamic Host Configuration Protocol (DHCP) are used, the client host name can
be constant. See Chapter 10, “Domain Name System (DNS)” on page 417 for
more DDNS and DHCP information. With static host names, Objects can be
mapped to clients based on their host name, or Objects can be mapped to
HNGROUP names containing exact host names and wildcarded host names. For

Chapter 8. Accessing remote hosts using Telnet 327

|

|

example, LUADMNM is mapped to exact host name
ADMIN.DEPT1.GROUP1.COM, and application INVENTRY is mapped to
HNGROUP name HNGINV.
HNGROUP HNGINV

INV1.DEPT1.GROUP1.COM
*.DEPT3.GROUP1.COM
**.GROUP3.COM

ENDHNGROUP
LUMAP LUADMNM ADMIN.DEPT1.GROUP1.COM
DEFAULTAPPL INVENTRY HNGINV

Host name specification requires that Telnet resolve a host name from an IP
address by using the resolver. To do this, a valid TCPIP.DATA data set must be
provided. See Chapter 1, “Configuration overview” on page 3 for a description of
how TCPIP.DATA is located. Telnet uses the native MVS sockets search order to
find a resolver. Neither the Resolver_Config nor the /etc/resolv.conf HFS will be
used when searching for TCPIP.DATA. The most common reason for message
EZZ6011I, INIT_API failure, is that no resolver has been defined.

v Client (source) IP address or IPGROUP name - Client IP address is the most
common method used to map Objects to the client. In a static network, Objects
can be mapped to clients based on the exact IP address, or Objects can be
mapped to IPGROUP names containing exact IP addresses and subnets. For
example, LUADMN is mapped to exact IP address 1.1.1.1, and application
PAYROLL is mapped to IPGROUP name IPGPAY.
IPGROUP IPGPAY

1.1.2.2 1.1.2.3
255.255.0.0:2.2.0.0

ENDIPGROUP
LUMAP LUADMN 1.1.1.1
DEFAULTAPPL PAYROLL IPGPAY

The IP/subnet combination of 0.0.0.0:0.0.0.0 is a special case that includes all
connections. This might be useful if you want to have a default mapping with a
higher priority than the NULL client identifier.

v Destination IP address or DESTIPGROUP name - A destination IP address is the
host address that is the destination for a Telnet connection. Linkname can be
used as a Client Identifier to map Objects to destination IP addresses when the
linkname is static and defined in the profile. However, if the destination IP
address is a dynamic Virtual IP Address (VIPA) , the linkname is not known
before the VIPA is created. In this case, destination IP address is the ideal
solution. In other cases, specifying the destination IP address in the Telnet profile
may be more clear than specifying the linkname. For example, two TCP/IP stacks
are backups for each other. Telnet connections to stack 1 (VIPA 5.5.5.1) default
to logon manager application APPL1 and connections to stack 2 (VIPA 5.5.5.2)
default to logon manager application APPL2. If one of the stacks becomes
unavailable, the other will take over and dynamically add the failing stack’s VIPA.
The dynamic linkname created is not easily predicted. Use the following
statements in the profile of each stack to ensure users connecting to 5.5.5.1
always get APPL1 and users connecting to 5.5.5.2 always get APPL2 regardless
of which stack is used. Note the required use of the Client Identifier type DESTIP
on the mapping statement. If it were not used, Telnet would assume the IP
addresses are client (source) IP addresses.

DEFAULTAPPL APPL1 DESTIP,5.5.5.1
DEFAULTAPPL APPL2 DESTIP,5.5.5.2

v Linkname or LINKGROUP name - A linkname is defined by the TCP/IP LINK
statement. The linkname defines a host IP address that is a destination address

328 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|

|
|

|
|
|

|
|
|
|

for clients connecting to Telnet. Linkname can be useful in cases where Object
assignment is dependent on the client destination IP address instead of the client
source IP address. Several linknames may be defined and the same LU mapping
or other Object mapping may be desired for several linknames. In this case, a
LINKGROUP can be defined and used on a single mapping statement. For
example, based on the statements below, a client connecting to LINK1 IP
address will be assigned an LU from the LUGROUP name LUGLNKS and will
establish a session with TPX1. A client connecting to LINK2 IP address will be
assigned an LU from the LUGROUP name LUGLNKS and will establish a
session with TPX2. Because LINK1 and LINK2 are not group names, host
names, or IP addresses, they are assumed to be linknames. The Client Identifier
type, LINKNAME, can be used for clarity but is not required.
LINKGROUP LNKGRP1

LINK1 LINK2
ENDLINKGROUP
LUMAP LUGLNKS LNKGRP1
DEFAULTAPPL TPX1 LINKNAME,LINK1
DEFAULTAPPL TPX2 LINK2

When the destination IP address is the IP address of a dynamic XCF address,
multiple linkname values can be associated with the IP address. Telnet will use
the first linkname associated with the IP address in the home list. If a dynamic
XCF destination is used as a Client Identifier, it is recommended that DESTIP be
used instead of linkname. Results can vary using linkname.

v NULL (no Client Identifier) - The NULL Client Identifier type indicates that no
Client Identifier was specified. The NULL Client Identifier is valid on the
DEFAULTAPPL, LINEMODEAPPL, USSTCP, and INTERPTCP mapping
statements. It is the implied Client Identifier for the DEFAULTLUS,
DEFAULTLUSSPEC, DEFAULTPRT, and DEFAULTPRTSPEC Objects.
ParmsGroup is the only Object that cannot be mapped to the NULL Client
Identifier. The NULL Client Identifier mapped Objects are the last Objects
checked when assigning Objects to a client. For example, assume a client does
not match any Client Identifier in the profile for DEFAULTAPPL or USSTCP. You
can put the end user into session with a security application, named SecAppl,
that can verify the end user is authorized to use the company’s system. The
Client Identifier field is blank.
DEFAULTAPPL SECAPPL

Client Identifier selection rules
When Client Identifiers are used together, conflicts might occur. For example, host
name NAME1.HOST1.COM may also be IP address 1.2.3.4. If the following
DEFAULTAPPL statements exist, only one of the applications can be chosen.
DEFAULTAPPL TSO NAME1.HOST1.COM
DEFAULTAPPL CICS 1.2.3.4

If USSTCP and DEFAULTAPPL have the same Client Identifier, DEFAULTAPPL will
be used. For detailed information, refer to “Resolving DEFAULTAPPL and USS
table conflicts” on page 340.

Telnet uses a very specific Client Identifier hierarchy when assigning Objects. The
following order is used:

The mapping rule search order
v Exact client identifier:

– 1) User ID, 2) hostname, 3) IP address

v Exact client identifier in a group definition:

Chapter 8. Accessing remote hosts using Telnet 329

|

|

|
|
|
|
|
|

|
|
|
|
|

|

– 4) User group, 5) hostname group, 6) IP address group

v Wildcard match for client identifier in a group definition:

– 7) User group, 8) hostname group, 9) IP address group

v Exact destination:

– 10) destination IP address, 11) link name

v Exact destination in a group definition:

– 12) destination IP address group, 13) link name group

v Wild card match for destination in a group definition:

– 14) destination IP address group, 15) link name group

v Null client ID

– 16) DEFAULTAPPL, LINEMODEAPPL, USSTCP, INTERPTCP, DEFAULTLUS,
DEFAULTLUSSPEC, DEFAULTPRT, DEFAULTPRTSPEC

Examples:

v Exact client identifier:
1) LUMAP LU1 USERID,USER1
2) LUMAP LU2 NAME1.HOST1.COM
3) LUMAP LU3 1.2.3.4

Client Identifier type USERID is required. If not specified, USER1 is assumed to
be a link name.

v Exact client identifier in a group definition:
LUGROUP LUGRP1 LU100..LU199 ENDLUGROUP
LUGROUP LUGRP2 LU200..LU299 ENDLUGROUP
LUGROUP LUGRP3 LU300..LU399 ENDLUGROUP

USERGROUP USRGRP1
USER1 USER2 USER3

ENDUSERGROUP

HNGROUP HNGRP1
NAME2.HOST1.COM NAME2.HOST3.COM

ENDHNGROUP

IPGROUP IPGRP1
1.2.3.5 1.2.3.6

ENDIPGROUP

4) LUMAP LUGRP1 USRGRP1
5) LUMAP LUGRP2 HNGRP1
6) LUMAP LUGRP3 IPGRP1

v Wild card match for client identifier in a group definition:
USERGROUP USRGRP2

USER%% TCPU*
ENDUSERGROUP

HNGROUP HNGRP2
*.HOST2.COM **.HOST3.COM

ENDHNGROUP

IPGROUP IPGRP2
255.255.0.0:2.3.0.0

ENDIPGROUP

7) LUMAP LUGRP1 USRGRP2
8) LUMAP LUGRP2 HNGRP2
9) LUMAP LUGRP3 IPGRP2

v Exact destination:
10) DEFAULTAPPL TSO DESTIP,1.2.3.4
11) USSTCP USSTAB1 LINK1

330 z/OS V1R4.0 CS: IP Configuration Guide

|

|

|

|

|

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

Client Identifier type DESTIP is required. If not specified, destination IP address
1.2.3.4 is assumed to be a client IP address.

v Exact destination in a group definition:
DESTIPGROUP DSTIPGRP1

1.2.3.5 1.2.3.6
ENDDESTIPGROUP

LINKGROUP LINKGRP1
LINK1 LINK2 LINK3

ENDLINKGROUP

12) LUMAP LUGRP1 DSTIPGRP1
13) LUMAP LUGRP2 LNKGRP1

v Wild card match for destination in a group definition:
DESTIPGROUP DSTIPGRP2

255.255.0.0:1.4.0.0
ENDDESTIPGROUP

LINKGROUP LINKGRP2
LINK* %LINK

ENDLINKGROUP

14) LUMAP LUGRP1 DSTIPGRP2
15) LUMAP LUGRP2 LNKGRP2

v Null client ID
16) DEFAULTAPPL TSO

LINEMODEAPPL CICS
USSTCP USSTAB1
INTERPTCP INTTAB1
DEFAULTLUS

LU01..LU99
ENDDEFAULTLUS

NULL is a single Client Identifier. The order of the examples has no significance.
If DEFAULTAPPL and USSTCP mapping statements both have the NULL Client
Identifier, the DEFAULTAPPL will be used regardless of order. For more
information, refer to “Resolving DEFAULTAPPL and USS table conflicts” on
page 340.

Object assignment examples
A client can be known by several different Client Identifiers. These Client Identifiers
are used to assign as many Objects as possible to the connection based on the
profile mapping statements. Telnet starts with the highest priority Client Identifier of
the client and assigns all Objects mapped by that Client Identifier. If all 10 Objects
are not assigned, Telnet uses the next highest priority Client Identifier (for
prioritization details, see “Client Identifier selection rules” on page 329) and assigns
all Objects mapped by that Client Identifier. This Object assignment process
continues by using lower and lower priority Client Identifiers until all 10 Object types
are found or until all of the matching Client Identifier mappings have been checked.
If an Object is mapped by multiple Client Identifiers, only the Object mapped by the
highest Client Identifier is used. It is unlikely all Objects are assigned to connections
because not all Objects are always mapped. For example, many profiles do not
contain PRTDEFAULTAPPL or INTERPTCP mapping statements. In this case, the
printer default appl and Interpret table Objects will not be assigned.

Figure 54 on page 333 is a graphical representation of the following Telnet mapping
statements. The numbered mapping statements correspond to the numbered
buttons in the figure. The mappings that specify USERGROUP USGRP1 generate
buttons 4 through 8 for exact user ID in a group and buttons 12 through 16 for
wildcard user ID in a group.

Chapter 8. Accessing remote hosts using Telnet 331

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

LUGROUP LUGRP1 LU01..LU10..FFNN ENDLUGROUP
LUGROUP LUGRP2 LU11..LU99..FFNN ENDLUGROUP
PRTGROUP PRTGRP1 PRT01..PRT10..FFFNN ENDPRTGROUP
PARMSGROUP PGDBG DEBUG DETAIL ENDPARMSGROUP
PARMSGROUP PGSCAN SCANINTERVAL 10 ENDPARMSGROUP
PARMSGROUP PGMTKO TKOSPECLU 7 ENDPARMSGROUP
PARMSGROUP PGALL DEBUG DETAIL

SCANINTERVAL 10
TKOSPECLU 7 ENDPARMSGROUP

USERGROUP USGRP1 PAYUSR1 PAYUSR* ENDUSERGROUP
HNGROUP HNGRP1 USER1.GROUP3.COM

USER5.GROUP3.COM ENDHNGROUP

(1) PARMSMAP PGALL USERID,PAYUSR1
(2) LINEMODEAPPL TSO 9.9.9.9
(3) PARMSMAP PGDBG 9.9.9.9

(4,12) DEFAULTAPPL PAYROLL USGRP1
(5,13) PRTDEFAULTAPPL PAYPRT USGRP1
(6,14) LUMAP LUGRP1 USGRP1 SPECIFIC
(7,15) PRTMAP PRTPGRP1 USGRP1 SPECIFIC
(8,16) PARMSMAP PGTKO USGRP1

(9) USSTCP USSTABHN HNGRP1
(10) LUMAP LUGRP2 HNGRP1 GENERIC
(11) PARMSMAP PGSCAN HNGRP1

(17) INTERPTCP INTTAB1 LINK1
(18) DEFAULTAPPL TPX1
(19) USSTCP USSTAB1

332 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Client 1 example: Assume client 1 connects from IP address 9.9.9.9 using client
authentication and is assigned PAYUSR1. The client does not have a host name
ending in GROUP3.COM and does not have a linkname LINK1. Using Figure 54,
the client will be assigned objects as shown in Table 15:

Table 15. Client 1 example

Button Object type Name Action

(1) ParmsGroup PGALL Assigned, exact user ID match

(2) Linemode Appl TSO Assigned, exact IP address match

(3) ParmsGroup Not assigned, already assigned

(4) TN3270(E) Appl PAYROLL Assigned, exact user ID match in group

(5) Print Appl PAYPRT Assigned, exact user ID match in group

(6) LUgroup-Spec LUGRP1 Assigned, exact user ID match in group

(7) PRTgroup-Spec PRTGRP1 Assigned, exact user ID match in group

(8) ParmsGroup Not assigned, already assigned

(9) USS table Ignored, no exact hostname match in group

(10) LUgroup-Gen Ignored, no exact hostname match in group

(11) ParmsGroup Ignored, no exact hostname match in group

1.
2.
3.
4.
5.

w/c Hostname in HNGROUP
9. Subnet IP Addr in IPGROUP
10. Dest IP Addr
11. Linkname
12. Dest IP in DESTIPGROUP
13. Linkname in LINKGROUP
14. Subnet Dest IP in DESTIPGROUP
15. w/c Linkname in LINKGROUP
16. Null

User ID
Host Name
IP Addr
User ID in USERGROUP
Hostname in HNGROUP

6. IP Addr in IPGROUP
7. w/c User ID in USERGROUP
8.

D
ef

au
lt

A
pp

l

P
R

T
 D

ef
au

lt
A

pp
l

Li
ne

m
od

e
A

pp
l

U
S

S
 ta

bl
e

IN
T

E
R

P
 ta

bl
e

LU
 G

en
er

ic

LU
 S

pe
ci

fic

P
R

T
G

en
er

ic

P
R

T
 S

pe
ci

fic

P
ar

m
sG

ro
up

Client IdentifiersClient

Objects

Client 2

Client 2

Client 3

Client 3

Client 1

Client 1

1

17

18

18

19

19

2

2

17

17

5

5

19

13

13

15

15

16

4

4

12

12

14

14

76

6

8

9

9

10

10

11

11

3

The , known by , is assignedCLIENT CLIENT IDENTIFIERS OBJECTS

Figure 54. Search method

Chapter 8. Accessing remote hosts using Telnet 333

|
|
|
|

||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 15. Client 1 example (continued)

Button Object type Name Action

(12) TN3270 (E) Appl Already covered, exact user ID in group

(13) Print Appl Already covered, exact user ID in group

(14) LUgroup-Spec Already covered, exact user ID in group

(15) PRTgroup-Spec Already covered, exact user ID in group

(16) ParmsGroup Not assigned, already assigned

(17) Interp table Ignored, no linkname match

(18) TN3270(E) Appl Not assigned, already assigned

(19) USS table USSTAB1 Assigned, NULL Client Identifier match

Client 2 example: Assume client 2 connects from IP address 9.1.1.1 using client
authentication and is assigned PAYUSR5 and has a host name of
USER5.GROUP3.COM. The client does not have a linkname LINK1. Using
Figure 54 on page 333, the client will be assigned objects as shown in Table 16:

Table 16. Client 2 example

Button Object type Name Action

(1) ParmsGroup Ignored, no exact user ID match

(2) Linemode Appl Ignored, no exact IP address match

(3) ParmsGroup Ignored, no exact IP address match

(4) TN3270(E) Appl Ignored, no exact user ID match in group

(5) Print Appl Ignored, no exact user ID match in group

(6) LUgroup-Spec Ignored, no exact user ID match in group

(7) PRTgroup-Spec Ignored, no exact user ID match in group

(8) ParmsGroup Ignored, no exact user ID match in group

(9) USS table USSTABHN Assigned, exact hostname match in group

(10) LUgroup-Gen LUGRP2 Assigned, exact hostname match in group

(11) ParmsGroup PGSCAN Assigned, exact hostname match in group

(12) TN3270 (E) Appl PAYROLL Assigned, wildcard user ID match in group

(13) Print Appl PAYPRT Assigned, wildcard user ID match in group

(14) LUgroup-Spec LUGRP1 Assigned, wildcard user ID match in group

(15) PRTgroup-Spec PRTGRP1 Assigned, wildcard user ID match in group

(16) ParmsGroup Ignored, no wildcard user ID match in group

(17) Interp table Ignored, no linkname match

(18) TN3270(E) Appl Not assigned, already assigned

(19) USS table Not assigned, already assigned

Client 3 example: Assume client 3 connects from IP address 9.2.2.2 without client
authentication and has a host name of USER3.GROUP1.COM. The client connects
to linkname LINK1. Using Figure 54 on page 333, the client will be assigned objects
as shown in Table 17 on page 335:

334 z/OS V1R4.0 CS: IP Configuration Guide

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

|
|
|
|

||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

|
|
|
|

Table 17. Client 3 example

Button Object type Name Action

(1) ParmsGroup Ignored, no exact user ID match

(2) Linemode Appl Ignored, no exact IP address match

(3) ParmsGroup Ignored, no exact IP address match

(4) TN3270(E) Appl Ignored, no exact user ID match in group

(5) Print Appl Ignored, no exact user ID match in group

(6) LUgroup-Spec Ignored, no exact user ID match in group

(7) PRTgroup-Spec Ignored, no exact user ID match in group

(8) ParmsGroup Ignored, no exact user ID match in group

(9) USS table Ignored, no exact hostname match in group

(10) LUgroup-Gen Ignored, no exact hostname match in group

(11) ParmsGroup Ignored, no exact hostname match in group

(12) TN3270 (E) Appl Ignored, no wildcard user ID match in group

(13) Print Appl Ignored, no wildcard user ID match in group

(14) LUgroup-Spec Ignored, no wildcard user ID match in group

(15) PRTgroup-Spec Ignored, no wildcard user ID match in group

(16) ParmsGroup Ignored, no wildcard user ID match in group

(17) Interp table INTTAB1 Assigned, linkname match

(18) TN3270(E) Appl TPX1 Assigned, NULL Client Identifier match

(19) USS table USSTAB1 Assigned, NULL Client Identifier match

Mapping methods
Once you have identified all the clients in your network, determine which clients
need to remain exact Client Identifiers for special considerations and which clients
can be combined or wildcarded into Client Identifier groups. Now map the
application and LU Objects to these Client Identifiers.

1. Use LU name mapping statements to assign LU names to connections based
on the Client Identifier. This step is required.

2. Use application mapping statements to facilitate session setup based on the
Client Identifier.

3. Use the connection parameters mapping statement to change connection
parameters based on specific Client Identifiers.

4. Consider the advanced topic features for additional Telnet functions.

LU name mapping statements
Every connection must be represented by an LU name before a session can be
initiated. The time of LU assignment depends on the connection type. In general,
for TN3270E clients, the LU name is assigned early during connection negotiation
before an application name is known. For all other types of clients, the LU name is
assigned after application name selection. For details and exceptions to this rule,
see “Advanced LU mapping topics” on page 344. Mapping statements define which
LU name is assigned to the connection.

DEFAULTLUS: The simplest way to assign LUs is to create a default LU group
that Telnet can use for all terminal connections. DEFAULTLUS is a combination
statement that defines the LUs in a default group and maps the group to the NULL

Chapter 8. Accessing remote hosts using Telnet 335

||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

|
|
|
|

|
|

|
|

|
|

|

|
|
|
|
|
|
|
|

|
|
|

Client Identifier. If the client’s Client Identifiers do not match any LU mapping
statements, the client is identified by the NULL Client Identifier and will be assigned
LUs from the default group.

For example, use the following statement to create an LU group with a numeric
range of LUG1001 to LUG1100. When Telnet assigns an LU to a terminal
connection, it will assign the next available LU from that group of 100 LUs.
DEFAULTLUS LUG1001..LUG1100..FFFFNNN ENDDEFAULTLUS

By default, Telnet uses a sequential selection method to assign LUs from the LU
group. No LU name will be reused until all the names in the group have been used.
Specifying NOSEQUENTIALLU changes the selection process to always start at the
beginning and find the first name available. If the range is large and a large number
of LUs are already assigned, NOSEQUENTIALLU might degrade LU lookup
performance.

DEFAULTPRT: The DEFAULTPRT statement is used to create a default LU pool
that Telnet will use for all printer connections. For example, use the following
statement to create an LU group with a numeric range of PRTG1001 to PRTG1100.
When Telnet assigns an LU to a printer connection, it will assign the next available
LU from that group.
DEFAULTPRT PRTG1001..PRTG1100..FFFFFNNN ENDDEFAULTPRT

LUMAP, PRTMAP, LUGROUP, PRTGROUP: The LUMAP and PRTMAP
statements allow you to map LUs to connections based on the Client Identifier for
terminal emulators and printer emulators, respectively. For example, use the
following statements to map LU name LUT001 to any terminal client identified by
the client IP address 1.1.1.1 and map LU name PRT001 to any printer client
identified by client IP address 2.2.2.2.
LUMAP LUT001 1.1.1.1
PRTMAP PRT001 2.2.2.2

An LU group can be used when it is not necessary to have an exact LU name to
Client Identifier match. For example, use the following statements to create a
terminal LU group and a printer LU group, and map both groups to the Client
Identifier IPGPAY. When a terminal client connects, Telnet will assign an LU from
LUGRP1. When a printer client connects, Telnet will assign an LU from PRTGRP1.
LUGROUP LUGRP1 LUT101..LUT400..FFFXXX ENDLUGROUP
PRTGROUP PRTGRP1 PRT101..PRT400..FFFXXX ENDPRTGROUP

IPGROUP IPGPAY 255.255.0.0:9.8.0.0 ENDIPGROUP

LUMAP LUGRP1 IPGPAY
PRTMAP PRTGRP1 IPGPAY

Once all 300 LUs are assigned, the next client connection request will fail. In this
way, the LUGROUP Object can limit the number of clients connected at one time.

If a client connection is known by a Client Identifier that has an LU group mapping,
only that mapping will be used to assign an LU name. The DEFAULTLUS group will
not be used. It is used only in the case when no other LU mapping exists.

LU range specification: Telnet LU range rules allow for almost any type of LU
range needed. Ranges can be alphabetic (A), numeric (N), alphanumeric (B),
hexadecimal (X), or completely wildcarded (?) which includes alphanumeric and the
three national characters (@,#,$). The range type can be different for each
character position. Within the LU range, any character position can be fixed (F). To

336 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

conform with VTAM LU naming convention, the first character must be alphabetic or
a national character. If the first character is a range, only the alphabetic range can
be used.

An LU range is created by specifying a starting LU name, an ending LU name, and
the range rules to be used. For example, the following statement creates a range
from TCPM1000 to TCPM1100.
TCPM1000..TCPM1100..FFFFFNNN

The three components are:

v Starting LU name (TCPM1000)

v Ending LU name (TCPM1100)

v Range rules (FFFFFNNN)

All three components must be the same length, the Starting LU name overall must
be lower than the Ending LU name, and each character position value must be
appropriate for the specified range rule. Notice in the above example that the
character 1 following the character M is defined as fixed because it cannot change.
The range rule cannot specify N even though it seems to be part of the number
range.

The ascending order of characters is 0-9, A-Z, @, #, $.

Numeric values are lower than alphabetic values to facilitate the use of hexadecimal
ranges. The range rules are:
Range Rule Characters
Numeric N 0-9
Alphabetic A A-Z
AlphaNumeric B 0-9,A-Z
Hexadecimal X 0-9,A-F
Wildcard ? 0-9,A-Z,@,#,$

The maximum number of LUs per range is 4294967295 and the maximum number
of LUs per group is 4294967295.

The creation of LU name values from the range specification begins at the Starting
LU and increments the rightmost variable position first, moving to the left as each
variable position reaches its range maximum. The process is like an odometer,
except that each position can have different basing instead of all positions being
base 10. For example, the following statement has 223 LU name entries.
LU555..LU777..FFNNN

The breakdown of the range is:
LU555->LU559, 5
LU560->LU569, LU570->LU579, LU580->LU589, LU590->LU599, 40
LU600->LU699, 100
LU700->LU769, LU770->LU777 78

===
Total --> 223

The LU names increment just as the numbers on an odometer would. A less
intuitive case involves an alphabetic range of 1407 LU name entries.
LUCCC..LUEEE..FFAAA

The breakdown of the range is:

Chapter 8. Accessing remote hosts using Telnet 337

|
|
|

|
|
|

|

|

|

|

|

|
|
|
|
|
|

|

|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|

|

|
|
|
|
|
|

|
|

|

|

LUCCC->LUCCZ, 24
LUCDA->LUCDZ, LUCEA->LUCEZ, LUCFA->LUCFZ, ... LUCZA->LUCZZ, 598
LUDAA->LUDZZ, 676
LUEAA->LUEDZ, LUEEA->LUEEE 109

====
Total --> 1407

It is important to realize that the ranges above do not break down in the following
patterns:
LUCCC->LUCCE, LUCDC->LUCDE, LUCEC->LUCEE, ...
LU555->LU557, LU565->LU567, LU575->LU577, ...

It is an incorrect assumption that the LU name after LUCCE would be LUCDC. The
correct LU name after LUCCE is LUCCF. The LU names increment to LUCCZ and
the next name is LUCDA. When the rightmost position reaches the range
maximum, the position to its left is incremented by one, and the rightmost position
starts at the range beginning, not the character specified in the Starting LU name.

All range types are handled the same way. The position is incremented to its
maximum value and then wraps to the beginning range value, not the specified
Starting LU name value. By the same logic, the position is incremented to the
ending range value and not the Ending LU name value.

All LU names increment the same way. A more complicated example mixes fixed
and variable character positions with several different range types. The LU range
has 39744 LUs.
LUAD1800..LUGD98FZ..FFAFNFXB

Calculating the number of LUs is easier if the fixed positions are removed. For
purposes of calculating the number of LUs, the range is specified as follows:
A100..G9FZ..ANXB

This breaks down as follows:
A100->A10Z, D110->D11Z, ... A190->A19Z, A1A0->A1AZ ... A1F0->A1FZ 576
A200->A2FZ, A300->A3FZ, ... A900->A9FZ 4608
B000->B9FZ, C000->C9FZ, ... F000->F9FZ 28800
G000->G9FZ 5760

=====
Total ---> 39744

SEQUENTIALLU: Telnet, by default, uses a sequential method to choose LUs
from a group.
LUGROUP LUGRP1

LU001..LU120..FFNNN
LU201..LU250..FFNNN
LU240..LU280..FFNNN
LU010..LU050..FFFNN

ENDLUGROUP

From the previous example, the first LU assigned is LU001, second is LU002, and
so on. If five clients repeatedly connect and disconnect, they will be assigned new
LUs farther into the range each time:

v When the end of the first range is reached, selection goes to the beginning of the
second range.

v At the end of the second range, selection goes to the beginning of the third
range.

v At the end of the third range, selection goes to the beginning of the fourth range.

338 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|

|

|
|

|

|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|

|
|

|

v At the end of the fourth range, selection goes to the beginning of the first range
again.

Telnet does not enforce an overall ascension in LU name selection. The selection
process begins at the first name of the first range and progresses to the last name
of the last range. In the example, after LU250 is assigned from range 2, LU240
from range 3 is attempted next. After LU280, LU010 is attempted. After LU050, the
process starts over and LU001 is attempted.

The SEQUENTIALLU function can be turned off by coding NOSEQUENTIALLU. In
this case, the five LUs that are repeatedly connecting and disconnecting would
never use any LU names other than LU001, LU002, LU003, LU004, and LU005.
NOSEQUENTIALLU might degradate LU lookup performance when a large range is
specified and only LUs at the end of the range are available. Every connection has
to relearn that most of the LUs are already in use. SEQUENTIALLU allows Telnet to
start its search near the last chosen LU where LUs are more likely to be available.
SEQUENTIALLU and NOSEQUENTIALLU parameters can be coded at all three
parameter block levels for different levels of granularity.

If several clients are connecting at the same time, the order of LU assignment might
not be in exactly the same order as the connection IDs due to process timing
between connection ID assignment and LU name assignment.

If single LU names are in a group with LU ranges, the single LU names are
selected before any LU range names are selected, regardless of their order. In the
example below, LUAAA, LUBBB, LUCCC, and LUDDD are all processed before any
of the range LU names.
Profile LUGROUP LUGROUP as used by Telnet

LUGROUP LUGRP2 LUGROUP LUGRP2
LUAAA LUAAA
LU001..LU120..FFNNN LUDDD
LU201..LU250..FFFNN LUBBB
LUDDD LUCCC
LUBBB LU001..LU120..FFNNN
LU240..LU280..FFFNN LU201..LU250..FFFNN
LU010..LU050..FFFNN LU240..LU280..FFFNN
LUCCC LU010..LU050..FFFNN

ENDLUGROUP ENDLUGROUP

Application mapping statements
When a client connects, Telnet either immediately initiates a session request to an
MVS host VTAM application or solicits the end user for an application name.

DEFAULTAPPL: The DEFAULTAPPL mapping statement is used to assign an
application name to the connection and immediately initiate a session with that
application, and not solicit the end user for an application name. The
DEFAULTAPPL statement applies only to terminal emulators connecting in TN3270,
TN3270E, or DBCSTRANSFORM mode. For example, use the following statement
to map the default application PAYROLL to any TN3270(E) terminal client identified
by the IPGROUP IPGPAY. When a TN3270(E) client connects, Telnet will
immediately initiate a session to the PAYROLL application.
DEFAULTAPPL PAYROLL IPGPAY

PRTDEFAULTAPPL and LINEMODEAPPL: The PRTDEFAULTAPPL mapping
statement is used to assign an application to a printer emulator client connecting in
TN3270E mode. The LINEMODEAPPL mapping statement is used to assign an

Chapter 8. Accessing remote hosts using Telnet 339

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|

|
|
|

application to a client connecting in standard or binary LINE mode. For example,
use the following statements to map the default application PAYPRINT to any
TN3270E printer client identified by the IPGROUP IPGPAY and to map the default
application TSO to any linemode client identified by the linkname LINK1. When the
printer client connects, Telnet will immediately initiate a session to the PAYPRINT
application. When a linemode client connects, Telnet will immediately initiate a
session to the TSO application.
PRTDEFAULTAPPL PAYPRINT IPGPAY
LINEMODEAPPL TSO LINK1

The DEFAULTAPPL, PRTDEFAULTAPPL, and LINEMODEAPPL statements imply a
basic ALLOWAPPL statement for the application name if no ALLOWAPPL or
RESTRICTAPPL is explicitly coded.

USSTCP: If the end user needs the ability to choose an application, custom
solicitation panels can be created using unformatted system services (USS)
message tables. These tables are mapped to clients using the USSTCP mapping
statement. For example, use the following statement to map a USS table,
USSTAB1, to any TN3270(E) client identified by any linkname that starts with LINK.
When a TN3270(E) client connects, Telnet will immediately send a custom logon
screen (USSMSG10) from the USS table.
LINKGROUP LNKGRP1 LINK* ENDLINKGROUP
USSTCP USSTAB1 LINKGRP1

Assembled USS tables used by VTAM can also be used by Telnet.

INTERPTCP: In some cases, the application name must be generated based on
the name provided by the end user or the name might be dependent on the LU
name representing the client. The INTERPRET table can provide this function.
Telnet uses the input from the USSMSG10 screen as input to the INTERPRET table
translation list or uses the USSMSG10 input and the LU name as input to one of
the INTERPRET table user-written exits. Because USS logon data is required input
to the INTERPRET process, any client with an INTERPRET table mapping must
also have a USS table mapping. For example, use the following statement to map
an INTERPRET table, INTTAB1, to any TN3270(E) client identified by the linkname
LINK1. When a TN3270(E) client connects to LINK1, Telnet will immediately send a
custom logon screen (USSMSG10) from the USS table. The end user responds
with a USS logon command. LINK1 client input is then processed through the
INTTAB1 INTERPRET table to derive an application name. Telnet uses the derived
name to initiate a session.
LINKGROUP LNKGRP1

LINK*
ENDLINKGROUP
USSTCP USSTAB1 LNKGRP1
INTERPTCP INTTAB1 LINK1

Assembled interpret tables used by VTAM can also be used by Telnet.

If neither a default application nor a USS table is mapped to the connection, the
Telnet Solicitor panel is sent to the end user. For a detailed discussion of the Telnet
Solicitor, USS table, and INTERPRET table, see “Using the Telnet Solicitor or USS
logon panel” on page 362.

Resolving DEFAULTAPPL and USS table conflicts: If both a default application
and a USS table are mapped to the same Client Identifier, Telnet will use the
default application to immediately initiate a session. If each is mapped by a different
Client Identifier, the Object mapped by the higher priority Client Identifier is used. In

340 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

|
|
|
|

all cases, any error messages are sent using the USS table messages. For
example, if CICS and USSTAB1 are both mapped to destination IP address 1.1.1.1,
Telnet will initiate a session with CICS and use the USS messages for any session
setup errors.

If CICS is mapped to USERID USER1 and USSTAB1 is mapped to client IP
address 5.5.5.5, Telnet will initiate a session with CICS and use the USS messages
for any session setup errors.

If CICS is mapped to linkname LINK1 and USSTAB1 is mapped to hostname
TEST1.IBM.COM, Telnet will send a USSMSG10 logon panel to the end user. The
USS messages will be used for any session setup errors. The default application
mapping of CICS will never be used.

ALLOWAPPL: Telnet will not initiate a session for a solicited application name
unless the name is allowed. The ALLOWAPPL statement is used to configure Telnet
to allow the initiation request. For example, CICS01 and CICS02 are allowable
names.
ALLOWAPPL CICS01
ALLOWAPPL CICS02

The ALLOWAPPL name can be wildcarded with an asterisk (*). For example, if
there are no other CICS regions, the lines above could be reduced to the following:
ALLOWAPPL CICS*

All application names can be allowed by coding the following:
ALLOWAPPL *

Default application names do not need to be explicitly allowed. However, if the
default application issues a CLSDST-PASS to another application name for the
session, the second application must be in the ALLOWAPPL list. For example, TSO
is the default application for the NULL Client Identifier. TSO typically passes the
session to TSO00001, TSO00002, and so on. The following default application
mapping will initiate a session with TSO, but when TSO issues a CLSDST-PASS
the new bind to Telnet will have TSO00001 as the application name.
DEFAULTAPPL TSO

Telnet will fail this session request because TSO00001 is not allowed. Add an
ALLOWAPPL statement to allow the TSO* names as follows:
DEFAULTAPPL TSO
ALLOWAPPL TSO*

RESTRICTAPPL: In addition to the ALLOWAPPL statement, Telnet provides more
restrictive access to applications. The RESTRICTAPPL statement requires the end
user to enter a valid RACF user ID and password before the application name is
used to initiate a session.

For example, use the following statement to allow users USER1, USER2, USER3,
USER4, and USER5 access to the PAYROLL application. At the Solicitor panel, the
end user enters USER1/password and the PAYROLL application name. Telnet
verifies USER1/password is valid and then immediately initiates a session with
PAYROLL.

Chapter 8. Accessing remote hosts using Telnet 341

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|

|

|

|
|
|
|
|
|
|

|

|
|

|
|

|
|
|
|

|
|
|
|
|

RESTRICTAPPL PAYROLL
USER USER1
USER USER2
USER USER3
USER USER4
USER USER5

Like ALLOWAPPL, the application name can be wildcarded with an asterisk (*). The
USER value can also be wildcarded with an asterisk. The user ID/password
combination is used by Telnet to verify the password given for that user ID. In no
way is the user ID or password used by the application. No matter how the
application name request arrived at the server (from DEFAULTAPPL or
USSMSG10), Telnet uses the Solicitor panel to prompt for the user ID/password.
Once the user ID is validated and a password is obtained, Telnet submits the user
ID/password pair for authorization to a security program such as RACF. The user
ID/password check authorizes the client to connect to the application through
Telnet. The application itself might also ask for a user ID/password pair that can be
completely different than the pair entered at the Telnet Solicitor panel. The user
ID/password pair entered at the Telnet Solicitor panel is not in any way passed to
the host application. The user ID/password pair is solicited only after an application
name is entered on the Solicitor (or USSMSG10) panel. If a second application is
reached through the original application using CLSDST-PASS, the second
application is verified and Telnet will solicit a new user ID/password pair if
necessary.

When searching for a match with the input application name, Telnet will find the
most specific match whether it is on the ALLOWAPPL or RESTRICTAPPL
statement. If each statement has the same name specified, the RESTRICTAPPL
entry is used. For example, TSO has its own user ID/password requirement and
probably does not need the additional Telnet security check. However, the Telnet
security check may be needed for all other applications. This example can be
supported with the following statements.
RESTRICTAPPL *

USER *
ALLOWAPPL TSO*

MSG07 and LUSESSIONPEND: MSG07 and LUSESSIONPEND are Telnet
parameter statements that define what Telnet should do in case of a session setup
error and after normal logoff when the client is emulating a terminal. These
parameters do not affect a printer connection.

v Connection negotiation error - If any problems occur during negotiation nothing
can be done to keep the connection. If appropriate, Telnet will send the client an
error code to help inform the client why the connection was dropped and issue a
CONN DROP DEBUG message at the console.

v Session setup error - If a problem occurs during session setup such as an
application name that is not valid, session request failure, or a BIND error, Telnet
will drop the connection and issue a CONN DROP DEBUG message. The end
user cannot get to any application other than the default. No error messages are
sent to the end user and auto-reconnect loops are possible. For these reasons it
is recommended that MSG07 always be used. If the MSG07 parameter is coded,
the connection will not be dropped and an error message will be sent to the end
user. MSG07 function applies to any connection mode whether or not USS tables
are mapped to the client. If a USS table is used, the end user can press the
CLEAR key to return to the USSMSG10 screen. If the LUMAP-DEFAPPL or
PRTMAP-DEFAPPL statement is coded and the default application is not
available, an error screen will be sent to the client whether or not MSG07 is
coded.

342 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

v Normal Session Logoff - When the end user logs off a session using a normal
logoff, Telnet drops the connection. If the end user typically logs on to another
application after logging off the first application, it might be more efficient if the
user were presented another solicitor (or USSMSG10) panel or if Telnet initiated
a new session with the default application after logoff. This can be accomplished
by coding the LUSESSIONPEND parameter. Code LUSESSIONPEND to redrive
the initial database lookup after session logoff. Later results will be identical to
the first lookup. If a default application for the client exists, Telnet will immediately
initiate another session request. Otherwise, a USSMSG10 screen or solicitor
panel will be sent to the end user. When LUSESSIONPEND is coded, the
connection remains active but terminal LU ACBs are closed.

v SYSREQ LOGOFF - When the end user logs off a session using a ″SYSREQ
LOGOFF″ sequence (TN3270E connection supported) and LUSESSIONPEND is
coded, Telnet does not drop the connection. Instead, the user is presented with a
solicitor (or USSMSG10) panel. If DEFAULTAPPL is in effect, Telnet redrives the
default application.

v USS LOGOFF - When the end user issues a LOGOFF command from the
USSMSG10 panel, the connection is dropped whether or not the
LUSESSIONPEND parameter is coded.

Connection parameters mapping statement
Connection parameters are typically defined once at the port level. Sometimes it is
useful to have different connection parameters depending on the Client Identifier.
The PARMSGROUP and PARMSMAP statements allow connection parameters to
be mapped at the Client Identifier level. This level of granularity applies to almost all
parameters. Refer to the z/OS Communications Server: IP Configuration Reference
for a list of Telnet parameters allowed in the PARMSGROUP block.

Assume the PAYROLL department is assigned the highest level of security and
connections are being monitored with summary debug messages, general users are
assigned negotiable security, and inventory employees are experiencing intermittent
problems with Telnet connections that require detailed debug messages for
resolution. The following statements assign the security and debug levels to the
areas needed and do not affect other areas. See “Transport layer security” on
page 320 for security information and “Telnet diagnostics” on page 367 for debug
information.
HNGROUP HNGINV

**.GROUP3.COM
ENDHNGROUP
IPGROUP IPGPAY

255.255.0.0:2.2.0.0
ENDIPGROUP
IPGROUP IPGGEN

255.0.0.0:2.0.0.0
ENDIPGROUP
PARMSGROUP PRMGDBG

DEBUG DETAIL
ENDPARMSGROUP
PARMSGROUP PRMGSEC1

CONNTYPE SECURE
ENCRYPTION SSL_3DES_SHA ENDENCRYPTION
DEBUG SUMMARY

ENDPARMSGROUP
PARMSGROUP PRMGSEC2

CONNTYPE NEGT
ENCRYPTION SSL_RC4_MD5 ENDENCRYPTION

Chapter 8. Accessing remote hosts using Telnet 343

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ENDPARMSGROUP
PARMSMAP PRMGDBG HNGINV
PARMSMAP PRMGSEC1 IPGPAY
PARMSMAP PRMGSEC2 IPGGEN

Advanced LU mapping topics
Beyond the basic LU mapping statements, there are several functions available to
the advanced user. This section describes the following topics:

v Generic and Specific connection requests

v Mapping groups to Client Identifiers

v LU name assignment user exit

v Associated printer function

v Map default application and ParmsGroup by LU group

v Multiple LUMAP statements for one Client Identifier

v Keep LU for the Client Identifier

v LU group capacity warning

v LU mapping by application name

v LU mapping selection rules

Generic and Specific connection requests
There are three types of Telnet connection requests that dictate how the Telnet
server chooses a name to represent the client. They are generic requests, specific
requests, and associated printer requests. For details about associated printer
requests, see “Associated printer function” on page 347. Most connection requests
are generic requests.

For Generic requests, the Telnet server has complete control over LU name
assignment using the Generic mapping statements as a reference. All linemode and
TN3270 connections use Generic requests, and TN3270E terminal and printer
emulators use Generic requests as a default. Specific mapping statements are
ignored by Generic requests.

For Specific requests, the client specifies the LU name to be used and the Telnet
server validates the name using the Specific mapping statements as a reference.
Requesting a specific LU name allows a client to be assigned the same LU every
time. This is important if the host application is LU name dependent, and the client
does not have a constant Client Identifier to use for mapping an LU name. It is also
important to block the server from assigning these LUs to generic requests. If a
Specific mapping does not find an LU match, Generic mapping statements are
checked. The server confirms or denies the request during negotiation. If the LU
mapping algorithms reject the client choice, the server sends a device type reject to
the client. Most clients then notify the end user that the requested LU name is not
valid or is already in use.

Default LU groups: DEFAULTLUS and DEFAULTPRT are default LU groups for
generic requests. DEFAULTLUSSPEC and DEFAULTPRTSPEC are default LU
groups for specific requests from terminal and printer emulators. Like DEFAULTLUS
and DEFAULTPRT, these pools are checked only if there is no other LU mapping
statement match. For example, use the following statements to create a terminal LU
group with a numeric range of LUS1001 to LUS1100 and a printer LU group with a
numeric range of PRTS1001 to PRTS1100. When Telnet receives a specific
connection request from a terminal, it will verify that the requested LU name is
within the range specified.

344 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

DEFAULTLUSSPEC LUS1001..LUS1100..FFFFNNN ENDDEFAULTLUSSPEC
DEFAULTPRTSPEC PRTS1001..PRTS1100..FFFFFNNN ENDDEFAULTPRTSPEC

The sequential selection rules do not apply to specific requests.

Mapping groups to Client Identifiers
The LUMAP and PRTMAP statements allow LUs to be mapped based on a Client
Identifier. The LU group can be mapped generically or specifically. The default
mapping is generic. The keyword SPECIFIC must be coded to define a specific
mapping.

For example, use the following statements to create two LU groups and map one
group generically to the IP group IPGPAY and map the other group specifically to
the same Client Identifier. When a generic connection request is received, Telnet
will assign the next available LU from LU group LUGRPGEN. When a specific
connection request is received, Telnet will verify the requested LU name is included
in the LU group LUGRPSPC. If it is, Telnet will assign the LU name to the
connection.
LUGROUP LUGRPGEN LUG101..LUG400..FFFXXX ENDLUGROUP
LUGROUP LUGRPSPC LUS001..LUS100..FFFXXX ENDLUGROUP

IPGROUP IPGPAY 255.255.0.0:9.8.0.0 ENDIPGROUP

LUMAP LUGRPGEN IPGPAY
LUMAP LUGRPSPC IPGPAY SPECIFIC

Generic request connections can be assigned LUs only from generically mapped
LU groups. If no generic mapping exists, the DEFAULTLUS group is checked. No
specific group is checked. This safeguards the specific LU names from being used
by generic requests.

For specific requests, Telnet first checks to see if the LU is in a specifically mapped
LU group. If the LU name is not found, the generically mapped groups are
searched. If neither LU group type contains the requested LU name, the connection
request is rejected. The DEFAULTLUSSPEC group is not checked in this case
because LU group mappings exist. If no LU group mappings exist, only the
DEFAULTLUSSPEC group is checked. If the LU name is not found, the connection
request is rejected. The generic DEFAULTLUS group is not checked.

In addition to requesting an exact LU name, the client can request an LU group
name. Telnet first searches the mapped groups assuming the name is an exact LU
name. When that search fails, Telnet then checks the requested name against
mapped specific LU group names and then checks the name against mapped
generic LU group names. If the group name is found, the next available LU in the
group is assigned using sequential LU selection unless it has been turned off.

The LU group itself is not defined as generic or specific. Rather, the LU group is
mapped generically or specifically. It is possible to map the same LU group both
generically and specifically. IBM recommends that you do not map the same group
generically and specifically unless you are an advanced user.

LU name assignment user exit
Most LU assignment requirements can be satisfied using the Telnet LU group and
LU mapping statements. However, there are cases when the LU assignment
requirements are so specific that Telnet can not satisfy them. In these cases, the
LU name assignment user exit might be the solution. The LU name exit is defined
like an LUGROUP and is mapped the same way LUGROUPs are mapped. The
LUGROUP is defined as an exit by specifying ,EXIT immediately after the

Chapter 8. Accessing remote hosts using Telnet 345

|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

LUGROUP name. For LUGROUPs, Telnet selects an LU from the group, verifies its
availability, and assigns the LU to the connection. For LU name exits, Telnet calls
the user-written assembler program passing a parameter list that contains client and
other information. The program creates the LU name, places it in the parameter list,
and returns control to Telnet. Telnet will then verify the LU name’s availability and
assign the LU to the connection. For a detailed description of the parameter list and
coding requirements for the Telnet LU Exit, refer to z/OS Communications Server:
IP Configuration Reference.

In addition to client information, the parameter list includes any LU names or ranges
that were coded in the LUGROUP, and the requested application name if known.
Telnet does not use the LU list. The LUGROUP can be defined without any LUs
specified. The LUs specified can be used as seed values if the LU name exit wants
to use them.

The LU name exit is called when the LU is assigned, when the LU is released,
when the LU is inactivated, and when the LU is activated. A different function code
is used for each type of call. If you do not need a certain function, like tracking
inactivated LUs, the LU name exit can be written to ignore the function code. Telnet
allows only one connection at a time to use the LU name exit, which serializes its
use in case any local tables are maintained in the exit.

As an example, assume LU names are to be assigned based on client port number
and application requested. The SIMCLIENTLU parameter is used to postpone
TN3270E LU assignment until the application name is known. The parameter list
includes the client port number and the requested application name. In this case, no
seed LU names are needed. The LU name exit will create LU names based on the
port number and application name in the parameter list.
LUGROUP LUEXIT1,EXIT
ENDLUGROUP

In another example, assume the clients specify LUGROUP names that match up
with default applications on the LUMAP statement. The LU names are to be created
based on the last two numbers of the IP address and a prefix that identifies the
application. For example, TSO, IMS, and CICS are three current applications. The
prefix for each is TS, IM, and CI, respectively. The connection from 9.1.240.111
specifies LUGROUP LUGTSO and is assigned TS240111. The connection from
9.1.240.212 specifies LUGROUP LUGIMS and is assigned IM240212. The
connection from 9.1.89.7 specifies LUGROUP LUGTSO and is assigned TS089007.
Three LU name exits are needed (LUGTSO, LUGIMS, LUGCICS), but they are all
functionally equivalent. The LU name specified in the LUGROUP is passed to the
LU name exit as part of the parameter list. That name is used by the exit as the
prefix. The client IP address is also in the parameter list. The LU name exit
combines the prefix with the last portions of the IP address to create an LU name.
The following statements can be used to support this scenario.
IPGROUP IPGRP1 0.0.0.0:0.0.0.0 ENDIPGROUP ; Matches all connections

LUGROUP LUGTSO,EXIT TS ENDLUGROUP
LUGROUP LUGIMS,EXIT IM ENDLUGROUP
LUGROUP LUGCICS,EXIT CI ENDLUGROUP

LUMAP LUGTSO IPGRP1 DEFAPPL TSO
LUMAP LUGIMS IPGRP1 DEFAPPL IMS
LUMAP LUGCICS IPGRP1 DEFAPPL CICS

346 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

Capacity checks cannot be performed since Telnet has no way of knowing how
many total LUs are available in the LU name exit.

Associated printer function
The associated printer function allows a printer to specify an active LU terminal
name during connection negotiation. The server understands this special request
and knows to assign a printer LU name that is associated with the requested
terminal LU name. The association is established by linking a pool of terminal LUs
(LUGROUP) with a pool of printer LUs (PRTGROUP). The groups are linked with
the LUMAP statement. The printer LU group name is linked to the terminal LU
group name by adding the PRTGROUP name on the LUMAP statement.

The two LU groups must have the same number of LUs defined so the LUs can be
paired. The groups must have the same number of single LU names, the same
number of LU ranges, and the same number of LU names in each range. If the
groups do not have the same number of LUs defined, error messages will be
produced during profile processing and during associated connect requests.

Once the groups are linked, Telnet assigns the nth printer LU to a printer
connection that requests association with the nth terminal LU. For example, a CICS
table might specify that if terminal LU1 is requesting printer function, the output
should be routed to printer PRT1. Within CICS, LU1 and PRT1 are associated with
each other. Use the following statements to set up printer association.
LUGROUP LUGCICS LU1..LU9 ENDLUGROUP
PRTGROUP PRTCICS PRT1..PRT9 ENDPRTGROUP
IPGROUP IPGRP9 255.0.0.0:9.0.0.0 ENDIPGROUP
LUMAP LUGCICS IPGRP9 GENERIC PRTCICS

Neither the LU group nor the printer group can be an LU exit group. If either is an
LU exit, the mapping statement will be rejected.

Drop the printer connection when dropping the terminal connection: In many
cases, the associated printer connection should be dropped when the terminal
connection is dropped. If you code the DROPASSOCPRINTER parameter, Telnet
will monitor the terminal connection. When the terminal connection is dropped,
Telnet will initiate the closing and dropping of the printer connection. The
DROPASSOCPRINTER and NODROPASSOCPRINTER parameters can be coded
at all three parameter block levels for different levels of granularity.

Map default application and ParmsGroup by LU group
The DEFAPPL option on the LUMAP statement allows a host VTAM application to
be mapped with an LU name or LUGROUP name instead of using DEFAULTAPPL.
The LUMAP-DEFAPPL combination is treated just like DEFAULTAPPL when a
Client Identifier matches the LUMAP statement. The LUMAP-DEFAPPL combination
also supports the LOGAPPL, FIRSTONLY, and DEFONLY parameters that are used
by DEFAULTAPPL, PRTDEFAULTAPPL, and LINEMODEAPPL. The
LUMAP-DEFAPPL combination is a powerful statement when used with multiple
LUMAP statements for the same Client Identifier. If the LUMAP-DEFAPPL or
PRTMAP-DEFAPPL statement is coded and the default application is not available,
an error screen will be sent to the client whether or not MSG07 is coded.

The PMAP option on the LUMAP statement allows assignment of connection
parameters based on LU or LU group name. When the LU is assigned, the
parameter values specified in the PMAP PARMSGROUP will override the parameter
value specified in TELNETGLOBALS, TELNETPARMS, or PARMSGROUP mapped
to this connection’s Client Identifier. For example, any client residing in subnet
9.0.0.0 that specifies the LU group LUGTSO will immediately have a session

Chapter 8. Accessing remote hosts using Telnet 347

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

initiated to TSO with the LOGAPPL function, and the TIMEMARK time will be set for
two hours instead of the default three hours.
IPGROUP IPGRP9 255.0.0.0:9.0.0.0 ENDIPGROUP
LUGROUP LUGTSO TCPTSO01..TCPTSO99..FFFFFFNN ENDLUGROUP
PARMSGROUP PGRPT2 TIMEMARK 7200 ENDPARMSGROUP
LUMAP LUGTSO IPGRP9 DEFAPPL TSO LOGAPPL PMAP PGRPT2

An LUMAP-DEFAPPL defined default application name is always used if specified,
regardless of USSTCP mappings. LUMAP-DEFAPPL has a higher priority than any
DEFAULTAPPL or USSTCP. The connection parameters assigned using
LUMAP-PMAP will override any other setting of the parameters. However, not all
parameters have a meaningful use by the time the LU is assigned. For example,
NOTN3270E controls whether or not Telnet should negotiate for TN3270E. That
negotiation is done before LU assignments. For information on which parameters
can be properly applied with LUMAP-PMAP, see the parameter table in z/OS
Communications Server: IP Configuration Reference.

The PRTMAP statement supports PRTMAP-DEFAPPL and PRTMAP-PMAP in the
same manner as LUMAP-DEFAPPL and LUMAP-PMAP.

Multiple LUMAP statements
Another feature of Specific LU name requests is that the client can specify an
LUGROUP name, and the server will assign an available LU from that pool. This
capability is useful when different applications require different LU naming schemes,
but each end user client does not need to use the exact same LU name for each
connection. For example, an administrator can create three pools, one for each of
three applications. Only three client emulators need to be set up. One for TSO
which requests LU name LUTSO, one for CICS which requests LUCICS, and one
for IMS which requests LUIMS. Assume the general users are in subnet 3.0.0.0.
Any client connecting with a Client Identifier of IPGGEN can be set up to issue a
Specific request for LU pool LUTSO, LUCICS, or LUIMS, and will be assigned an
LU from the appropriate pool.

After an LU is assigned, the DEFAPPL option will cause Telnet to immediately issue
a session request for the appropriate application. If LOGAPPL is coded and the
application is not active, VTAM will continue session initiation once the application is
active.

In most cases, DEFAPPL on multiple Generic LUMAPs is not useful. LUs are
assigned in order starting with the first LUMAP statement. One case that may be
useful is if an application has a user limit but can be cloned. Assume the
INVENTRY application can support only 20 users but can be cloned. Multiple
LUMAPs with DEFAPPL will direct the first 20 HNGINV clients to INVENTRY, the
next 20 HNGINV clients to INVENTR2, and the next 20 HNGINV clients to
INVENTR3.
IPGROUP IPGGEN

255.0.0.0:3.0.0.0
ENDIPGROUP
LUGROUP LUTSO

TSO00001..TSO00999
ENDLUGROUP
LUGROUP LUCICS

CICS0001..CICS0999
ENDLUGROUP
LUGROUP LUIMS

IMS00001..IMS00999
ENDLUGROUP
LUGROUP LUGINV1

LUINV01..LUINV20

348 z/OS V1R4.0 CS: IP Configuration Guide

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

ENDLUGROUP
LUGROUP LUGINV2

LUINV21..LUINV40
ENDLUGROUP
LUGROUP LUGINV3

LUINV41..LUINV60
ENDLUGROUP
LUMAP LUTSO IPGGEN SPECIFIC DEFAPPL TSO LOGAPPL FIRSTONLY
LUMAP LUCICS IPGGEN SPECIFIC DEFAPPL CICS LOGAPPL
LUMAP LUIMS IPGGEN SPECIFIC DEFAPPL IMS LOGAPPL
LUMAP LUGINV1 HNGINV DEFAPPL INVENTRY LOGAPPL DEFONLY
LUMAP LUGINV2 HNGINV DEFAPPL INVENTR2 LOGAPPL DEFONLY
LUMAP LUGINV3 HNGINV DEFAPPL INVENTR3 LOGAPPL DEFONLY

Pool name specification is a powerful mapping method because multiple LUMAP
statements with different Objects can be used for a single Client Identifier.

Keep LU for the Client Identifier
An LU name can be kept (or reserved) for a period of time so no other client is
assigned that name. Only the same Client Identifier reconnecting to Telnet within
the specified time can be assigned that LU name. After the specified time, the LU
name is again available for any connection. This function is useful when the
application does not clean up session information quickly and a released LU is
quickly reassigned to another end user by Telnet. The application thinks the new
session is a continuation of the previous session but it is not. With KEEPLU, the LU
will not be reassigned to a different Client Identifier for a period of time, long
enough for the application to clean up its session information. The LU name is kept
based on the highest Client Identifier by which the connection is known. It is either
a User ID, a Hostname, or an IP address, respectively.

LU group capacity warning
An LU group capacity threshold can be specified on the LU group statement. If it is,
Telnet will check the number of LUs used in the group when an LU is assigned from
the group. A message is issued when the group’s in-use LU count is at or above
the specified percentage of the total. Once the message is issued, no other
message is issued until the in-use count has dropped below the threshold by 10%
of the total. For example, an LU group has 200 LUs with a capacity threshold of
80%. When the 160th LU is assigned, EZZ6007I is issued. Ten percent of the total
is 20. Therefore, after the number of LUs has dropped to 140 or lower, another
warning message will be issued when the in-use count rises to 160 again. If
multiple LU groups have the same LU name, the only LU group checked is the
group mapped to the client being assigned the LU. The other LU groups might be
over their capacity amounts but notification will not be issued until an LU is taken
from the group. Below are examples for setting the capacity warning.
LUGROUP LUGRP1,80% TCPLU000..TCPLUF9F..FFFFFXNX
PRTGROUP PRTGRP1,60% TCPRT000..TCPRTFFF..FFFFFXXX

Capacity checking cannot be done for LU groups that are defined as LU naming
exits. During VARY TCPIP,,OBEYFILE processing, all LU groups are checked for
in-use LU counts and a capacity warning message is issued if needed.

LU mapping by application name
In some cases, only certain LU names are eligible to be in session with the host
application. Or only certain LU names are eligible to represent user IDs. The LU
and LUG parameters on the ALLOWAPPL and RESTRICTAPPL statements provide
this checking function and allow some LU name mapping based on application
name.

Chapter 8. Accessing remote hosts using Telnet 349

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

For example, assume the only LUs eligible to use the inventory set of applications
are the LUs in the inventory LU pools. A new LUGROUP pool named LUGINVT
contains LUs from LUGINV1, LUGINV2, and LUGINV3. The ALLOWAPPL
statement requires that any session request to the inventory applications have an
LU name defined in LUGINVT. The LUG parameter must be used carefully. When
specified, Telnet must match the LU using both the common mapping algorithms
and the mapping by application. For RESTRICTAPPL, assume security
authorization is required to get to the PAYROLL application, and each of the PAYxx
user IDs must map to a certain LU.
LUGROUP LUGINV1

LUINV01..LUINV20
ENDLUGROUP
LUGROUP LUGINV2

LUINV21..LUINV40
ENDLUGROUP
LUGROUP LUGINV3

LUINV41..LUINV60
ENDLUGROUP
LUGROUP LUGINVT

LUINV01..LUINV60
ENDLUGROUP
ALLOWAPPL INVENTR* LUG LUGINVT
RESTRICTAPPL PAYROLL

USER PAY01 LU LUPAY01
USER PAY02 LU LUPAY02

(user pay03 through pay20 not listed)

The LU group specified on the LUG parameter cannot be an LU exit. If it is, the
ALLOWAPPL statement is rejected. Multiple LUs can be assigned individually using
the LU keyword or a single LU group can be assigned using the LUG parameter.
LU and LUG cannot be mixed on a single statement and only one LUG entry per
statement is permitted. LU assignment based on application is a convenient way to
limit the access to applications. However, this increases mapping complexity
significantly when LU mapping statements and connection types are part of the
overall mapping equation. Non-TN3270E connections or TN3270E connections with
NOTN3270E or SIMCLIENTLU specified do not keep the LU name assigned to the
connection after a session is dropped. For these connection types, the end user
can establish a session with different application names even if different LU names
are mapped to the application names with the ALLOWAPPL or
RESTRICTAPPL-USER statement. However, LU mapping based on application
name does not work well with TN3270E connections because the LU is assigned
during connection negotiation before the desired application name is known. In all
CLSDST-PASS cases, the LU name cannot change when switching from the first
application to the second because the LU’s ACB is not closed during the switch. If
the LU mapping by application name requires an LU name switch, the new session
attempt will be failed by Telnet.

TN3270 connections do not assign an LU to represent the client until an application
name is chosen. Therefore, the LU and LUG parameters can be used as sole LU
mapping statements for TN3270 connections. For example, assume no other
mapping statements exist (LUMAP or DEFAULTLUS), and either no TN3270E
connections will be used or SIMCLIENTLU has been specified. The following
ALLOWAPPL statements will map LUs to the appropriate application based on the
application name chosen. The following RESTRICTAPPL statement will assign a
single LU or LU pool to each user.
ALLOWAPPL TSO* LUG LUGTSO
ALLOWAPPL CICS LUG LUGCICS
ALLOWAPPL IMS LUG LUGIMS

350 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

RESTRICTAPPL APP*
USER USER01 LUG LUG01
USER USER02 LU LU02
USER USER03 LU LU03

Both of these assignment methods were very popular before TN3270E connections
were introduced. TN3270E connections will likely achieve poor mapping results. An
LU must be assigned during connection negotiation before the application name is
known which will likely result in an LU mismatch later. TN3270E connections require
that an LU mapping statement exist because an LU must be assigned to the
connection during negotiations before an application name is known. Consider the
following example:
DEFAULTLUS

LU1 LU2 LU3 LU4
ENDDEFALTLUS
RESTRICTAPPL APPL1

USER USER3 LU LU3
ALLOWAPPL APPL2 LU LU4

Assume two TN3270 connections are started.

v Two solicitor screens appear.

v Specify APPL1, USER3, and a password. The server selects LU3 based on both
the DEFAULTLUS and the RESTRICTAPPL statements.

v Specify APPL2. The server selects LU4 based on both the DEFAULTLUS and the
ALLOWAPPL statements.

Assume two TN3270E connections are started.

v Two solicitor screens appear. The server assigns LU1 and LU2.

v Specify APPL1, USER3, and a password. The server fails the connection
because of an LU mismatch.

v Specify APPL2. The server fails the connection because of an LU mismatch.

If LU name mapping by application name or user ID is desired with TN3270E
clients, the following three solutions are available:

v If the same application or user ID is always used at the same client, individual
LUMAP statements can be used to map the correct LU name to each client.
Then every connection request will result in the correct LU assignment for that
client. The assumptions are that the client keeps the same Client Identifier and
only one client exists per Client Identifier.

v Map the NOTN3270E parameter to clients to disable all TN3270E function in the
server so those connections will be TN3270, not TN3270E. The drawback is that
all TN3270E function is disabled. This includes printer function, Generic/Specific
function, and SNA function to the client. The TN3270E and NOTN3270E
parameters can be coded at all three parameter block levels for different levels of
granularity.

v Mapping the SIMCLIENTLU parameter is a less severe solution. This function will
send a dummy LU name of EZBSIMLU to all TN3270E clients issuing Generic
connection requests to satisfy the negotiation but will not assign a Telnet LU until
an application name is chosen. This alternative preserves printer function,
Specific requests, and SNA function to the client. The drawback is the name sent
to the client is not the name Telnet ultimately uses to represent the client. Printer
association will not work for these TN3270E Generic connections and any
emulator programming that depends on the LU name will be using the dummy
LU name. The SIMCLIENTLU and NOSIMCLIENTLU parameters can be coded
at all three parameter block levels for different levels of granularity.

Chapter 8. Accessing remote hosts using Telnet 351

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|
|

|
|

|

|

|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

LU mapping selection rules
LU mapping selection can become complicated because of the many variations of
mapping statements, TN3270E versus TN3270 connections, Generic versus
Specific connection requests, printer association, and LU mappings based on
application name. LU mapping is very different between TN3270E and TN3270 and
will be discussed separately. But first, some general Mapping Rules for both
TN3270E and TN3270 follow:

v If multiple LUMAP statements exist for a Client Identifier all Specific LUMAPs are
searched (TN3270E only) and then all Generic LUMAPs are searched in the
order they are listed in the profile.

v If the application is known during the LU lookup and the ALLOWAPPL or
RESTRICTAPPL-USER statement has LUs listed, then the found LU must be in
both the mapped LU group and in the application LU group.

v Once an LU match is found, the search stops.

v Telnet performs database lookup for Objects based on the Client Identifier.
TN3270E connections require an Early Lookup so Telnet can give the client an
LU name during connection negotiation. In all cases a Complete Lookup is done
when the application name is given. Telnet performs an Early Lookup and a
Complete Lookup for TN3270E connections. Telnet performs only a Complete
Lookup for TN3270 and Linemode connections.

TN3270E LU mapping: TN3270E connections require an Early Lookup during
connection negotiation. Telnet will use as much information as is available to assign
an LU to the client. However, the eventual application is not known at this time
unless an LUMAP-DEFAPPL or DEFAULTAPPL statement defines the application
name. After connection negotiations are complete, Telnet will either send a logon
solicitor (or USSMSG10) screen to the client or will perform a Complete Lookup
using the application name obtained from the LUMAP-DEFAPPL or DEFAULTAPPL
statement. If Complete Lookup is successful, Telnet will begin session initiation. If a
solicitor (or USSMSG10) screen is sent to the client, an application name must be
entered, at which time Telnet will perform a Complete Lookup. If LU mapping is
being done based on application name, a conflict might occur between the
application LU mapping and the LU already assigned to the connection. For
TN3270E, once an LU name is assigned during connection negotiation it can never
change until the connection is dropped. The SIMCLIENTLU statement allows Telnet
to assign LUs for TN3270E connections as though they were TN3270 connections.
See “TN3270 LU mapping” on page 353 for mapping Generic TN3270E connection
requests with SIMCLIENTLU. A request for a specific LU from the Telnet Client will
be treated as if SIMCLIENTLU were not specified. The exact lookup process for
TN3270E (non-SIMCLIENTLU) is described below.

Early Lookup: An LU must be found during Early Lookup. LUMAP-DEFAPPL and
DEFAULTAPPL statements are considered but not necessarily used. Possible
lookup results are:

v An LU is found.

v An LU is not found, the connection is dropped.

Perform TN3270E Early Lookup in the following order. The process stops when LU
lookup is successful. Printer connections use the same process, substituting
PRTMAP and PRTDEFAULTAPPL.

v Check for LUMAP matches considering application lookup results and possible
application-based LU mappings.

352 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|
|
|

|
|

1. For each Specific LUMAP used for Specific connection requests: If the
Specific LUMAP has DEFAPPL, or DEFAULTAPPL was specified and the
application lookup return code is either OK or USER_REQUIRED, then
perform LU lookup.

2. For each Generic LUMAP used for Specific or Generic connection requests:
If the Generic LUMAP has DEFAPPL, or DEFAULTAPPL was specified and
the application lookup return code is either OK or USER_REQUIRED, then
perform LU lookup.

v Check for LUMAP matches without considering application lookup results.

1. For each Specific LUMAP used for Specific connection requests: Ignore
DEFAPPL and DEFAULTAPPL and perform LU lookup.

2. For each Generic LUMAP used for Specific and Generic connection requests:
Ignore DEFAPPL and DEFAULTAPPL and perform LU lookup.

v If LUMAP statements were not checked (different from checked but no match),
use the appropriate Default LU pool considering application lookup results and
possible application-based LU mappings. In this case the only relevant
application is the DEFAULTAPPL, if specified. If the application lookup return
code is either OK or USER_REQUIRED, then perform LU lookup.

v If no LUMAP statements were checked, try the appropriate Default LU pool
without considering application lookup results. Perform LU lookup.

Complete Lookup: An application name is required for Complete Lookup. The
application name is obtained from one of three sources in the order specified.

1. Input from the USER or VTAM (via CLSDST with OPTCD=PASS)

2. DEFAPPL parameter on the LUMAP statement

3. DEFAULTAPPL statement

Use the application name and the previously found LU to perform Complete
Lookup. Possible lookup results are:

v The application is not valid.

v The application is valid (return code OK or USER_REQUIRED) for the existing
LU.

v The application-based LU map does not match the already chosen LU.

TN3270 LU mapping: TN3270 connections only perform Complete Lookup after
all information is known. LU lookup is not done during connection negotiation.
Telnet will either send a solicitor (or USSMSG10) screen to the client or will perform
Complete Lookup using the application name known through the LUMAP-DEFAPPL
or DEFAULTAPPL statement. If Complete Lookup is successful, Telnet will begin
session initiation. If not successful, the solicitor (or USSMSG07) screen is sent to
the client without an LU being assigned to the connection or the connection is
dropped. The LU is not assigned until the application name is valid. If the
application name is a RESTRICTAPPL, the LU is not assigned until a user ID is
specified. Application-based LU mappings have a very good chance of success due
to the late LU mapping aspect of TN3270 connections. When SIMCLIENTLU is
coded, Generic TN3270E connections have this same characteristic.

Complete Lookup: An application name is required for Complete Lookup. The
application name is obtained from one of three sources in the order specified.

1. Input from the USER or VTAM (CLSDST with OPTCD=PASS)

2. DEFAPPL parameter on the LUMAP statement

3. DEFAULTAPPL statement

Chapter 8. Accessing remote hosts using Telnet 353

|
|
|
|

|
|
|
|

|

|
|

|
|

|
|
|
|
|

|
|

|
|

|

|

|

|
|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|

Use the application name to perform Complete Lookup. Possible lookup results are:

v The application is not valid.

v The application is valid but an LU is not found.

v The application is valid (return code OK) and an LU is found.

v The application LU map does not match the Client Identifier LU map.

If the application is not valid, no LU is assigned to the connection and an error
message is sent to the client. If the application is valid, continue the LU lookup in
the following order.

v Check for LUMAP matches considering application-based LU lookup results.
Only Generic LUMAPs are searched. If the application lookup return code is OK,
then perform LU lookup.

v If no LUMAP statements were used, check for application-based LU mappings. If
the application lookup return code is OK and LUs are defined on the application
statement, perform LU lookup.

v If no LUMAP or application-based LU mapping statements were used, use the
DEFAULTLUS pool considering application lookup results. If the application
lookup return code is OK, then perform LU lookup.

Advanced application topics
In addition to the basic function of facilitating session setup, Telnet supports several
advanced functions such as:

v Session initiation management (LOGAPPL, QINIT, FIRSTONLY, and DEFONLY)

v Connection and session takeover

v Queuing sessions

v Disconnect on session error

v Bypass RESTRICTAPPL with CERTAUTH

v Keeping the ACB open

v Express Logon Feature

Session initiation management (LOGAPPL, QINIT, FIRSTONLY,
and DEFONLY)
The LOGAPPL, QINIT, FIRSTONLY, and DEFONLY options can be coded on
DEFAULTAPPL, PRTDEFAULTAPPL, LINEMODEAPPL, LUMAP-DEFAPPL, or
PRTMAP-DEFAPPL. For the remainder of this section, DEFAULTAPPL represents
all the default application statements.

LOGAPPL, QINIT: The LOGAPPL or QINIT functions keep the Telnet LU active if
a Request Session fails due to the host VTAM application not being active. In
addition, VTAM remembers the attempted Request Session and will initiate a
session request to the Telnet LU on behalf of the application when the application
becomes active. When the Request Session fails, Telnet sends the client a solicitor
panel or USSMSG07 screen. The end user then has the option of logging on to a
different host VTAM application (if DEFONLY is not coded). When this different
session is started, VTAM drops the queued Request Session for the original
session.

What happens at session logoff depends on whether or not LUSESSIONPEND and
FIRSTONLY are coded and whether LOGAPPL or QINIT is coded. If
LUSESSIONPEND is coded, the connection remains. Otherwise, it is dropped. If
FIRSTONLY is coded, Telnet will send a USSMSG10 screen or Solicitor panel to
the client. If FIRSTONLY is not coded, Telnet will initiate another session with the

354 z/OS V1R4.0 CS: IP Configuration Guide

|

|

|

|

|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|

default application defined by the DEFAULTAPPL statement. LOGAPPL and QINIT
have different results when logging off the original application. When LOGAPPL is
specified, a USSMSG10 or Solicitor panel is sent to the client. When QINIT is
specified, the default application is redriven.

FIRSTONLY, DEFONLY: Sometimes a default application is used at initial
connection, but after LOGOFF a USSMSG10 or solicitor panel is more appropriate
than redriving the default. In this case, code the FIRSTONLY parameter. This
indicates the default should be used on the first session only. After a session has
been established, any subsequent lookups will ignore the default and send the
USSMSG10 screen or solicitor panel.

If MSG07, LUMAP-DEFAPPL, or PRTMAP-DEFAPPL is coded and the default
application is inactive, an error screen will be sent to the client. The DEFONLY
parameter will block a user-entered application choice if it is different than the
default. This parameter prevents application choice while giving the end user error
information.

The following table summarizes several possible session initiation failure scenarios.

v ReqSess OK - A Request Session to the default application succeeded or a
Request Session to a second application from the USSMSG07 screen
succeeded.

v ReqSess Fail - A Request Session to the default application failed.

v 2nd Appl Fail - A Request Session to a second application from the USSMSG07
screen failed.

FIRSTONLY is not a consideration because the first session has not been
established.

1. In session.

2. Send USSMSG07 or Solicitor panel to client. Close the ACB.

3. Send USSMSG07 or Solicitor panel to client. Keep ACB open, queue original
session request in VTAM.

4. Send USSMSG07 or Solicitor panel to client. Keep ACB open, keep the new
queued session request in VTAM.

5. Drop connection.

The following table summarizes several possible session ending scenarios. The
session is ending due to normal LOGOFF or session breakage (possibly caused by
loss of the application).

v Original Application - User is in session with the original default application.

v CLSDST from Original Appl - User is in session with a second (or later)
application after issuing a CLSDST-PASS from the original application.

Mapping Statement

DEFAULTAPPL name

DEFAULTAPPL name LOGAPPL
DEFAULTAPPL name QINIT

Scenario
ReqSess
OK

ReqSess Fail 2nd Appl Fail

MSG07 MSG07
No
MSG07

No
MSG07

1

1

2

3

5

3

2

4

N/A

4

Figure 55. Session initiation failures scenarios

Chapter 8. Accessing remote hosts using Telnet 355

|

|
|
|

|
|
|
|

|

|

In all cases, if LUSESSIONPEND is not coded the connection is dropped.

1. Redrive the default application.

2. Send USSMSG10 or Solicitor panel to client. Close the ACB.

Connection and session takeover
In some cases the route for a connection is lost without Telnet being notified. When
this occurs, the end user can no longer make contact with the host application. The
end user will typically disconnect the emulator and try to start another session. In
many cases this does not work. For example, assume the host application is TSO
and the end user is in session with TSO user ID USER1. The route is lost, so the
end user disconnects and establishes a new connection over a different route.
Assume a Generic connection so Telnet will assign a different LU to represent the
client. When the TSO logon to USER1 is attempted, TSO will fail the logon because
USER1 is still in session with the original Telnet LU. There is no way for the end
user to bring down the original connection. The end user has to wait for an inactivity
timer in Telnet or TSO to bring down the original connection. If a Specific
connection is requested the connection is rejected sooner. The second Specific
connection request will specify the original LU. Telnet will fail the request during
Early Lookup indicating that the LU is already in use. The problem with both
situations is that the original connection is still assumed active by Telnet.

The TKOSPECLU parameter fixes this problem if the end user knows the Telnet LU
name of the original connection. The statement name is derived from the function of
connection takeover (TKO) using the Specific LU (SPECLU) name. The Specific
request is required as a security measure and it is assumed that most users of this
function will have first connected using a Specific request. When the connection
request arrives, Telnet discovers the LU name is in use and suspends the new
request. Telnet sends a TIMEMARK request to the original client which acts as an
″are you there″ message. The client is required to respond to the TIMEMARK. If no
response is received by Telnet within the time specified on the TKOSPECLU
statement, Telnet drops the original session and connection. The original LU is
reserved during the drop process. Once the original session and connection are
dropped, Telnet resumes processing the new request. This time the LU is not in
use, only reserved for takeover purposes, and is assigned to the new takeover
session. The end user is essentially starting over. The original session has been
dropped allowing the end user to immediately log on to the same TSO user ID
again.

The TKOSPECLURECON parameter can be used to accomplish the same
connection drop but avoids the session drop. When the original connection is
dropped, the Telnet LU stays in session with the host application. The new
connection is established and Telnet sends an LUSTAT to the host application

Mapping Statement

DEFAULTAPPL name
DEFAULTAPPL name QINIT

DEFAULTAPPL name LOGAPPL

DEFAULTAPPL name FIRSTONLY LOGAPPL
DEFAULTAPPL name FIRSTONLY QINIT

Scenario
Original Application 2nd Appl or

CLSDST from Orig

Logoff LogoffBreak Break

1

2

2

1

1

1

1

1

2

1

1

1

Figure 56. Session ending scenarios

356 z/OS V1R4.0 CS: IP Configuration Guide

indicating that Presentation Space Integrity was lost (’082B’x). Depending on the
application, it will either end the session or resend the previous screen. By
resending the previous screen, the end user is able save the original session and
avoid the SNA session tear-down and restart process. At worst, if the application
drops the session upon receipt of the LUSTAT the end user is able to immediately
log on again as if TKOSPECLU were coded.

TKOSPECLU and TKOSPECLURECON can be coded at all three parameter block
levels for different levels of granularity. Code NOTKO to turn off the function at any
of the three levels.

If the original connection used SSL with CLIENTAUTH SAFCERT, either takeover
method will verify that the new connection is using the same client certificate. Telnet
does this by translating the new certificate to a user ID and comparing the new user
ID to the user ID on the original connection.

CAUTION: TKOSPECLURECON does not require the end user to reverify user
authenticity to the host application. If there is a chance the connection can be taken
over by an unauthorized user, TKOSPECLURECON should NOT be used.

CAUTION: A time value of zero is permitted. In this case the server will always
perform the takeover whether or not the original connection is still active. The zero
value is intended for testing purposes rather than production use.

Sometimes a takeover attempt will not complete as expected. This may be due to
one of the following factors:

v The profile of the original connection defines how the original connection can be
taken over. Be sure the original connection supports the desired takeover
method.

v The new connection request must specify the LU name of the connection being
taken over.

v TKOSPECLURECON will not preserve a session if the takeover is done from a
different port. The ACB of the LU is associated with the original port and must be
closed before it can be associated with the new port. The takeover will function
as a TKOSPECLU takeover.

v TKOSPECLURECON may not preserve a session if the original client connection
is ended before the TKOSPECLURECON timer expires. If the close reason is
TIMEMARK or INACTIVE, the session will be preserved under the assumption
that the inactivity is due to a lost connection. Any other close reason will cause
the takeover to function as a TKOSPECLU takeover. This is done to protect
users who disconnect their client as a means of logging off their session. These
sessions will not be taken over. Instead, the end user will have to issue a new
logon. In some cases, the original client TCP/IP stack may respond to the
Timemark with a RESET. Telnet interprets this RESET as a client disconnect and
assumes the end user disconnected the session. Telnet then drops the session.
To keep the session in this case, add the KeepOnTmReset option to the
TKOSPECLURECON parameter. A security risk exists when using this
parameter. An end user may actually disconnect just before the Timemark arrives
due to an unauthorized takeover attempt. Telnet will interpret the disconnect as a
response to the Timemark and allow the takeover without loss of the VTAM
session.

Takeover is also affected by where the new client resides and how the old client
responds. There are several event scenarios and results will vary.

v Event 1

Chapter 8. Accessing remote hosts using Telnet 357

|
|
|

New client connects from a different IP address or Port.

Original client responds to TIMEMARK.

Result - Takeover will not occur in this case because the original client is still
responding. The new client will receive an error indicating the LU is already in
use.

v Event 2

New client connects from a different IP address or Port.

Original client does not respond to TIMEMARK.

Result - Connection takeover will occur. If TKOSPECLURECON is mapped to the
client, session takeover will occur. A likely scenario in this case is Telnet has lost
connectivity to the old connection due to a failed router and the new connection
is using a different route, the original machine lost power and has not
reestablished connectivity, or the original machine lost power but reestablished
connectivity with a different IP address.

v Event 3

New client connects from a different IP address or Port.

Original client stack responds with RESET.

Result - Connection takeover will occur. However, even if TKOSPECLURECON
is coded, session takeover will not occur because Telnet handles the RESET as
a client disconnect. A likely scenario in this case is a PC lost power and then
regained power. The takeover request is accepted from either a different PC or
the same PC using a different port. After the new connection request is accepted,
Telnet sends a TIMEMARK to the original client PC stack. The PC stack does not
recognize the IP-port and responds with a RESET. If KeepOnTmReset is
specified and the RESET is received by Telnet after the Timemark has been sent,
Telnet will keep the session.

v Event 4

New client connects from the same IP address and Port.

Telnet stack rejects the request.

Original client times out and sends a RESET.

Result - The original session and connection are dropped. Takeover does not
occur. The new client is able to connect on retry because the original connection
and session were cleaned up. A likely scenario in this case is a PC has lost
power and then regained power. The same PC is used to attempt takeover. The
client is assigned the same port as before the power loss and has the same IP
address.

Queuing sessions
Logon manager applications are very popular. Typically they are set up as a default
application which sends a selection screen to the end user. Once the end user
specifies the destination application choice, the logon manager typically issues a
CLSDST macro with OPTCD=PASS to the destination application. A new session is
started with the destination application. The logon manager session is closed with a
special UNBIND sent to Telnet indicating that a new session BIND is forthcoming.
Telnet receives that special UNBIND and then waits for the next BIND instead of
cleaning up as it would when receiving a normal UNBIND. When the end user logs
off the destination application, Telnet will either redrive the initial database lookup
process or drop the connection, depending on whether or not LUSESSIONPEND is
coded.

Many logon managers were written to support real terminals, not Telnet, and have
the added function of issuing a SIMLOGON Q for the logon manager session itself

358 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|

immediately after issuing the CLSDST-PASS. When SIMLOGON is coded, VTAM
(on behalf of the logon manager) will request a session with the terminal LU (or
Telnet LU representing the client) immediately after user logoff from the destination
application. This works very well for real terminals, but causes timing problems for
Telnet when the logon manager is a default application. In this case, Telnet and
VTAM both end up requesting a session.

The QSESSION option on ALLOWAPPL or RESTRICTAPPL can be used to correct
this timing problem. When coded for the logon manager, Telnet will not do normal
close processing when the UNBIND from the destination application arrives. Telnet
will leave the LU ACB open and wait for the BIND from the logon manager that is
generated because of the Queued SIMLOGON. When the BIND does arrive, Telnet
will verify that the application name is the original logon manager and finish session
setup.

You must ensure that the application defined as the QSESSION application will
issue a SimlogonQ so a BIND will be sent after logoff from the destination
application. Otherwise, Telnet will leave the LU ACB open waiting for a BIND that is
never coming. The connection will be essentially hung. Only a Telnet expiration
timer or client disconnect will clean up the connection. Logoff of the original
application will cause Telnet to perform normal close function instead of leaving the
LU ACB open.

The BEGINVTAM statement, QUEUESESSION, provides the same function with
less control than the QSESSION option and will be made obsolete in a future
release. QUEUESESSION affects all defined DEFAULTAPPLs whether or not all are
queue session applications. QUEUESESSION precludes the use of
LUSESSIONPEND and QSESSION does not. If you are using QUEUESESSION,
you should update your profile to use the QSESSION option instead.

As an example of the QSESSION parameter, assume that APPL1, APPL2, and
APPL3 are each defined in VTAM. APPL1 will issue a SimlogonQ before
CLSDST-PASS. The following Telnet statements allow connections to access the
applications and define which is a QSESSION application.
ALLOWAPPL APPL1 QSESSION
ALLOWAPPL APPL*

The client first logs on to APPL1 and Telnet saves the name in the first slot of a 10
slot Qsession table. A CLSDST-PASS to APPL2 and a SimlogonQ are issued. The
APPL2 name is saved in slot two of the table. Finally, a CLSDST-PASS to APPL3 is
done and the APPL3 name is saved in slot three of the table. When the APPL3
session is ended, the APPL3 slot is cleared and VTAM sends an APPL1 BIND to
Telnet. The first application queued is the first application off the VTAM queue. In
this case Telnet will start at the end of the Qsession table (APPL2 since APPL3
entry was just cleared) and check each slot to try to find an application name
match. Eventually a name match is made with slot one. Now, all slots above slot
one are cleared. A CLSDST-PASS to APPL4 will cause the APPL4 name to be put
into slot 2. Because the slots for APPL2 and APPL3 were cleared earlier, Telnet will
no longer accept a BIND from APPL2 or APPL3 after ending the session with
APPL4.

The Qsession table is set up when a BIND is received for an application that is
defined with the QSESSION parameter. If the first application does not have
QSESSION coded and a CLSDST-PASS is issued to an application name that has
QSESSION coded, it is the second application that will be in slot one of the

Chapter 8. Accessing remote hosts using Telnet 359

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|

Qsession table. When that session in slot one is ended, Telnet will clean up the LU
and the connection status will depend on whether or not LUSESSIONPEND is
coded.

Disconnect on session error
The DISCONNECTABLE option on either the ALLOWAPPL or RESTRICTAPPL
statement determines what type of session termination to send to the host VTAM
application when Telnet initiates session termination. If DISCONNECTABLE is
coded, Telnet issues a TERMSESS UNBIND(0F). Otherwise, Telnet issues a
TERMSESS UNCOND. For example, when DISCONNECTABLE is coded for the
TSO application, an unexpected connection loss results in an UNBIND(0F) being
sent to TSO putting it in a reconnectable state. The DISCONNECTABLE parameter
has no effect on a session ended normally by the end user logging off the session.
The QSESSION parameter can be coded with DISCONNECTABLE on either
statement.

Bypass RESTRICTAPPL with CERTAUTH
CERTAUTH is an option on RESTRICTAPPL used in conjunction with client
authenticated secure connections or Express Logon. In both cases the client
certificate is used to derive a user ID. If the end user chooses an application that is
a RESTRICTAPPL, the normal Telnet response is to request a valid user ID and
password before allowing access to the application. However, if the end user has
been authenticated with a client certificate it may not be necessary to require a user
ID/password. With the CERTAUTH option on RESTRICTAPPL Telnet will use the
derived user ID. If the user ID is valid (listed on the RESTRICTAPPL statement),
Telnet will bypass the end user solicitation and immediately give access to the
application. The derived user ID value depends on the type of connection. If
Express Logon is being used, the user ID is derived from the latest Client
Certificate/Applid combination received from the client. If Express Logon is not
being used, the user ID is the Client Identifier user ID derived from the Client
Certificate after the SSL handshake.

Keeping the ACB open
Some host VTAM applications are set up to inquire if a secondary LU is active. If
the LU is active, the application will initiate a session. For this to work, the
secondary LU must be active. The LUMAP option, KEEPOPEN, will cause the ACB
to open when the LU is assigned to the connection and remain open for as long as
the LU is assigned to the client by this mapping statement.

LU assignment is different for TN3270E and TN3270 connections. TN3270E
connections have an LU assigned during connection negotiation. TN3270
connections do not have an LU assigned until the VTAM application name is
known.

In some cases the host VTAM application will initiate a session with the secondary
LU. To do this, the host must issue an INQUIRE to see if the LU is active with an
OPEN ACB. This INQUIRE will fail for Telnet LUs because Telnet does not open the
ACB until a session request is sent from Telnet to VTAM. When the end user gets
the solicitor (or USSMSG10) panel, Telnet has not opened the ACB of the LU
assigned to a TN3270E connection. TN3270 and LineMode connections do not
have LUs assigned yet. If the KEEPOPEN parameter is coded on the LUMAP
statement used by Telnet to assign an LU during Early Lookup for a terminal
TN3270E connection, Telnet will open the ACB before sending the solicitor (or
USSMSG10) panel. At that time an end user can either log on to an application as
usual or wait for a host application to INQUIRE about the LU and initiate a session.
TN3270 connections will not have an LU assigned until an application name is
known. When the name is known, an LU is assigned to the connection, the ACB of

360 z/OS V1R4.0 CS: IP Configuration Guide

|

the LU is opened, and a session request is issued. If the KEEPOPEN parameter is
coded on the LUMAP statement used by Telnet to assign the LU, the LU stays
assigned to the connection with the ACB open until the connection is dropped. If
profile statements define LUs uniquely to different applications, a second logon to a
different application might fail. When KEEPOPEN is mapped to a connection, the
MSG07 and LUSESSIONPEND functions are in effect whether or not they were
explicitly coded. When a session is ended, the connection remains and the ACB
remains open. Only a client disconnect, a Telnet error, or the
KEEPINACTIVE/INACTIVE timers will cause a KEEPOPEN connection to be
dropped. The KEEPINACTIVE timer is used whenever the Telnet LU is not in
session with a VTAM application. Otherwise, the INACTIVE timer is used. See
“Timers” on page 366 for information about ending idle KEEPOPEN connections.

Express Logon Feature (ELF)
The Express Logon Feature allows an end user to connect to an MVS host VTAM
application without explicitly entering a user ID or password. Telnet uses the client
certificate to resolve the user ID and RACF generates a temporary password, a
passticket. ELF requires a secure connection with level 2 client authentication, a
client that supports ELF, and RACF passticket setup.

The ELF function is activated by specifying the EXPRESSLOGON parameter. The
function can be inactivated by specifying NOEXPRESSLOGON. Either parameter
can be coded in TELNETGLOBALS, TELNETPARMS or PARMSGROUP. For a
detailed discussion of ELF, refer to Appendix C, “Express Logon Feature (ELF)” on
page 749.

Device types and logmode considerations
The VTAM logmode defines many characteristics of the session established
between the Telnet LU representing the client and the host VTAM application. For
example, the logmode defines response types, presentation style, and the type of
LU Telnet is emulating. LU0 (non-SNA) and LU2 (SNA) represent terminal LU types.
LU1 (SCS) and LU3 (3270 Data) represent printer LU types.

Telnet matches a VTAM logmode to each client as it connects based on the client
device type. Refer to z/OS Communications Server: IP Configuration Reference for
default device type and logmode table information. The default terminal logmodes
are non-SNA for TN3270 connections and SNA for TN3270E connections. At
session request time, Telnet indicates to VTAM the desired logmode based on
device type. The host VTAM application usually honors the request and binds the
session using the requested logmode. However, depending on VTAM statements,
the application can override the requested logmode and bind the session using
different characteristics than Telnet requested. For this reason, some screen sizes
might not work correctly even though the logmode defined in Telnet is correct. If the
KEEPOPEN function is used to allow session initiation by the host application, the
desired logmode must be coded on the DLOGMOD parameter as part of the VTAM
application definition statement that defines the Telnet LU. Otherwise, the
application will choose its own logmode.

Telnet processes the ATTN KEY request differently for non-SNA and SNA sessions.
For non-SNA sessions (BIND FM value 02), Telnet converts the ATTN KEY request
to a ’6C’x data byte and sends it to the application. For SNA sessions (BIND FM
value 03), Telnet converts the ATTN KEY request into a SNA signal and sends it to
the application as expedited data. Some clients send both an ATTN KEY function
code and a ’6C’x data byte to ensure the ATTN is seen by the application. Telnet
converts the ATTN KEY function into either a ’6C’x data byte or a SNA signal and
also forwards the ’6C’x data. Some applications give unexpected results or Telnet

Chapter 8. Accessing remote hosts using Telnet 361

|
|

|
|
|
|
|

might appear to not support ATTN when two ATTNs are received. The
SINGLEATTN parameter causes Telnet to drop the second ATTN if it immediately
follows an ATTN. The SINGLEATTN and NOSINGLEATTN parameters can be
coded at all three parameter block levels for different levels of granularity.

To change either the TN3270 or the TN3270E logmode for a device type, use the
TELNETDEVICE parameter. Whenever Telnet initiates the session request, Telnet
will request that the logmode specified on the TELNETDEVICE statement be used
for the session. The application (the primary LU) does have the ability to override
the requested logmode and use a completely different logmode. The
TELNETDEVICE parameter can be coded in all three parameter block levels for
different levels of granularity. Coding TELNETDEVICE in a PARMSGROUP that is
mapped on the LUMAP-DEFAPPL-PMAP statement enables the logmode to be LU
and application specific.

If the application initiates the session, the TELNETDEVICE logmode has no affect
on the session. For example, printer sessions are initiated by the application unless
a printer default application is specified. The LUMAP-KEEPOPEN parameter can be
used to open a terminal ACB and wait for the primary application to initiate the
session.

Transform Linemode connections can have a unique logmode by coding
TELNETDEVICE with a device type of TRANSFORM. Any logmode used must not
support extended graphics.

The special case logmode NONE can be specified indicating that Telnet should not
send any logmode request when initiating the session.

In the examples that follow, the first line causes only the 3270 logmode to change
from the default to SNX32705. The second line causes both the 3270 and 3270E
logmodes to change from their defaults to SNX32705 and SNX32702. The third line
causes only the 3270E logmode to change from the default to SNX32702.
TELNETDEVICE 3278-5-E SNX32705
TELNETDEVICE 3278-5-E SNX32705,SNX32702
TELNETDEVICE 3278-5-E ,SNX32702

Using the Telnet Solicitor or USS logon panel
This section describes the Telnet Solicitor panel and Telnet Unformatted System
Services (USS) support. All information needed to establish a session can be
entered on the Telnet Solicitor panel. However, Telnet is often used as the primary
method of connecting to the SNA mainframe environment. SNA end users are
accustomed to entering abbreviated logon commands, altering logmodes, and
entering user data from SNA terminals. For ease of migration, Telnet simulates SNA
USS processing very closely. This simulation extends to being able to use the same
assembled USS tables that are used by VTAM. VTAM-only character substitutions
are ignored by Telnet and Telnet-only character substitutions are ignored by VTAM.
Blanks are used in their place. To further extend the simulation of SNA terminals,
Telnet also supports all of the INTERPRET table function.

Using the Telnet Solicitor logon panel
Telnet sends a Solicitor panel to the end user if one of the following is true:

v No DEFAULTAPPL, LINEMODEAPPL, USSTCP, or LUMAP-DEFAPPL mappings
match the client’s Client Identifier.

v The requested application is a RESTRICTAPPL.

362 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

Below is an example of the Telnet Solicitor panel:
Enter Your Userid:
Password: New Password:
Application:

Initial cursor placement can be specified. Where initial placement should be
depends on client macros used and end user preferences. The OLDSOLICITOR
parameter is used to implement this choice. The default cursor position is on the
’Application:’ field. If OLDSOLICITOR is coded, the cursor is positioned on the
’Enter Your Userid:’ field. The OLDSOLICITOR and NOOLDSOLICITOR parameters
can be coded at all three parameter block levels for different levels of granularity.

In addition to satisfying RESTRICTAPPL, there are other times when an end user
might want to use the user ID/Password fields. For example, the solicitor panel may
also be used to change a password by entering the user ID, old password, and new
password. The application field does not need to be filled in. If insufficient
information was provided by the client (for example, a user ID but no password),
then the Telnet Solicitor panel is returned with a message prompting for the
required field. A message is also returned if the security program encounters an
error when attempting to change the password. Example messages include:

v Password required

v Password is not authorized

Using the Telnet USS and INTERPRET support
The Telnet USS function provides the end user with a USSMSG10 logon panel
similar to the logon panel used by native SNA terminals. The Telnet USS function
supports sending USSMSGs to the client, receiving and parsing USSCMDs from
the client, and using a translation table defined in the USS table.

For any USSMSG other than USSMSG10, pressing the CLEAR key will refresh the
screen with USSMSG10. If the CLEAR key is pressed while at USSMSG10, the
screen will be cleared. Pressing the CLEAR key a second time will refresh the
screen with USSMSG10.

USSCMD parsing also includes checking for INTERPRET table entries that might
provide more function than USS tables alone can provide. Sample USS and
INTERPRET tables are in TCP/IP data sets hlq.SEZAINST(EZBTPUST) and
hlq.SEZAINST(EZBTPINT), respectively. The USS sample has been assembled,
linked, and loaded into the product data set. The tables can be used by coding the
USSTCP and INTERPTCP mapping statements in BEGINVTAM. For example, the
statements below will map the sample tables to the client at IP address 1.1.1.1. See
“Mapping Objects to Client Identifiers” on page 325 for mapping details.
USSTCP EZBTPUST 1.1.1.1
INTERPTCP EZBTPINT 1.1.1.1

A new table can be created at any time and link-edited. Customized USS and
INTERPRET tables can be created to change messages, commands, and
translation tables. For example, messages can be changed to have non-English text
or to have different syntax. Commands can be changed to accept different syntax or
to have different default values. A VARY TCPIP,,OBEYFILE command will cause
Telnet to load the new table with the new profile being processed. Any new
connection using the new profile will be assigned the new table. Telnet also
supports dynamic updating of same-name USS or INTERPRET tables. VARY
TCPIP,,OBEYFILE adds the new version of the table to the new profile. New
connections use the new copy associated with the new profile while old connections
continue to use the old copy associated with the old profile.

Chapter 8. Accessing remote hosts using Telnet 363

|
|

|
|
|
|
|
|
|

|

|

|

|

|

|

|
|

USS table customization: Customized USS tables are used by both VTAM and
Telnet, with any product-specific character substitutions converted to blanks. For
example, @@SSCPNM is blank for Telnet and @@PRT is blank for VTAM. The
tables must reside in a data set that is in the system’s linklist or is in the STEPLIB
statement of the TCP/IP startup procedure. Any changes to a Telnet USS table
should be made with supplementary user-defined USS tables. The IBM-supplied
USS table should not be changed as it provides a good example of coding most
commands and messages. Telnet loads the first table found with the name
EZBTPUST and defines it as the default USS table. If this table is not found, there
is no default USS table. Whether or not a default USS table should be included
depends on the desired message output. When writing a USS Message, Telnet
searches the USS table mapped to the client first. If the message does not exist in
the mapped table, Telnet searches the default table. If the message does not exist
in the default table, Telnet writes USSMSG14. If no default table exists, Telnet
generates a USSMSG14. The end user can get back to the USSMSG10 from any
message by pressing the CLEAR key. The default table does not affect the USS
Commands. The command entered must be in the mapped table or it is not
recognized.

Creating a USS table: The following macro instructions are used to create the
USS table. Telnet USS function supports almost all VTAM session-level USS
message and command definitions. Refer to z/OS Communications Server: IP
Configuration Reference for macro details.

v USSTAB indicates the beginning of the USS table.

v USSCMD defines commands accepted by the Telnet server.

v USSPARM defines each operand or positional parameter that can be specified
on the USSCMD macro instruction. It also defines default values for the operand
or positional parameter. Multiple USSPARM macro instructions can be associated
with a USSCMD macro instruction. For each operand or positional parameter
code a USSPARM macro instruction.

v USSMSG defines messages sent from the Telnet server.

v USSEND indicates the end of the USS table.

Below are some of the more common rules to consider when coding a new USS
table. Also, refer to the sample found in hlq.SEZAINST(EZBTPUST) as a guide.
The following section discusses general table rules.

v If a DEFAULTAPPL application is mapped at the same Client Identifier level as a
USS table, the USS table will only be used to return error messages and
optionally after the first session logoff. An LUMAP-DEFAPPL application will
always be used instead of the USSMSG10 regardless of Client Identifier priority.
FIRSTONLY or LOGAPPL options on DEFAULTAPPL will cause Telnet to send a
USSMSG10 after the first session logoff. DEFAULTAPPL without the FIRSTONLY
or LOGAPPL options will cause Telnet to redrive to the default application after
every session logoff.

v Only the 3270 data stream is supported. Refer to 3270 Data Stream
Programmer’s Reference for more information.

v If a user-defined table is coded as part of another module, code an assembler
EXTRN definition statement for the table name in that module so the table will be
known externally and can be accessed by other modules.

Below are message related rules.

v USSMSGs must contain the 3270 data stream write control characters (WCCs).

v All character substitutions (@@’s) substitute the same number of fields. Any
character substitution that is VTAM-specific will be translated to blanks. If the

364 z/OS V1R4.0 CS: IP Configuration Guide

substituted value is smaller, the field is padded to the right with blanks. The
parameter LUNAME or SCAN must be coded on the USSMSG macro instruction
for Telnet to perform character substitutions. For a complete list of character
substitutions, refer to z/OS Communications Server: IP Configuration Reference
for Telnet and z/OS Communications Server: SNA Resource Definition Reference
for VTAM. Telnet supports multiple USSPARMs with the DATA keyword. This
method can be used to pass multiple data parameters to the host application. For
example, two DATA USSPARMs allow the end user to type ’TSO USER1
PROC001’ and have both the user ID and the Procname passed to TSO as data.

Below are command related rules.

v LOGON command format

PL1 - logon applid(tso) logmode(snx32702) data(user1)

BAL - logon applid=tso,logmode=snx32702,data=user1

v Any application defined in a USSCMD macro instruction must also be specified
on either an ALLOWAPPL or a RESTRICTAPPL statement in the Telnet Profile.

v If the USS Command rules in z/OS Communications Server: IP Configuration
Reference cannot be followed, use an interpret table to convert the
character-coded command into a formatted SNA request.

INTERPRET table customization: The standard Telnet USS logon support should
meet the needs of most installations. However, Telnet does support INTERPRET
table function if special circumstances require accepting a sequence of characters
outside the normal USS command format. For example, the end user might want to
enter logon data that includes blanks. The INTERPRET table defines all entered
data, including blanks, as a USSPARM DATA entry. The PL1 USSCMD format
treats each blank as a parameter delimiter and cannot properly process a variable
number of parameters. The INTERPRET table character sequences are scanned
whenever the client is mapped to both a USS table and an INTERPRET table. Both
must be mapped because the INTERPRET function is a subset of the USS
function. INTERPRET is not a stand-alone function. The sample INTERPRET table
found in hlq.SEZAINST(EZBTPINT) is not assembled and linked, and it is not
loaded into Telnet as a default INTERPRET table. The table must be assembled,
linked, loaded, and mapped in the Telnet profile to be used.

Creating an INTERPRET table: Telnet INTERPRET function supports all functions
provided by the VTAM INTERPRET definitions. Refer to z/OS Communications
Server: IP Configuration Reference for macro details. The following macro
instructions are used to create an INTERPRET table:

v INTTAB indicates the beginning of the INTERPRET table.

v LOGCHAR defines a single logon message and name of an application program.

v ENDINTAB indicates the end of the INTERPRET table.

Below are some of the more common rules to consider when coding a new
INTERPRET table. Also, refer to the sample found in hlq.SEZAINST(EZBTPINT) as
a guide.

v The LOGCHAR APPLID= supports APPLICID, ROUTINE and USERVAR.

v Code the most restrictive, or longest, LOGCHAR SEQNCE values first.
Otherwise, unexpected matches can occur. The table is scanned from top to
bottom until a match is found whether or not it is the most exact match. For
example, assume sequence ’LOGA’ is assigned APPL1 and any other ’LOG’
sequence is assigned APPL2. If sequence ’LOG’ is before ’LOGA’, entry ’LOGA’

Chapter 8. Accessing remote hosts using Telnet 365

will never be found even when the end user enters ’LOGA’ because entry ’LOG’
will be the first match. All sessions will go to APPL2. The problem is corrected by
putting ’LOGA’ before ’LOG’ in the table.

Assemble, link, and load a table: Use the sample JCL in
hlq.SEZAINST(EZBUSJCL). In the sample, the USS table is in
USER1.TABLES(USSTEST). It must be assembled and link-edited into the system’s
linklist or into a library concatenated as a STEPLIB in the TCP/IP startup procedure.
In the sample, the table is link-edited into USER1.LINKLIB(USSTEST). The same
procedure can be used for the INTERPRET table. Simply change the name of the
input file source and the link-edit target member. The VTAM USS and INTERPRET
macros used for the assemble can be found in hlq.SISTMAC1.

Timers
Several timers are available in Telnet to control how long connections stay up. The
list includes:

v INACTIVE - How long a terminal connection can be idle with no SNA data traffic
before the connection is dropped.

v PRTINACTIVE - How long a printer connection can be idle with no SNA data
traffic before the connection is dropped.

v KEEPINACTIVE - How long a KEEPOPEN connection can be idle with no SNA
session before the connection is dropped. When a KEEPOPEN connection is in
session with a SNA application the INACTIVE timer is used instead of the
KEEPINACTIVE timer.

v SCANINTERVAL - How often Telnet runs the list of connections looking for
potentially lost connections. Because of the methodology, it also determines how
long Telnet will wait for a TIMEMARK response before assuming the connection
is lost.

v TIMEMARK - How long a connection is active without receiving any data before
Telnet sends a TIMEMARK command which acts as an ″are you there″.

v SSLTIMEOUT - How long Telnet will wait for an SSL handshake initiation from
the client before the request is dropped.

To facilitate these timers, Telnet records the time at which data is received from the
client, received from VTAM, or sent to VTAM. Data received from the client is used
by SCANINTERVAL/TIMEMARK to measure idle time on the connection. Data
received from or sent to VTAM is used by the INACTIVE family of timers to
measure idle time without SNA data traffic.

INACTIVE, PRTINACTIVE and KEEPINACTIVE all share one timer associated with
a port profile to reduce system overhead. The timer with the smallest value defined
in TELNETGLOBALS, TELNETPARMS or PARMSGROUP for that port profile is
used to define how often the connections are checked. For example, assume
KEEPINACTIVE is defined as 1800, INACTIVE is defined as 3000, and
PRTINACTIVE is defined as 5400 in a profile. The Telnet timer will run every 1800
seconds. Therefore, every time the timer pops Telnet will check each KEEPOPEN
connection not in session to see if there has been a SNA session created in the
prior 1800 seconds. If not, the connection is dropped with DEBUG SUMMARY
message CONN DROP reason INACT-K. Telnet will also check each terminal
connection to see if there has been any SNA data traffic in the prior 3000 seconds.
If not, the connection is dropped with DEBUG SUMMARY message CONN DROP
reason INACT-S. Telnet also will check each printer connection to see if there has
been any SNA data traffic in the prior 5400 seconds. If not, the connection is

366 z/OS V1R4.0 CS: IP Configuration Guide

|
|

dropped with DEBUG SUMMARY message CONN DROP reason INACT-P. Setting
KEEPOPEN to the smallest time was done as an example. Any of the three timers
could be the smallest.

SCANINTERVAL and TIMEMARK are used together to determine if a connection
has been lost. These parameters can be specified in TELNETGLOBALS,
TELNETPARMS, and PARMSGROUP. The smallest SCANINTERVAL value is used
to define how often the connections are checked. If TIMEMARK is smaller than
SCANINTERVAL, TIMEMARK is set equal to SCANINTERVAL. Whenever data is
received from the client, Telnet records the time. Telnet checks all connections at
regular intervals defined by the SCANINTERVAL value. Each connection is checked
to see if any data has been received from the client in the past TIMEMARK period
of time. If not, a TIMEMARK command is sent to the client which acts as an ″are
you there″ and Telnet remembers a TIMEMARK was sent to this client. During the
next check at SCANINTERVAL time later, each connection is again checked to see
if any data has been received from the client. If not, and a TIMEMARK was sent on
the previous check, the connection is dropped with DEBUG SUMMARY message
CONN DROP reason TIMEMARK. For example, assume the values for
SCANINTERVAL and TIMEMARK are 1800 and 10800, respectively. That means
every 30 minutes all connections are checked to see if any data has been received
in the last 3 hours. If not, a TIMEMARK is sent to the client. 30 minutes later Telnet
checks the connections again. If the client responded to the TIMEMARK or sent in
actual data of some type Telnet leaves the connection active. If nothing has been
received Telnet drops the connection.

Caution must be used in setting these timers. Setting the INACTIVE family of timers
or SCANINTERVAL timer too low could cause excessive CPU usage. Setting the
TIMEMARK value too low could also cause excessive flooding of the network with
TIMEMARK commands. For example, these timers should take into account
extended breaks such as lunch. If TIMEMARK is smaller than the lunch break time,
the network may be flooded with TIMEMARK commands around the lunch hour. Be
aware of the default values and be sure to set appropriate values for the situation.

SSLTIMEOUT is different than the other timers. Telnet does not run this timer. The
time value is passed to the SSL handshake process. If SSL does not get a
response from the client within SSLTIMEOUT period of time, the handshake request
fails. Telnet will then proceed to the next available connection negotiation method or
drop the connection.

Telnet diagnostics
In addition to general diagnostic tools such as CTRACE and dumps which are
described in z/OS Communications Server: IP Diagnosis, there are Telnet specific
diagnostic tools available. Profile syntax can be checked, display requests can be
issued, session initiation and termination can be tracked, and error messages can
be specified.

DEBUG
The DEBUG SUMMARY statement provides tracking of connection status. A
summary message is written when:

v A connection request is accepted by Telnet.

v Connection negotiation is complete.

v A session is established with the host application.

v A session is dropped.

v A connection is dropped.

Chapter 8. Accessing remote hosts using Telnet 367

LU name, Connection ID, and client IP address and port are included in each
message. In the example below an end user connects to port 23. The connection is
negotiated as a TN3270E connection and a session with TSO is established. The
session is dropped because of client disconnect (CLNTDISC) and then the
connection is dropped because of client disconnect.
EZZ6034I TELNET CONN 00000011 LU **N/A** ACCEPTED 23

IPADDR..PORT 1.12.13.14..456
EZZ6034I TELNET CONN 00000011 LU TCPM1001 NEGOTIATED TN3270E

IPADDR..PORT 1.12.13.14..456
EZZ6034I TELNET CONN 00000011 LU TCPM1001 IN SESSION TSO0001

IPADDR..PORT 1.12.13.14..456
EZZ6034I TELNET CONN 00000011 LU TCPM1001 SESS DROP CLNTDISC

IPADDR..PORT 1.12.13.14..456
EZZ6034I TELNET CONN 00000011 LU TCPM1001 CONN DROP CLNTDISC

IPADDR..PORT 1.12.13.14..456

In addition to tracking major state changes and providing key information, the
statements can be used for debug purposes. For example, an end user might be
attempting a connection and something is not working. The ACCEPTED,
NEGOTIATED, and IN SESSION messages are major connection milestones. Using
the information provided and knowing whether or not these messages are displayed
can provide many clues about the connection request. The SESS DROP and
CONN DROP messages give a variety of reasons about why the drop occurred.

The DEBUG DETAIL statement may be needed if the DEBUG SUMMARY
messages do not provide enough information to solve a problem. In addition to the
summary messages listed above, DEBUG DETAIL will issue a message at the time
of failure which displays the client IP address and port, connection ID, Telnet LU
name, detecting module name, unique return code and brief explanation, and
additional parameters if relevant. Some messages will be helpful to the system
administrator and others will be helpful to IBM service. Refer to z/OS
Communications Server: IP Messages Volume 4 (EZZ-SNM) message EZZ6035I for
return code details.

In the example below the end user specified an application not in the Telnet profile
and then disconnected at the client emulator.
EZZ6035I TELNET DEBUG CLIENT IPADDR..PORT 1.12.13.14..456

CONN: 00000011 LU: TCPM1001 MOD: EZBTPGLU
RCODE: 3012-00 Application name is invalid.
PARM1: 00000000 PARM2: 00000000 PARM3: 00000000

EZZ6035I TELNET DEBUG CLIENT IPADDR..PORT 1.12.13.14..456
CONN: 00000011 LU: TCPM1001 MOD: EZBTTRCV
RCODE: 1001-02 Client disconnected from the connection.
PARM1: FFFFFFFF PARM2: 00000461 PARM3: 00000000

The DEBUG EXCEPTION statement causes the CONN DROP message to be
issued only for error conditions and inactivity reasons. DEBUG EXCEPTION is the
default. If more than one connection was dropped for the same reason within 15
seconds, a single message with LU name MULTIPLE will be issued. For example, if
MSG07 is not coded in the DEBUG DETAIL example above, the connection will be
dropped after the lookup failure. The CONN DROP message will include the return
code and indicate that an error caused the connection drop. The following message
will be produced whether or not DEBUG was coded because of the error condition.
EZZ6034I TELNET CONN 00000011 LU TCPM1001 CONN DROP ERR 3012

IPADDR..PORT 1.12.13.14..456 EZBTPGLU

368 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|

The DEBUG TRACE statement generates messages containing data to and from
the client, to and from VTAM, and to and from an LU name exit for a single
connection. The TRACE option allows you to quickly see why a client is not
connecting or why a session hangs. Once TRACE is added with VARY
TCPIP,,OBEYFILE, the first client assigned tracing will be the only client traced.
Another connection cannot be traced until the client currently being traced is
dropped.
EZZ6034I TELNET CONN 00000080 LU **N/A** ACCEPTED 223

IPADDR..PORT 9.14.6.42..36484
EZZ6035I TELNET DEBUG CLIENT IPADDR..PORT 9.14.6.42..36484

CONN: 00000080 LU: MOD: TO CLNT
<-C- FFFD28
PARM1: 00000003 PARM2: 00000000 PARM3: 00000000

EZZ6035I TELNET DEBUG CLIENT IPADDR..PORT 9.14.6.42..36484
CONN: 00000080 LU: MOD: FRM CLNT
-C-> FFFB28
PARM1: 00000003 PARM2: 00000000 PARM3: 00000000

EZZ6035I TELNET DEBUG CLIENT IPADDR..PORT 9.14.6.42..36484
CONN: 00000080 LU: MOD: TO CLNT
<-C- FFFA2808 02FFF0
PARM1: 00000007 PARM2: 00000000 PARM3: 00000000

The DEBUG OFF statement ensures that all debug messages are suppressed,
including the exception CONN DROP messages.

Profile debug warning and error messages can be turned off by coding DEBUG
OFF or DEBUG SUMMARY in the TELNETGLOBALS block and putting that block
before any other Telnet blocks in the profile.

The DEBUG parameter may cause flooding of the operator’s console. Console
flooding concerns can be dealt with in several ways.

v DEBUG messages are, by default, assigned to routing code 11, the JOBLOG.
The DEBUG option JOBLOG can be used for the same effect. However, the
master console also receives routing code 11 messages by default. To stop the
messages from going to the master console, issue VARY CN(01),DROUT=(11),
which drops routing code 11 from the console. The other DEBUG option,
CONSOLE, will direct the messages to the master console, routing code 2, and
the teleprocessing console, routing code 8.

v If DEBUG messages are being used primarily for problem diagnosis, the VARY
TCPIP,,OBEYFILE command can be used to keep the number of messages low.
Bring up Telnet initially without DEBUG coded. When a problem appears, issue a
VARY TCPIP,,OBEYFILE command for a Telnet profile that includes the DEBUG
statement. Only new connections to the new profile will produce messages. Once
data is obtained, issue another VARY TCPIP,,OBEYFILE command for a Telnet
profile that omits the DEBUG statement.

v If the Client Identifier of the client having the problem is known, include DEBUG
in a PARMSGROUP statement. Using PARMSMAP, map that group to the client.
Debug messages for only that client will be issued.

The VARY TCPIP,,TELNET,DEBUG,OFF command can be issued to turn off
DEBUG for all connections associated with all profiles, including the current profile.
To turn on DEBUG again, issue a VARY TCPIP,,OBEYFILE command with the
Debug option specified in the Telnet profile. Summary messages for CONN DROP
due to errors or time-outs will also be suppressed. Use DEBUG EXCEPTION to
retain these messages.

Chapter 8. Accessing remote hosts using Telnet 369

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|

|
|
|
|

|

|

|
|

MSG07
The MSG07 parameter is very helpful when diagnosing problems. It allows Telnet to
send a message to the client indicating an error occurred and what the error was.
Something simple like a mistyped application name can be corrected by the end
user without additional help. Even for more difficult problems, MSG07 provides a
good starting point. It is recommended that MSG07 always be coded unless there
are reasons not to send error messages to the client.

Abend trap
The VARY TCPIP,,TELNET,ABENDTRAP,module,rcode,instance command can be
used to set up an abend based on the variables specified. Abendtrap has three
variables:

module Is required. It is the module detecting the error. It can be wildcarded with
asterisk (*) at the end. If a single * is used, any module reporting the specified
return code will cause an abend. The module name ″OFF″ turns off an active trap.

rcode Is optional. It is the return code reported and cannot be wildcarded.

instance Is optional. It is the instance of the return code and cannot be wildcarded.

Below is an example setting the abend trap and then issuing a profile display to
verify the trap is set. In the example, when EZBTTRCV reports an error code of
1001, Telnet will issue an abend with reason code ’3133’x. The state of the trap
changes from ″ACTIVE″ to ″TRIPPED″. No more abends will be issued. Once
tripped, the abendtrap command must be issued again to activate the trap. While
the trap is active, the abend trap can be turned off by specifying ″OFF″ as the
module name. An active trap cannot be changed directly. The current trap must be
tripped or turned off before a new command is accepted.
V TCPIP,TCPCS6,T,ABENDTRAP,EZBTTRCV,1001
EZZ0060I PROCESSING COMMAND: VARY TCPIP,TCPCS6,T,ABENDTRAP,EZBTTRCV,1001
EZZ6013I TELNET COMMAND ABENDTRAP EZBTTRCV COMPLETE

D TCPIP,TCPCS6,T,PROF
EZZ6060I TELNET PROFILE DISPLAY
PERSIS FUNCTION DIA SECURE TIMERS SMF MAX LINE
(LMTQAK)(OATSQSWHT)(DRF)(PCKLECX)(IKPSTS)(ITIT)(RSQ)(BSCTT)
------ --------- --- ------- ------ ---- --- -----
LMR*A* ***SQ**HT TJF SSH*ESX ***STS ITIT RSQ *SC**
----- PORT: 23 ACTIVE PROF: CURR CONNS: 0
--

ABENDTRAP : EZBTTRCV 1001 FF ACTIVE
4 OF 4 RECORDS DISPLAYED

SMF
SMF records are written when an end user establishes a session (SMF LOGN or
TN3270 Server SNA Session Initiation record) and when the session is ended (SMF
LOGF or TN3270 Server SNA Session Termination record). Optional SMF recording
is controlled by using the SMFINIT and SMFTERM statements. Two different record
formats are available: SMF type 118 and 119. The type 119 records were first
introduced in z/OS V1R2 Communications Server, and are controlled by use of the
TYPE119/NOTYPE119 operands on the SMFINIT and SMFTERM statements. The
subtypes cannot be changed for type 119 records and are set to the STD values.
The use of the STD operand or the specification of a nonstandard subtype number
on the SMFINIT and SMFTERM parameters control the usage of the older type 118
record processing. Data recorded includes the application name, Telnet LU name,
client and host IP address and port, time of logon or logoff, and data count in and
out. Combined with the SMF utility exit routine, SMF data can be used to track
Telnet usage by a number of variables. If statements for both format types are

370 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

coded then both record types are written. That capability should be used sparingly
due to the additional processing costs involved in generating both types records.
Refer to z/OS Communications Server: IP Configuration Reference for SMF record
layout.

TESTMODE
The TESTMODE parameter in TELNETPARMS allows a profile to be processed by
Telnet but then dropped before it becomes an active profile. Using TESTMODE
ensures that LU assignments, security levels, and other Telnet parameters are not
compromised due to profile syntax errors.

DISPLAYS
Several displays are available which provide summary and detail information. Telnet
provides Profile-related displays to present the following information. Refer to z/OS
Communications Server: IP System Administrator’s Commands for detailed
examples.

General information:

v PROFILE - All parameter information, such as timers and security information.

v WLM - Summary of all workload manager names registered to represent Telnet.

Mapping information:

v Object - Various levels of Object information can be displayed.

– A list of all Objects sorted by Object type can be generated by omitting the
TYPE= and ID= parameters.

– A detailed display of Objects showing how they are mapped to Client
Identifiers can be generated by specifying the TYPE= parameter.

– A detailed display of Objects showing how they are mapped to Client
Identifiers and the details of the Object group can be generated by specifying
the ID= parameter.

– A detailed display showing where an Object is used and how those Objects
are mapped to Client Identifiers can be generated by specifying the
WHEREUSED and ID= parameters.

v Client Identifier - Various levels of Client Identifier information can be displayed.

– A list of all Client Identifiers sorted by Client Identifier type can be generated
by omitting the TYPE= and ID= parameters.

– A detailed display of Client Identifiers showing how they are mapped to
Objects can be generated by specifying the TYPE= parameter.

– A detailed display of Client Identifiers showing how they are mapped to
Objects and the details the Client Identifier group can be generated by
specifying the ID= parameter.

– A detailed display showing where a Client Identifier is used and how Objects
are mapped to those Client Identifiers can be generated by specifying the
WHEREUSED and ID= parameters.

v INACTLUS - Summary of all LUs that have been inactivated by the operator or
by Telnet as a result of OPEN ACB problems.

Connection information:

v CONNECTION - Summary of all connections, filtered summary of all
connections, or detailed data of a single connection.

The above displays give good snapshots of the state of Telnet and its connections.
In addition, the WHEREUSED option is very useful as a lookup diagnostic tool. The

Chapter 8. Accessing remote hosts using Telnet 371

display will show where any name or IP address is used within the profile. This is
particularly helpful when a connection request does not proceed as expected. For
example, a client is sent a USSMSG10 screen instead of immediately getting in
session with a logon manager. A WHEREUSED display of the client’s IP address
might show, as expected, the IP address within an IP group that is mapped to the
logon manager as a default application. However, another WHEREUSED display of
the client’s host name might show the host name within an HN group that is
mapped to a USS table. Knowing that the selection order of Client Identifiers will
cause the USS table to be chosen, the administrator will realize there are conflicting
mapping statements for the client and will be able to resolve the problem.

Module information: Telnet module storage can be displayed to verify the level of
maintenance. For example, symptoms indicate a problem that has been fixed by an
APAR. It is not known for sure if the fixed module is in the current version of Telnet.
The module in question can be displayed using the TCP/IP display STOR
command. In the example below no APAR is listed, indicating it has not been
applied to the system.
d tcpip,,stor,mod=ezbtvxrc

EZZ8456I TCPIP MODULE STORAGE
EZBTVXRC LOADED AT 0A220328 IN LOAD MODULE EZBTTMST
+0000 47F0F026 20C5E9C2 E3E5E7D9 C340F0F0 *.00..EZBTVXRC 00
+0010 4BF0F0F5 40F0F17A F2F97AF2 F240C8E3 *.005 01.29.22 HT
+0020 C3D7F5F0 C1000DC0 58300224 58403150 *CP50A........ ..

EZZ8459I DISPLAY TCPIP STOR COMPLETED SUCCESSFULLY

CTRACE
If a problem is not resolved using the above tools, IBM service will likely need a
CTRACE with option Telnet. CTRACE, with only the Telnet option, gives very
complete information about the Telnet processes. To debug almost any Telnet
problem no other CTRACE option is needed. Generally, the other options simply
take up space creating a trace-wrap condition more quickly. If the problem is data
related, use the FULLDATATRACE statement to trace all the data coming into and
leaving Telnet rather than tracing only the first 64 bytes of data. FULLDATATRACE
will cause a trace-wrap condition more quickly so should be set only if needed. It
should be set in PARMSGROUP instead of TELNETPARMS if a subset of clients
can be identified. For transform problems, the DBCSTRACE statement in
TELNETPARMS or PARMSGROUP should be used to produce more trace entries
in the SYSPRINT and TNDBCSER data sets.

WorkLoad Manager for Telnet (WLM)
Telnet can be part of a large sysplex environment where the server is replicated on
many machines. One of the goals of such a system is to balance workload across
the different machines. WLM is a method used to direct connection requests to
various machines within the sysplex. See Chapter 10, “Domain Name System
(DNS)” on page 417 for more details about WLM. The WLMCLUSTERNAME
statement in TELNETPARMS is used by Telnet to specify WLM registration names.
For example, assume Telnet resides on three machines.

v Machine 1 supports CICS and TSO.

v Machine 2 supports CICS, TSO, and IMS.

v Machine 3 supports CICS and IMS.

The best approach to implement multiple applications with WLM registration is to
create a separate port for each application. For example, CICS can be assigned to
port 223, TSO to port 323, and IMS to port 423. Each port number can be
associated with a unique WLM clustername. Port 223 can be set up for CICS and
have a WLM name of TNCICS. Port 323 can be set up for TSO and have a WLM

372 z/OS V1R4.0 CS: IP Configuration Guide

|

|

name of TNTSO. Port 423 can be set up for IMS and have a WLM name of TNIMS.
By doing this, the WLM names are associated with ports rather than application
names to a single port. This is important when multiple ports already exist on a
Telnet system. If a port has a problem and must be quiesced, the WLM name
associated with the port will be deregistered, blocking any new requests from
coming to the disabled port.
TELNETPARMS ; Machine 1

PORT 223
WLMCLUSTERNAME TNCICS ENDWLMCLUSTERNAME

ENDTELNETPARMS

TELNETPARMS ; Machine 1
PORT 323
WLMCLUSTERNAME TNTSO ENDWLMCLUSTERNAME

ENDTELNETPARMS

BEGINVTAM
PORT 223
DEFAULTLUS TCP0001..TCP0200..FFFFNNN ENDDEFAULTLUS
DEFAULTAPPL CICS

ENDVTAM

BEGINVTAM
PORT 323
DEFAULTLUS TCP0001..TCP0200..FFFFNNN ENDDEFAULTLUS
DEFAULTAPPL TSO

ENDVTAM

;***

TELNETPARMS ; Machine 2
PORT 223
WLMCLUSTERNAME TNCICS ENDWLMCLUSTERNAME

ENDTELNETPARMS

TELNETPARMS ; Machine 2
PORT 323
WLMCLUSTERNAME TNTSO ENDWLMCLUSTERNAME

ENDTELNETPARMS

TELNETPARMS ; Machine 2
PORT 423
WLMCLUSTERNAME TNIMS ENDWLMCLUSTERNAME

ENDTELNETPARMS

BEGINVTAM
PORT 223
DEFAULTLUS TCP0201..TCP0400..FFFFNNN ENDDEFAULTLUS
DEFAULTAPPL CICS

ENDVTAM

BEGINVTAM
PORT 323
DEFAULTLUS TCP0201..TCP0400..FFFFNNN ENDDEFAULTLUS
DEFAULTAPPL TSO

ENDVTAM

BEGINVTAM
PORT 423
DEFAULTLUS TCP0201..TCP0400..FFFFNNN ENDDEFAULTLUS
DEFAULTAPPL IMS

ENDVTAM

;***

TELNETPARMS ; Machine 3

Chapter 8. Accessing remote hosts using Telnet 373

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

PORT 223
WLMCLUSTERNAME TNCICS ENDWLMCLUSTERNAME

ENDTELNETPARMS

TELNETPARMS ; Machine 3
PORT 423
WLMCLUSTERNAME TNIMS ENDWLMCLUSTERNAME

ENDTELNETPARMS

BEGINVTAM
PORT 223
DEFAULTLUS TCP0401..TCP0600..FFFFNNN ENDDEFAULTLUS
DEFAULTAPPL CICS

ENDVTAM

BEGINVTAM
PORT 423
DEFAULTLUS TCP0401..TCP0600..FFFFNNN ENDDEFAULTLUS
DEFAULTAPPL IMS

ENDVTAM

With this setup, an end user can connect to host TNCICS, TNTSO, or TNIMS and
will automatically be directed to the correct machine for load balancing. If a port is
disabled by a Quiesce or Stop on one machine, the port will be deregistered from
WLM so that no new connection requests will be received. It is important to set up
the WLM names as links to port numbers rather than links to applications. By
creating a port per application, end users think they are specifying an application
but in reality are specifying a port number.

If more than one port is used for connectivity to the same application, then two
different WLM names should be used for the two ports. Perhaps TNCICS and
TNCICS1 could be used. If the same WLM name is used for both ports, a problem
will occur if one of the ports is disabled. Because a second port is still active for the
single WLM name, the name is not deregistered for the machine. WLM will continue
to direct connection requests to the disabled port, where they will be rejected.

Configuring the z/OS UNIX Telnet server (otelnetd)
The z/OS UNIX Telnet server provides access to z/OS UNIX shell applications on
the host using the Telnet protocol.

Installation information
The HFS files used in the z/OS UNIX Telnet server and their locations in the HFS
are as follows:

/etc/services
The ports for each application are defined here.

/etc/syslog.conf
The configuration parameters for usage of syslogd are defined in this file.
otelnetd writes to syslog facility local1.

/etc/inetd.conf
The configuration parameters for all applications started by inetd are
defined in this file.

/usr/sbin/otelnetd
This is a symbolic link to /usr/lpp/tcpip/sbin/otelnetd.
/usr/lpp/tcpip/sbin/otelnetd is a sticky-bit file. The OTELNETD member of
hlq.SEZALOAD contains the executable code for the Telnet server.

374 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|

/etc/banner
This file contains a login message which will be printed to the client’s
screen unless the -h option is specified. This banner should be stored here.

/etc/utmpx
This file is updated by the call to fsumoclp. It contains a list of all the users
who are logged in with their associated tty.

/dev/ptypXXXX and /dev/ttypXXXX
These special device files represent pseudoterminals (ptys); they are used
by the z/OS UNIX Telnet server and other programs.

Note: For information on allocating more of these files for more
connections, see z/OS UNIX System Services Planning.

/usr/share/lib/terminfo
The descriptions of supported terminals are stored here. For more
information, see z/OS UNIX System Services Planning.

/usr/lib/nls/msg/C/tnmsgs.cat
The message catalog used by the z/OS UNIX Telnet server is stored here.

If the message catalog does not exist, the software will default to the
messages hard-coded within the software. These messages duplicate the
English message catalog that is shipped with the product.

/usr/man/C/cat1/otelnetd.1
This file contains the associated manual (man) pages for the z/OS UNIX
Telnet server. It provides online help for the user.

Starting, stopping, and administration of z/OS UNIX Telnet
The z/OS UNIX Telnet server is started by inetd for each incoming Telnet
connection. When the Telnet session is complete, the z/OS UNIX Telnet server will
exit. Each active Telnet session will have a separate instance of the Telnet server
which will communicate with the Telnet client.

The z/OS UNIX inetd daemon does not propagate environment variables other than
PATH and TZ to its child processes, so the NLSPATH and LANG environment
variables cannot be used to point to a different message catalog.

The following standards are supported:
v RFC 854 Telnet Protocol Specification
v RFC 855 Telnet Option Specification
v RFC 856 Telnet Binary Transmission
v RFC 857 Telnet Echo Option
v RFC 858 Telnet Suppress Go Ahead Option
v RFC 859 Telnet Status Option
v RFC 860 Telnet Timing Mark Option
v RFC 861 Telnet Extended Options - List Option
v RFC 885 Telnet End of Record Option
v RFC 1073 Telnet Window Size Option
v RFC 1079 Telnet Terminal Speed Option
v RFC 1091 Telnet Terminal type option
v RFC 1096 Telnet X Display Location Option
v RFC 1123 Requirements for Internet Hosts -- Application and Support
v RFC 1184 Telnet Linemode Option
v RFC 1372 Telnet Remote Flow Control Option
v RFC 1571 Telnet Environment Option Interoperability Issues

Chapter 8. Accessing remote hosts using Telnet 375

v RFC 1572 Telnet Environment Option
v RFC 2941 Telnet Authentication Option
v RFC 2942 Telnet Authentication: Kerberos Version 5
v RFC 2946 Telnet Data Encryption Option
v RFC 2952 Telnet Encryption: DES 64 bit Cipher Feedback
v RFC 2953 Telnet Encryption: DES 64 bit Output Feedback

When a z/OS UNIX Telnet session is started up, otelnetd sends Telnet options to
the client side indicating a willingness to do the following:
v WILL ENCRYPT
v DO ENCRYPT
v DO TERMINAL TYPE
v DO TSPEED
v DO XDISPLOC
v DO NEW-ENVIRON
v DO ENVIRON
v WILL SUPPRESS GO AHEAD
v DO ECHO
v DO LINEMODE
v DO NAWS
v WILL STATUS
v DO LFLOW
v DO TIMING-MARK

The z/OS UNIX Telnet server can enable the following options locally.

v WILL BINARY

This option indicates that the client is willing to send 8 bits of data, rather than
the normal 7 bits of network virtual terminal data.

v WILL ECHO

When the LINEMODE option is enabled, a WILL ECHO or WONT ECHO will be
sent to the client to indicate the current state of terminal echoing. When terminal
echo is not desired, a WILL ECHO is sent to indicate that Telnet will take care of
echoing any data that needs to be echoed to the terminal, and then nothing is
echoed. When terminal echo is desired, a WONT ECHO is sent to indicate that
Telnet will not be doing any terminal echoing, so the client should do any terminal
echoing that is needed.

v WILL LOGOUT

When a DO LOGOUT is received, a WILL LOGOUT is sent in response and the
Telnet session is shut down.

v WILL SGA

This option indicates that it will not be sending IAC GA, the go ahead command.

v WILL STATUS

Indicates a willingness to send the client, upon request, the current status of all
Telnet options.

v WILL TIMING-MARK

Whenever a DO TIMING-MARK is received, a WILL TIMING-MARK is the
response. It is only used in kludge linemode support.

v WILL ENCRYPT

Indicates a willingness to encrypt the data stream.

The z/OS UNIX Telnet server can enable the following options remotely.

v DO BINARY

376 z/OS V1R4.0 CS: IP Configuration Guide

Sent to indicate that Telnet is willing to receive an 8-bit data stream.

v DO ECHO

If a WILL ECHO is received, a DONT ECHO will be sent in response.

v DO ENVIRON

Indicates a desire to be able to request environment variable information. (See
RFC 1408.)

v DO LFLOW

Requests that the client handle flow control characters remotely.

v DO LINEMODE

Supports requests that the client do line-by-line processing.

v DO NAWS

Requests that the client inform the server when the window size changes.

v DO NEW-ENVIRON

Indicates a desire to be able to request environment variable information. (See
RFC 1572.)

v DO SGA

Indicates that it does not need to receive IAC GA, the go ahead command.

v DO TERMINAL-TYPE

Indicates a desire to be able to request the name of the type of terminal that is
attached to the client side of the connection.

v DO TERMINAL-SPEED

Indicates a desire to be able to request information about the speed of the serial
line to which the client is attached.

v DO TIMING-MARK

Only supported if the client responded with WONT LINEMODE. If the client
responds with WILL TM, then it is assumed that the client will support kludge
linemode. It is not used for any other purposes.

v DO XDISPLOC

Indicates a desire to be able to request the name of the X Window System
display that is associated with the Telnet client.

v DO AUTHENTICATION

Indicates a willingness to receive authentication information for automatic login.

v DO ENCRYPT

Indicates a willingness to decrypt the data stream.

Chapter 8. Accessing remote hosts using Telnet 377

otelnetd

Note: The user ID associated with the daemon in /etc/inetd.conf requires superuser
authority. Refer to z/OS UNIX System Services Planning for a description of
the types of authority defined for daemons.

The following syntax is used in the /etc/inetd.conf file to define the arguments used
to invoke otelnetd.

Syntax

\\ otelnetd
-C

]-D all
options
report
netdata
ptydata
login
authentication
encryption

-h -k -l
\

\
-m -n -t -U -b -c timeout_value

\

\
-T terminfo_value none

-a valid
other
user
off

-X authtype
\^

Parameters
-C

Prints user messages in uppercase. There are several exceptions. Messages
issued at startup are not affected by the -C option because the -C option is not
processed during the startup. Also, data transmittal messages will not be
uppercase. Data transmittal messages are generated from the -D netdata option
or the -D ptydata option.

-D The following suboptions apply to -D:

options
Prints information about the negotiation of Telnet options. This
information is used for debugging purposes. This suboption allows
telnetd to generate debugging information to the connection, which
allows the user to view telnetd activity.

report Prints the options information and additional information about
processing. This information also includes print information designated
for suboption=options. This can be used for debugging purposes. This
suboption telnetd to generate debugging information to the connection,
which enables the user to view telnetd activity.

netdata
Displays the data stream received by telnetd. This information is used

378 z/OS V1R4.0 CS: IP Configuration Guide

for debugging purposes. It allows telnetd to generate debugging
information to the connection, which enables the user to view telnetd
activity.

ptydata
Displays the data stream written to the pty. This information is used for
debugging purposes. It allows telnetd to generate debugging
information to the connection, which enables the user to view telnetd
activity.

all Enables options, report, netdata, ptydata, login, authentication and
encryption.

login Records login and logout activity to syslogd facility auth using message
EZYTU36I.

authentication
Turns on authentication debugging code.

encryption
Turns on encryption debugging code.

-h Disables the display of the /etc/banner file at the user’s terminal.

-k Disables kludge linemode. The server normally attempts to use kludge linemode
when the -l option was specified, but the client does not support line mode. Use
the -k option when there are remote clients that do not support kludge
linemode, but pass the heuristic for kludge line mode support (for example, if
they respond with WILL TIMING-MARK in response to a DO TIMING-MARK).
This option does not disable kludge line mode when the client requests it. This
is accomplished by the client sending DONT SUPPRESS-GO-AHEAD and
DONT ECHO.

-l Specifies linemode, which tries to force clients to use linemode. If the
LINEMODE option is not supported and the -k option was not specified, it will
attempt to use kludge linemode.

Notes:

1. Many clients decline the server’s request to operate in linemode.

2. Linemode is not appropriate for full-screen applications like the z/OS UNIX
vi editor.

-m Enables the creation of a forked or spawned process to coexist in the same
address space. This option can improve performance because the user’s login
shell runs in the same address space as otelnetd.

-n Disables TCP keep-alives. Normally, telnetd enables the TCP keep-alive
mechanism to probe connections that have been idle for some time to
determine if the client is still there. In this way, idle connections from machines
that have crashed or can no longer be reached can be cleaned up. The cleanup
of disabled connections is controlled by the presence of the
KEEPALIVEOPTIONS statement in the TCPIP profile.

-t Specifies internal tracing. It also activates the REPORT option, as if the user
also specified -D Report.

-U Causes telnetd to drop connections from any IP address that cannot be
mapped back into a symbolic name by the gethostbyaddr or getnameinfo
routines.

-b Forces the server to DO BINARY in the first pass during negotiations with the
client.

Chapter 8. Accessing remote hosts using Telnet 379

|
|

-c timeout_value
Specifies the number of seconds to wait before terminating the Telnet session
for inactive connections. The timeout_value is a value between 1 and 86400
seconds.

-T terminfo_value
Sets the TERMINFO environment variable to the specified values at startup.
This option is needed when terminfo definitions are located in nonstandard
directories.

-a This option may be used for specifying what mode should be used for
authentication. There are several valid suboptions for authentication mode:

valid
Only allow connections when the remote user can provide valid
authentication information to identify the remote user. Thus, for otelnetd,
Kerberos authentication will be required. User verification will still occur
through the login and password prompt. However, if the login user ID
matches the name in the Kerberos principal, then no password will be
requested. This is the most secure authentication mode.

other
Only allow connections that supply some authentication information. This
option is currently not supported by any of the existing authentication
mechanisms, and is thus the same as specifying -a valid.

user
Only allow connections when the remote user can provide valid
authentication information to identify the remote user, and is allowed access
to the specified account without providing a password. Thus, for otelnetd,
Kerberos authentication is required. The NAME received during
AUTHENTICATION option negotiation must match the name in the
Kerberos principal and be a valid user ID on the host. No user verification
will occur through the login or password prompt.

none
This is the default state. Authentication information is not required. User
verification will still occur through the login and password prompt. However,
if the login user ID matches the name in the Kerberos principal, then no
password will be requested.

off
This disables the authentication code. All user verification happens through
the login and password prompt. During option negotiation, otelnetd will not
send DO AUTHENTICATION and, if necessary, will send DONT
AUTHENTICATION.

Note: Authentication is not supported for IPv6 connections. If tcp6 is specified
in inetd.conf, -a should not be used as a start option. If tcp6 and -a are
both specified, the suboption will be overridden and forced to OFF.

-X authtype
This option disables the use of authtype authentication. Currently the only valid
value for authtype is KERBEROS_V5. Thus, if otelnetd sends the
AUTHENTICATION option SEND command, the authentication-type-pair-list will
not contain any KERBEROS_V5 entries and will be empty.

380 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|

SMF record handling
The SMF records generated are the typical set of records that MVS generates for
start of job (login) and end of job (logoff). Additionally, interval records might be
issued during the life of the user login. These records are SMF type 30 and type 72
and not the type 118 or type 119 in the current z/OS UNIX Telnet server. The
process of issuing these records is external to the specific daemons.

BPX.DAEMON considerations
If the BPX.DAEMON facility class is defined, perform the following additional
configuration steps:

1. Provide read access to BPX.DAEMON for the user ID specified in /etc/inetd.conf
for otelnetd.

2. Define hlq.SEZALOAD to program control.

3. Define the C run-time library, hlq.SCEERUN to program control.

Refer to z/OS UNIX System Services Planning for more information about the
BPX.DAEMON facility class, the security product commands used to perform the
required configuration, and the diagnosis procedure for resolving related problems.

Kerberos
otelnetd supports Kerberos Version 5 for authentication on IPv4 connections.
Authentication is not supported on IPv6 connections (that is, if tcp6 is specified for
otelnetd in inetd.conf). On z/OS, Kerberos is implemented by Security Server.
Please refer toz/OS Security Server Network Authentication Service Administration
for more information.

The Kerberos principal used by otelnetd will generally be of the form
″host/<hostname>@realm″. That is, the first component of the Kerberos principal is
″host″; the second component is the fully qualified lowercase hostname of the
server; and the realm is the Kerberos realm to which the server belongs.

otelnetd will not accept forwarded credentials from the client.

Successful AUTHENTICATION option negotiation is required for successful
ENCRYPT option negotiation. The ENCRYPT option must be negotiated in both
directions.

Chapter 8. Accessing remote hosts using Telnet 381

|

|

|
|
|

382 z/OS V1R4.0 CS: IP Configuration Guide

Chapter 9. Transferring files using FTP

The File Transfer Protocol (FTP) allows a user to copy files from one machine to
another. The protocol allows for data transfer between the client (the end user) and
the server in either direction. In addition to copying files, the client can issue FTP
commands to the server to manipulate the underlying file system of the server (for
example, to create or delete directories, delete files, rename existing files, and so
on.) FTP is the most frequently used TCP/IP application for moving files between
computers.

Copying files from one machine to another is one of the most frequently used
operations. The data transfer between client and server can be in either direction.
The client can send a file to the server machine. It can also request a file from this
server.

To access remote files, the user must identify himself or herself to the server. At this
point the server is responsible for authenticating the client before it allows the file
transfer.

From an FTP user’s point of view, the link is connection-oriented. FTP uses TCP as
a transport protocol to provide reliable end-to-end connections. Both hosts must run
TCP/IP to establish file transfer.

The z/OS model for the FTP server includes a daemon process and a server
process. The daemon process starts when you start your cataloged procedure (for
example, START FTPD) and it listens for connection requests on a specific port.
The port is the well-known port 21 unless otherwise specified. For methods of
choosing a different port number, see “Configuring ETC.SERVICES” on page 385
and “Configuring the FTPD cataloged procedure” on page 385. When the daemon
accepts an incoming connection, it creates a new process (server’s address space)
for the FTP server, which handles the connection for the rest of the FTP login
session. Each login session has its own server process.

The server process inherits the accepted connection from the daemon process.
This connection is called the control connection. The server receives commands
from the client and sends replies to the client using the control connection. The
control connection port is the same as the daemon’s listening port.

The client and server use a different connection for transferring data; this
connection is called the data connection. By default, the data port is one less than
the control connection port. For example, if the control connection port is 21, the
data port is 20. An FTP client can override the default data port by directing the
server to run in passive mode. In passive mode, the server uses an ephemeral port
for the data port. Passive mode is requested by firewall friendly clients and by
clients initiating three-way data transfers.

Note: If you use the environment variable _BPX_JOBNAME when you start FTPD,
the server’s address space is known as the jobname specified in the
_BPX_JOBNAME variable. Having a common naming convention for your
installation’s FTP address spaces may be needed if your installation uses
syslogd isolation or has other workload management requirements.

© Copyright IBM Corp. 2000, 2002 383

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

If you do not use _BPX_JOBNAME, the server’s address space assumes the
name of the user. For example, if a user logs into an FTP server with the
user ID of TCP0001, the FTP server address space servicing the request is
also known as TCP0001.

If the FTP daemon accepts a connection that is protected by the TLS
security mechanism and you are not using _BPX_JOBNAME, the server’s
address space name is a name derived from the FTP server jobname. The
name is of the form jobnamex, where jobname is the jobname, and x is a
numeral from 1 to 9.

Configuring PROFILE.TCPIP for FTP
If you have configured the FTP server to have affinity to a specific stack, the FTP
server can be started automatically when the TCP/IP address space is started by
specifying the name of the FTP server cataloged procedure in the AUTOLOG
statement. Also, if you have configured the FTP server to be a generic server in a
single stack environment, you can use the AUTOLOG statement to automatically
start the server. If, however, you configure the FTP server as a generic server in a
multiple stack environment, you should not use the AUTOLOG statement to
automatically start the server. Instead, use an operations automation software
package to automatically start the server.

In the following example, if your procedure is called FTPD, the following statement
allows TCP/IP to issue the MVS start command for procedure FTPD. The job name
of FTPD1 will be used on the port statement shown below. If the daemon job name
is less than eight characters, the FTP daemon forks() a process that has the job
name of the original daemon appended with the number 1.
AUTOLOG

FTPD JOBNAME FTPD1
ENDAUTOLOG

To reserve ports 21 and 20 for the FTP server, add the following:
PORT

21 TCP FTPD1 ; FTP server control port
20 TCP OMVS NOAUTOLOG ; FTP server data port

Specifying FTPD1 on the PORT and AUTOLOG statements directs TCP/IP to
restart FTPD if it shound end.

To allow FTP to detect data connection errors when there has been no activity on
the data connection for a certain amount of time, set the INTERVAL parameter on
the TCPCONFIG statement to a relatively low value. The keepalive packets that the
stack sends as specified on the INTERVAL parameter enable the stack to detect
errors, such as a reset or terminated peer connection, instead of waiting indefinitely.
Be careful when choosing an INTERVAL value on the TCPCONFIG statement
because this value will affect all TCP connections at the host for which the interval
has been activated, not just FTP connections.

The control connection can also benefit from keepalive packets. Many firewalls
require periodic activity on any connection that is made and the control connection
can appear idle during a long data transfer. Coding the INTERVAL parameter on the
TCPCONFIG statement will, of course, cause keepalive packets to be sent on the
control connection as well as the data connection. For FTP control connections
only, you can override the keepalive interval you have configured in the stack with
the FTPKEEPALIVE statement in FTP.DATA.

384 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|
|
|

|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

FTP requires a buffer size of 180K for data connections, therefore, you must not set
TCPMAXRCVBUFRSIZE below 180K. The default value for the parameter is 256K.

For more information about the AUTOLOG, PORT, and TCPCONFIG statements,
refer to z/OS Communications Server: IP Configuration Reference.

Configuring ETC.SERVICES
The ETC.SERVICES file contains the relationship between service names (servers)
and port numbers in the z/OS UNIX environment. If necessary, update your
ETC.SERVICES file to include the control port that the FTP server is to use. For the
search order used to locate the ETC.SERVICES file, see “Configuration files for
TCP/IP applications” on page 26. For example, add the following:
ftp 21/tcp

Notes:

1. In the ETC.SERVICES file, only one port (the one for the control connection) is
listed.

2. The port specified for FTP in the ETC.SERVICES file can be overridden by the
FTP start parameter, PORT nnnn, and should match the PORT statement in the
PROFILE.TCPIP.

3. If the ETC.SERVICES file is changed such that a port other than 21 is specified,
then that port will become the FTP port for that z/OS host.

Configuring /etc/syslog.conf

Note: For FTP syslog, you should consider the fact that FTP writes log messages
to the system console if syslogd is not running. If you enable FTP server
traces without syslogd active, large amounts of data might be written to the
system console.

The daemon.priority entries in /etc/syslog.conf determine where FTP messages and
trace entries are written. The FTP server issues info, warning, and error messages.
All trace entries are written with debug priority. To direct trace entries (and all
messages) to /tmp/daemon.trace, include the following in /etc/syslog.conf:
..daemon.debug /tmp/daemon.trace

Log messages can be isolated within syslogd. For FTP, an installation might want
FTP log messages to be written to different files depending on the user ID, or
separately for the FTP daemon. If FTP messages are to be isolated for user1, use
the first statement below. If FTP messages are to be logged for all the FTP
applications, use the second statement below.
user1.*.daemon.debug /tmp/daemon.trace

.FTPD.daemon.debug /tmp/daemon.trace

In the above statement, it is assumed that _BPX_JOBNAME is set to FTPD.

Configuring the FTPD cataloged procedure
Update the FTP cataloged procedure FTPD by copying the sample in
hlq.SEZAINST(FTPD) to your system or recognized PROCLIB and modifying it to
suit your local configuration. The EXEC PARM=, SYSFTPD DD, and SYSTCPD
statements must be updated.

Chapter 9. Transferring files using FTP 385

|

|

|
|

|

|
|

See “Configuring FTP.DATA” on page 389 to configure SYSFTPD DD and
“Configuring TCPIP.DATA for FTP” on page 389 to configure SYSTCPD DD.

The system parameters required by the FTP server are passed by the PARM
parameter on the EXEC statement of the FTPD cataloged procedure. Add your
parameters to PARMS=’ in the PROC statement of the FTPD cataloged procedure,
making certain that each parameter is separated by a blank and all parameters are
in uppercase

For example: //FTPD PROC MODULE=’FTPD’,PARMS=’TRACE ANONYMOUS PORT 21’ tells
FTP to start up with TRACE active, ANONYMOUS support enabled, and use control
PORT 21.

Security considerations for the FTP server
Consider the following for security:

v User IDs

To log into the FTP server, a user ID must have a z/OS UNIX UID or may use
the default UNIX UID.

v MVS Network Access Controls

– If PortAccess or NetAccess is used to SAF resource secure TCP ports or
networks, see the NETACCESS statement in z/OS Communications Server:
IP Configuration Reference for more information.

v The FTPD cataloged procedure must be:

– Defined to the security program.

– Added to the RACF started class facility or the started procedures table. The
user ID associated with the FTP server started class must have a UID of 0.

– See SEZAINST(EZARACF) for more information on SAF resource
requirements needed for FTP.

v Terminal Access

For IPv4 connection partners, the terminal ID passed from FTP to RACF is an
8-byte hexadecimal character string containing an IPv4 address. RACF interprets
this as a terminal logon address and rejects it if it is not previously defined. For
example, the IP address 163.97.227.17 is translated to X'A361E311'.

Therefore, if the SETROPTS TERMINAL(NONE) setting is used in RACF, you
must define profiles for the IP addresses in class TERMINAL to avoid problems
when trying to FTP to MVS. You must translate all the IP addresses of any
clients connecting to FTP servers to hexadecimal character strings and add them
to the class TERMINAL.

To allow access by all addresses starting with 163, define a profile for all
addresses in the 163.97.227 subnet:

RDEFINE TERMINAL A361E3* UACC(READ)

If your RACF SETROPTS options are TERMINAL(READ), all terminals are
allowed access to your system, and you do not have to add extra resource
definitions to your RACF data base.

For IPv6 connection partners, no terminal ID is passed from FTP to RACF. RACF
does not validate the login address. All IPv6 connection partners are allowed by
RACF.

For more information, see z/OS UNIX System Services Planning and the z/OS
Security Server RACF Security Administrator’s Guide.

386 z/OS V1R4.0 CS: IP Configuration Guide

|
|

|
|
|

v Clients may use your server to send random data to other servers.

Any FTP client in PROXY mode with your FTP server could establish a data
connection to any server listening to a port. This could be very disruptive to that
server, because the client could then send a very large amount of unexpected
data to it. Any malicious FTP client can attack or disrupt the server in a normal
server-to-client connection by making the FTP server send a large amount of
data to another application server that is listening to a specific port. Since the
client itself is not sending the disruptive data, it is difficult to identify the client that
is causing the problem. PORTCOMMAND, PORTCOMMANDPORT and
PORTCOMMANDIPADDR statements are provided in FTP.DATA to prevent your
server from being used in this way.

Table 18. PORTCOMMAND scenarios

When you want your
server to...

Code the following statements in the
server’s FTP.DATA:

Note:

Reject all PORT or EPRT
commands

PORTCOMMAND REJECT Disabling PORT or EPRT commands
prevents your server from being used to
send random data to other servers.
However, your server loses some ability to
transfer data in PROXY mode. If a client
sends a PORT or EPRT command to your
server to set up a proxy transfer, your
server will reject the command and the
proxy transfer fails. If your client is not
firewall friendly, and it does not implement
the default port number and IP address for
data transfer, that client cannot transfer
files to and from your server.

Reject all PORT or EPRT
commands that specify
well-known ports (port
numbers less than 1024)

PORTCOMMANDPORT NOLOWPORTS When you specify this combination, your
server cannot be used to send random
data to servers listening on well-known
ports. However, a rogue client could use
your server to send random data to
servers listening on other ports. The server
still supports data transfer in PROXY
mode.

Reject all PORT or EPRT
commands that specify an
IP address other than the
client’s own IP address.

PORTCOMMANDIPADDR NOREDIRECT When you specify this combination, a
client can request data transfer in PROXY
mode only between your server and a
server on its own IP address. Transfers
between client and server are not affected.

Reject all PORT or EPRT
commands that specify an
IP address other than the
client’s own IP address or
port numbers that are well
known.

PORTCOMMANDPORT NOLOWPORTS
PORTCOMMANDIPADDR NOREDIRECT

When you specify this combination, a
client can request data transfer in PROXY
mode only between your server and a
server on its own IP address, and the port
numbers cannot be well known. The client
cannot use PROXY mode to send random
data to a server on its own IP address
listening to a well-known port.

v Using Generic Security Service Application Programming Interface(GSSAPI) to
Authenticate Users

GSS can be used to authenticate FTP clients to FTP servers. A client can
attempt to authenticate to the server by sending a command specifying GSS as
the authentication type. GSSAPI has Kerberos 5 as just one of many possible
security services. For more information on setting up GSS support for the FTP
server, refer to “Customizing the FTP server for the GSSAPI” on page 395.

Chapter 9. Transferring files using FTP 387

|
|
|

|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

v Connection Security

The FTP server and client support TLS. This support enables secure file transfer
by providing data privacy, message authentication, and message integrity
services for data sent and received using the FTP control and data connections.
Optionally, an FTP client certificate that is authenticated during the TLS
handshake can be used for end user identification and authentication in addition
to user ID and password validation. For more information on setting up TLS
support for the FTP server, refer to “Customizing the FTP server for TLS” on
page 394.

Defining environment variables for the FTP server (optional)
The FTP server optionally uses environment variables to identify the translate table
data sets to be used for the control and data connections. These environment
variables are used to override a default naming convention as described below.
CCXLATE and XLATE statements will be ignored if EXTENSIONS UTF8 is specified
in FTP.DATA.

_FTPXLATE_name used for translation
In your FTP.DATA file, you can use the CCXLATE or XLATE statements to specify a
name that corresponds to a particular data set that is to be used for the initial
translate tables for the control or data connections.

FTP will look for an environment variable defined as
_FTPXLATE_name=fully_qualified_dsn, where name must be one to eight
uppercase characters or numbers, and fully_qualified_dsn can be a fully qualified
MVS data set name or HFS file name.

If the environment variable exists, FTP will use the data set name defined by the
environment variable. If no such environment variable is defined, FTP will use the
data set name hlq.name.TCPXLBIN.

Similarly, from any client you can issue SITE XLATE= to set the translate tables for
the data connection for that particular FTP session. The FTP server will look for an
environment variable called _FTPXLATE_name. If the environment variable does
not exist, the server will look for a data set called hlq.name.TCPXLBIN.

Note: The CCXLATE and XLATE statements and SITE XLATE command are not
case-sensitive, but the name of the optional environment variable is
case-sensitive and must be in uppercase or FTP will not recognize it.

TZ and other UNIX environment variables
You can use the ENVAR runtime option in your FTPD start procedure to set
environment variables for the FTP server. For information on using the ENVAR
runtime option to set environment variables, see z/OS C/C++ Programming Guide.
The following example shows how to specify environment variables in your FTPD
started procedure:
//FTPD PROC MODULE=’FTPD’,PARMS=’’
//FTPD EXEC PGM=&MODULE,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON) ALL31(ON)’,
// ’ENVAR("TZ=EST")/&PARMS’)

_BPX_JOBNAME
An installation that wants all FTP forked tasks to have similar job names needs to
set the _BPX_JOBNAME environment variable. WorkLoad Manager (WLM),
accounting, and isolation of syslogd messages as reasons an installation might not
want to have each FTP logged-in user to have a job name of its user ID.

388 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|

The following example sets all FTP forked() tasks to have the job name of FTPD:
//FTPD PROC MODULE=’FTPD’,PARMS=’’
//FTPD EXEC PGM=&MODULE,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON) ALL31(ON)’,
// ’ENVAR("_BPX_JOBNAME=FTPD"’,
// ’"TZ=EST")/&PARMS’)

_BPXK_SETIBMOPT_TRANSPORT for affinity to a specific stack
As discussed in “Generic server versus server with affinity for a specific transport
provider” on page 55, if an installation wants to ensure that FTP has an affinity to a
TCP/IP stack, the _BPXK_SETIBMOPT_TRANSPORT keyword should be used.

The example below sets the FTP server to have an affinity to TCPIEOE.
//FTPD PROC MODULE=’FTPD’,PARMS=’’
//FTPD EXEC PGM=&MODULE,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON) ALL31(ON)’,
// ’ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIPOE"’,
// ’"TZ=EST")/&PARMS’)

Configuring TCPIP.DATA for FTP
The following five statements are used by the FTP server:

DATASETPREFIX
Specifies HLQ for dynamic allocation

DOMAINORIGIN
Specifies the domain name to be appended to host name

HOSTNAME
Specifies the TCP host name

LOADDBCSTABLES
Specifies the DBCS tables used by the client and server

MESSAGECASE
Specifies the case that messages should be displayed in

See Chapter 1, “Configuration overview” on page 3 for information about
TCPIP.DATA or refer to z/OS Communications Server: IP Configuration Reference
for information about these statements.

Configuring FTP.DATA
The FTP.DATA data set is optional. The FTP daemon looks for this data set during
initialization, following this sequence:
1. A data set specified by the //SYSFTPD DD statement
2. ftpserve_job_name.FTP.DATA
3. /etc/ftp.data
4. SYS1.TCPPARMS(FTPDATA)
5. hlq.FTP.DATA data set

It is not necessary to include all statements in the FTP.DATA data set. Only include
the statements if the default value is not what you want, because the default will be
used for any statement not included in the FTP.DATA data set.

Some FTP server parameters can be changed during an FTP session by the client
issuing the SITE subcommand. See z/OS Communications Server: IP User’s Guide
and Commands for more information. The FTP client has an FTP.DATA data set
which can also be used to change the defaults for the FTP client local site

Chapter 9. Transferring files using FTP 389

|

parameters. See the z/OS Communications Server: IP User’s Guide and
Commands for more information about using the FTP.DATA data set for the FTP
client local site parameters.

Optionally configuring user-level server options using FTPS.RC
The default values for the site parameters are coded in the server FTP.DATA.
These SITE defaults apply to all login sessions to the server. You can customize
settings for a specific user or group of users by creating an FTPS.RC configuration
data set containing FTP commands specific to that login session. This file may
contain a series of CWD and SITE commands. Refer to the z/OS Communications
Server: IP User’s Guide and Commands for information about these commands.

The FTP server uses the following search order to find the data set or HFS file:

1. tso_prefix.FTPS.RC

2. userid.FTPS.RC

3. $HOME/ftps.rc

Data set attributes
Data set attributes play a significant role in FTP performance. If your environment
permits, tune both BLOCKSIZE and LRECL according to the following
recommendations:

v Use half a track as the block size.

v For IBM 3380 DASD, use 23424 as the block size with an LRECL of 64 bytes.

v For IBM 3390 DASD or IBM9334, use 27968 as the block size with an LRECL of
64 bytes.

v Use FB as the data set allocation format.

v Use cached DASD controllers.

v If your environment permits, use a preallocated data set for FTP transfers into
MVS.

The following configuration data statements apply to FTP server’s allocation of data
sets.

v AUTOMOUNT

v BLKSIZE

v BUFNO

v CONDDISP

v DATACLASS

v DCBDSN

v DIRECTORY

v LRECL

v MGMTCLASS

v MIGRATEVOL

v PRIMARY

v RECFM

v RETPD

v SECONDARY

v SPACETYPE

v STORCLASS

v UCOUNT

390 z/OS V1R4.0 CS: IP Configuration Guide

v UMASK

v UNITNAME

v VCOUNT

v VOLUME

Refer to z/OS Communications Server: IP Configuration Reference for more
detailed information about these keywords.

Some of these allocation variables might provide duplicate information. FTP passes
all variables that are specified to z/OS’s dynamic allocation function and lets it
determine which of the specifications take precedence. The only exceptions to this
are the following:

v If the data set organization is physical sequential, then directory blocks are not
sent.

v If neither primary nor secondary space quantities are specified, then the
allocation units value is not sent.

For example, the model DCB (DCBDSN) might have a record format (RECFM) that
differs from the record format specified by a data class and from the one explicitly
specified by the client. The order of precedence for dynamic allocation variables are
as follows:

1. Any FTP.DATA statements or SITE parameters explicitly specified or defaulted.

2. Any attributes picked up from the model DCB and not otherwise explicitly
specified.

3. Any attributes picked up from the data class and not previously derived from 1
and 2 above.

4. Any system allocation defaults.

Specifying attributes for new MVS data sets
When allocating new data sets, there are two methods you can use to specify the
data set attributes. You can individually use the data set attribute parameters with
the SITE command or the statements in the FTP.DATA data set. Or, if your system
programmer has used the Storage Management System to group together default
attributes into named classes, you can specify those class names on the
DATACLASS, STORCLASS, and MGMTCLASS statements.

Dynamic allocation
The FTP server allows a client program to dynamically allocate a new physical
sequential data set or a partitioned data set (PDS) for the purpose of transferring
data to be written to that data set. The following optional allocation variables can be
used to override and turn off the defaults that affect the allocation of the data set.

Variable FTP.DATA statement
allocation units SPACETYPE
blocksize BLKSIZE
data class DATACLASS
directory blocks DIRECTORY
logical record length LRECL
management class MGMTCLASS
model DCB values DCBDSN
primary space PRIMARY
secondary space SECONDARY
unit count UCOUNT
volume count VCOUNT

Chapter 9. Transferring files using FTP 391

record format RECFM
retention period RETPD
storage class STORCLASS
unit UNITNAME
volume serial number or list VOLUME

Some of these allocation variables might provide duplicate information. For
example, the model DCB might have a record format (RECFM) that differs from the
record format specified by a data class and from the one explicitly specified by the
client. FTP passes all variables that are specified to dynamic allocation and lets it
determine which of the specifications take precedence. The following list describes
the exceptions to that policy:

v If neither the primary nor secondary space quantity is specified, then the
allocation units value is not sent.

v If the data set organization is physical sequential, then directory blocks
specification is not sent.

v Otherwise, all variables are sent to dynamic allocation where the order of
precedence is:

1. Any FTP.DATA statements or SITE parameters explicitly specified or
defaulted

2. Any attributes picked up from the model DCB and not otherwise explicitly
specified

3. Any attributes picked up from the data class and not previously derived from
1 or 2

4. Any allocation defaults

Storage Management Subsystem (SMS)
You can specify one or more of the following SMS classes to manage
characteristics that are associated with or assigned to data sets.

v Data class is an SMS construct that an installation can define to control data set
allocation attributes used by SMS for the creation of data sets. An installation can
override all or part of an SMS DATA CLASS definition by using FTP.DATA
statements. Note that there is an order of precedence for dynamic allocation.
(See “Data set attributes” on page 390 for more information on the precedence.)
The fields listed are available attributes that serve as a template for allocation.
Each is optional and is overridden by any explicit specification of FTP allocation
variables or by a model DCB (DCBDSN).

Variable FTP.DATA statement
directory blocks DIRECTORY
logical record length LRECL
primary space PRIMARY
record format RECFM
retention period RETPD
secondary space SECONDARY

Note: If either primary or secondary space is explicitly specified, then the
primary and secondary values from data class are not used.

v Management class (MGMTCLASS) is an SMS construct that determines DFHSM
action for data set retention, migration, backup, and release of allocated but
unused space. Management class replaces and expands attributes that otherwise
would be specified. That is, management class might override any other
specification of retention period.

392 z/OS V1R4.0 CS: IP Configuration Guide

v Storage class (STORCLASS) is a list of storage performance and availability
services requests for an SMS-managed data set that SMS attempts to honor
when selecting a volume or volumes for the data set. It might conflict with an
explicit specification of volume and unit. If storage class is used, then volume
and unit should be unspecified.

Translation of data
Selecting an appropriate translate table for conversion of data from host to network
format, and from network to host format, will ensure that data read from or written
to the z/OS system are in correct format. The following statements apply to
translation of data for the FTP server. Refer to z/OS Communications Server: IP
Configuration Reference for more information on these statements. The statements
are:

v ASATRANS

v CTRLCONN

v ENCODING

v EXTENSIONS UTF8

v MBDATACONN

v SBDATACONN

v SBSUB

v SBSUBCHAR

v UCSHOSTCS

v UCSSUB

v UCSTRUNC

Accounting
The following parameters apply to SMF data:

v SMF

v SMFAPPE

v SMFDEL

v SMFEXIT

v SMFJES

v SMFLOGN

v SMFREN

v SMFRETR

v SMFSQL

v SMFSTOR

Refer to z/OS Communications Server: IP Configuration Reference for more
information on these statements.

Configure the FTP server for SMF (optional)
The FTP server can write SMF type 118 (X'76') or type 119 (X'77') records to record
transactions made by the FTP server. SMF records can be written for the following
commands:
v APPE (append)
v DELE (delete)
v RNTO (rename)
v RETR (retrieve)

Chapter 9. Transferring files using FTP 393

|

|

|

|

v STOR (store)
v STOU (store unique)

Information about the previous commands can be recorded for:

v FTP server running in normal data transfer mode (FILETYPE=SEQ)

v FTP server running remote job submission (FILETYPE=JES)

v FTP server running Structured Query Language (SQL) queries (FILETYPE=SQL)

v Any combination of SEQ, JES, and SQL

For commands involving data transfer (APPEND, RETR, STOU or STOR) an SMF
record will be written for both successfully and unsuccessfully completed data
transfer commands which have begun data transfer. For data transfer commands
which have completed unsuccessfully, the byte count of transmission field will
contain the number of bytes transferred before the failure, and the recent server
reply field will contain the 3-digit error reply code sent to the client. Refer to the
z/OS Communications Server: IP Configuration Reference to find the particular
offsets for the record type being used.

The FTP server can also write SMF records when a logon attempt fails.

The capability also exists for a user-written exit routine to get control before the
SMF records are written. See “Configuring the optional FTP user exits” on page 396
for more information.

If you want the FTP server to write SMF type 118 (X'76') or type 119 (X'77') SMF
records, you must include at least one of the SMF subtype statements (SMF,
SMFAPPE, SMFDEL, SMFLOGN, SMFREN, SMFRETR, or SMFSTOR) in the
FTP.DATA data set.

If SMF subtype statements are not coded in the FTP.DATA data set, no SMF
records are written by the FTP server.

Customizing the FTP server for TLS
TLS is a level of security support that is added to both the FTP client and the FTP
server. The client and server are configured with statements in the FTP.DATA file
that specify the level of TLS required or the level of TLS allowed during an FTP
connection. The FTP client also has start options that control the client’s behavior.

The following statements are available in FTP.DATA for the server:

v EXTENSIONS AUTH_TLS used to specify that the TLS authentication is
supported.

v SECURE_FTP used to specify whether authentication is required.

v SECURE_LOGIN used to set the authorization level required for users.

v SECURE_DATACONN used to specify the minimum level of security allowed for
the data connection.

v KEYRING used to specify the keyring file or resource name used for
authentication

v CIPHERSUITE used to specify the name of a CipherSuite that is used for
encryption and decryption.

394 z/OS V1R4.0 CS: IP Configuration Guide

The FTP client negotiates the level of security based on its parameters and the
capabilities of the server. Likewise, the FTP server is configured for a certain level
of support and must react to the client commands as appropriate.

There are two behaviors the client and server exhibit that provide the TLS support.
They are:

v Client authentication

This behavior occurs during the login process. It completes the FTP authorization
process and determines the initial state of TLS protection for the control and data
connections.

v Data connection

This behavior determines whether the data connection is protected.

The control and the data connections are protected by TLS rules based on
FTP.DATA file statements. The protection is established by the TLS negotiation (also
known as the handshake) between the client and server. The FTP client program
acts on the behalf of the end user of FTP to provide TLS enablement.

If the FTP server uses port 990 for its control connection, both the FTP client and
server treat the control connection and the data connections as if they are protected
by TLS. Port 990 is not required for a TLS connection to be established, only that
when port 990 is used, TLS is assumed. Port 990 can be specified for the server as
follows:

1. In the ETC.SERVICES data set, specify:
ftp 990/tcp

2. In the procedure used to start the FTP server, specify the start parameter
(option):
PORT 990

Refer to the z/OS Communications Server: IP Configuration Reference for more
detailed information.

Customizing the FTP server for the GSSAPI
The following statements are available in FTP.DATA for the server:

v EXTENSIONS AUTH_GSSAPI to specify that the Kerberos authentication type is
supported using the GSSAPI.

v SECURE_FTP used to specify whether authentication is required.

v SECURE_LOGIN used to set the authorization level required for users.

v SECURE_CTRLCONN used to specify a minimum level of security allowed for
the control connection.

v SECURE_DATACONN used to specify the minimum level of security allowed for
the data connection.

v SECURE_PBSZ used to specify the maximum size of the encoded data blocks
sent during file transfer.

GSSAPI authentication is supported for IPv4 connections only.

Refer to the z/OS Communications Server: IP Configuration Reference for more
detailed information.

Chapter 9. Transferring files using FTP 395

|

DB2® and JES
The following statements are used when FTP interfaces with DB2 and JES,
respectively. For more information, refer to z/OS Communications Server: IP
Configuration Reference and the optional steps in this chapter.

v DB2

v DB2PLAN

v SPREAD and SQLCOL

v JESLRECL

v JESPUTGETTO

v JESRECFM

v JESINTERFACELEVEL

Configuring the optional FTP user exits
The following describes exit routines you can code and install. For detailed
information regarding these exit routines, refer to the z/OS Communications Server:
IP Configuration Reference.

The FTPSMFEX user exit
Note the FTP server SMF user exit is called before an SMF type 118 record that
contains information about an FTP server session is written to the SYS1.MANx data
set. The user exit allows site specific modifications to the record and controls
whether the record is written to the SYS1.MANx data set.

Note that the exit is called only for type 118 records. SMF type 119 FTP records
must use the system-wide SMF user exits (IEFU83, IEFU84, and IEFU85) to obtain
this same functionality. For information on these SMF user exits, refer to z/OS MVS
System Management Facilities (SMF).

The FTCHKIP user exit
The FTCHKIP user exit is called when a user attempts to log in to the FTP server
or when a user issues the OPEN subcommand to establish a new connection. The
following information is passed to the exit:

v Client IP address *

v Client port number *

v Server IP address *

v Server port number *

v The socket address structure of the client’s control connection

v The socket address structure of the server’s control connection

v Session instance identifier

Note: Fields above marked with an asterisk (*) are valid only for IPv4 addresses,
including IPv4 addresses mapped into IPv6 format.

An installation can use this exit to determine if a particular IP address or port
number is allowed to access the FTP site. If the connection is denied by the user
exit, the following message is sent to the user:
421 User Exit rejects open for connection

396 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|

|

|

|

|

|

|

|

|
|

|
|
|

|

The FTCHKPWD user exit
The FTCHKPWD user exit is called immediately after the user enters the password
or e-mail address during login to the FTP server. The following information is
passed to the exit:

v The user ID

v The user password or an asterisk (*) if an e-mail address is entered instead of a
password

v A userdata buffer

If an e-mail address is entered to log in, the userdata buffer contains the e-mail
address.

v The number of bad passwords entering during this login attempt

v The socket address structure of the client’s control connection

v The socket address structure of the server’s control connection

v Session instance identifier

The exit can be used to restrict access to a site based on user ID, password,
number of bad passwords, or anything in the socket address information for the
client or server. If the login is denied by the user exit, the following reply is sent to
the user:
530 PASS command failed

Note: If ACCCESSERRORMSGS TRUE is coded in FTP.DATA, an additional 530
reply with information about why the PASS command failed might precede
the reply above.

The FTCHKCMD user exit
The FTCHKCMD user exit is called whenever the user enters an FTP command.
The following information is passed to the user exit:

v The user ID

v The FTP command to be issued

v The command’s arguments

v The directory type (MVS or HFS)

v The FILETYPE (SEQ, JES, or SQL)

v The current working directory

v A buffer to hold a modified argument string

v A buffer to hold a 500 reply extension to explain why the exit denied the request

v The socket address structure of the client’s control connection

v The socket address structure of the server’s control connection

v Session instance identifier

v A 256-byte scratchpad buffer

The user exit allows an installation to modify the arguments of an FTP command or
to deny a user from issuing the command. For example, if a user issues a DIR * ftp
command, the exit can either deny the command or modify it to DIR ’USER1.*’. If
the user exit denies the request by this user to issue this command, one or both of
the following replies will be sent to the user. The first reply is optional and is sent
only if the user exit returns a string in the 500 reply extension buffer.
500-UX-buffercontents
500 User Exit denies Userid userid from using Command command

Chapter 9. Transferring files using FTP 397

|

|

|

|

|
|
|
|

|

|
|
|

|

|

|

|

|

|

|

|
|
|
|

|
|

The FTCHKJES user exit
FTCHKJES is called if the server is in FILETYPE=JES mode and the client tries to
submit a job. The following information is passed to the exit:

v The user ID

v A buffer containing the current JCL statement

v Size of statement in the buffer

v JESLrecl value

v Number of this buffer in current series

v Bytes transferred so far (including this buffer)

v Client identifier (see also session instance identifier)

v JESRecfm value

v FTCHKJES exit-specific workarea (4 bytes)

v The socket address structure of the client’s control connection

v The socket address structure of the server’s control connection

v Session instance identifier

v A 256-byte scratchpad buffer

The exit can allow or refuse the job to be submitted to the JES internal reader
based on any information passed to the exit. For example, the exit can look for a
USER= parameter on the JOB statement and check it against the client’s user ID. If
the remote job submission is denied, the exit sends the user the following reply:
550 User Exit refuses this job to be submitted by userid

The FTPOSTPR user exit
FTPOSTPR is called after execution of the FTP commands RETR, STOR, STOU,
APPE, DELE, and RNTO. The following information is passed to the exit:

v The user ID

v Client IP address *

v Client port number *

v The directory type (MVS or HFS)

v The current working directory

v The FILETYPE (SEQ, JES, or SQL)

v Most recent reply code number

v Most recent reply text string

v Current FTP command

v Current CONDDISP setting

v Close reason code

v Name of data set or HFS file retrieved or stored

v Bytes transferred

v The socket address structure of the client’s control connection

v The socket address structure of the server’s control connection

v Session instance identifier

v A 256-byte scratchpad buffer

Note: Fields above marked with an asterisk (*) are valid only for IPv4 addresses,
including IPv4 addresses mapped into IPv6 format.

398 z/OS V1R4.0 CS: IP Configuration Guide

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

The exit allows for post processing at the termination of data transfer functions
within the server.

Customizing the FTP-to-JES interface for JESINTERFACELevel 2
(optional)

If FTP.DATA does not change the JESINTERFACELEVEL to 2, the FTP server uses
the JES interface provided in releases prior to CS for OS/390 V2R10. At this level,
the FTP user is allowed to submit jobs to JES, retrieve held output matching their
logged-in user ID plus one character, and delete held jobs matching their logged-in
user ID plus one character.

If JESINTERFACELevel is set to 2, then FTP users have the ability to retrieve and
delete any job in the system permitted by the System Authorization Facility (SAF)
resource class JESSPOOL. For that reason, JESINTERFACELevel=2 should only
be specified if the proper JES and SDSF security measures are in place to protect
access to JES output. The SAF controls used for JESINTERFACELevel=2 are
essentially a subset of those used by SDSF. Therefore, if an installation has
customized SAF facilities for SDSF, then they are configured for FTP JES level 2.

Before customizing the FTP-to-JES interface, complete JES customization. For
example, JESJOBS is an SAF class that controls which users can submit jobs to
JES. JESSPOOL is the SAF class that controls which users can access output jobs.
Customize these SAF classes before beginning customization of the FTP-to-JES
interface.

JESSPOOL defines resource names as
<nodeid>.<userid>.<jobname>.<Dsid>.<dsname>. An FTP user can delete an
output job if they have ALTER access to the resource that matches their nodeid,
userid, and job name. If the FTP user has UPDATE access to the resource, they
can list, retrieve, or GET the job output. (JESINTERFACELevel 2 uses the SAPI
interface to JES, so UPDATE authority is required to list job status or retrieve job
output.) For more information on JES security, refer to z/OS JES2 Initialization and
Tuning Guide. For more information on the SAPI interface, refer to z/OS MVS Using
the Subsystem Interface.

There are three filters used by the FTP server to control the display of jobs:

v JESSTATUS

v JESOWNER

v JESJOBNAME

SDSF resources are employed for this.

JESSTATUS can be changed by an FTP user with the SITE command to filter jobs
in INPUT, ACTIVE, or OUTPUT state. The SDSF resources checked for these
states are ISFCMD.DSP.INPUT.jesx, ISFCMD.DSP.ACTIVE.jesx, and
ISFCMD.DSP.OUTPUT.jesx, respectively. At login time (USER command), the
default value is set to ALL if READ access is allowed to all three classes. Otherwise
it attempts to set it to OUTPUT, ACTIVE, and then INPUT if the appropriate READ
access is allowed. If no READ access is allowed to any of the classes, JESSTATUS
is set to OUTPUT but JESOWNER and JESJOBNAME cannot be changed from the
default. In this way, SAF controls can be put in place to limit FTP users to whatever
status of jobs an installation requires.

Chapter 9. Transferring files using FTP 399

|
|

|
|
|
|
|

|
|

|
|

|
|
|
|

|
|
|

|

|

|

|

|

|

|

At login time, JESOWNER will have the value of the logged-in user ID. Authority to
change JESOWNER is obtained through READ access to RACF profile
ISFCMD.FILTER.OWNER. An FTP user who has READ access to
ISFCMD.FILTER.OWNER will be allowed to change the JESOWNER parameter
with the SITE command.

At login time, JESJOBNAME will have the value of the logged-in user ID plus an
asterisk (*). Authority to change JESJOBNAME is obtained through READ access to
RACF profile ISFCMD.FILTER.PREFIX. An FTP user who has READ access to
ISFCMD.FILTER.PREFIX will be allowed to change the JESJOBNAME parameter
with the SITE command.

For example, to allow all users except USER1 to be allowed to change
JESOWNER enter the following:
SETROPTS CLASSACT(SDSF) REFRESH
RDEFINE SDSF (ISFCMD.FILTER.OWNER) UACC(READ)
PERMIT ISFCMD.FILTER.OWNER ACCESS(NONE) CLASS(SDSF) ID(USER1)
SETROPTS CLASSACT(SDSF) REFRESH

For more information on SDSF security, refer to z/OS SDSF Operation and
Customization.

Configuring the FTP server for anonymous logins (optional)
You can configure the FTP server to accept anonymous logins. A login is
anonymous when the remote user specifies USER ANONYMOUS instead of an
FTP user ID. To enable anonymous logins, add the ANONYMOUS statement to the
server FTP.DATA data set.

You can specify three levels of anonymous support via the ANONYMOUSLEVEL
keyword. ANONYMOUSLEVEL 1 is the default, and is equivalent to anonymous
login support provided by releases prior to OS/390 V2R10. That is, the
ANONYMOUS statement is supported. If no operands are specified on the
ANONYMOUS statement, the anonymous user needs no password and has
unrestricted access to the MVS and HFS file systems.

You can specify ANONYMOUSLEVEL 2, but this is not recommended.
ANONYMOUSLEVEL 2 is provided for migration purposes only. Consider
ANONYMOUSLEVEL 3 if ANONYMOUSLEVEL 1 does not meet your anonymous
login security requirements.

If you specify ANONYMOUSLEVEL 3, the anonymous user cannot issue the USER
command to leave anonymous mode, nor can another user issue USER
anonymous to enter anonymous login mode. If you specify ANONYMOUSLEVEL 3
and STARTDIRECTORY HFS in FTP.DATA, the anonymous user’s HFS access is
restricted to the anonymous user’s home directory and home directory subtrees.

The ANONYMOUSLEVEL 3 server recognizes additional keywords that restrict the
anonymous user’s access to FTP resources. These keywords are ignored when
ANONYMOUSLEVEL is less than three:

v ANONYMOUSFILEACCESS allows the system programmer to preclude access
to either the HFS or MVS file systems.

v ANONYMOUSFILETYPEJES, ANONYMOUSFILETYPESQL, and
ANONYMOUSFILETYPESEQ control whether the anonymous user can set
filetype JES, SQL, or SEQ, respectively.

400 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|

|
|
|
|
|

v ANONYMOUSHFSFILEMODE defines the mode bits used for files written to the
HFS.

v ANONYMOUSHFSDIRMODE defines the mode bits used for directories created
in the HFS.

Finally, when ANONYMOUSLEVEL is set to three, the user’s e-mail address is
requested in lieu of a password when:

v ANONYMOUS is specified without any parameters.

v ANONYMOUS is specified with user ID/password.

v ANONYMOUS is specified with user ID/SURROGATE.

Control the degree of verification of the e-mail address an anonymous user enters
as password by using the EMAILADDRCHECK keyword in FTP.DATA. Refer to
z/OS Communications Server: IP Configuration Reference for details about the
EMAILADDRCHECK keyword. The e-mail address entered is logged to the syslog
daemon and is also passed to a user exit routine, FTCHKPWD, for user processing.

The FTP server can be defined to process users without passwords by using the
ANONYMOUS SURROGATE support. In order to support this,
ANONYMOUSLEVEL must be set to 3 in FTP.DATA on the server and BPX.SRV
surrogate must be defined in RACF.

z/OS UNIX uses profiles defined to the RACF SURROGAT class to authorize the
server to act as a surrogate of a client. Profiles defined to the SURROGAT class
are of the form:
BPX.SRV.<userid>

in which <userid> is the MVS user ID of the user that the server will support without
a password.

The steps below are for a sample userid of the FTP daemon (the userid associated
with the FTP started task procedure) called FTPD with the ability to support user ID
GUEST without a password. As you add more servers, you will need to follow
similar procedures.

1. Activate the SURROGAT class support in RACF:
SETROPTS CLASSACT(SURROGAT)

This has to be done only once on the system. The SURROGAT class may
already have been set up on your system. If a daemon or server you are
running will be using the SURROGAT support heavily, consider using the
RACLIST command to keep the SURROGAT profiles in storage. The following
example shows how to cache the SURROGAT profiles in storage:
SETROPTS RACLIST(SURROGAT)

2. If the SURROGAT profile is in the RACLIST, any changes to the SURROGAT
profiles must be followed by a REFRESH command. To create the SURROGAT
class profile for user ID GUEST, issue:
RDEFINE SURROGAT BPX.SRV.GUEST UACC(NONE)
SETROPTS RACLIST(SURROGAT) REFRESH

A similar SURROGAT profile is required for each user ID that a server must
support without a password.

3. To permit the userid of the FTP daemon (the userid associated with the FTP
started task procedure), FTPD, to create a security environment for user ID
GUEST, issue the PERMIT command:

Chapter 9. Transferring files using FTP 401

PERMIT BPX.SRV.GUEST CLASS(SURROGAT) ID(FTPD) ACCESS(READ)
SETROPTS RACLIST(SURROGAT) REFRESH

If you choose ANONYMOUSLEVEL greater than one and you choose
STARTDIRECTORY HFS, you must create an anonymous directory structure in the
HFS.

Creating an anonymous directory structure in the HFS
The sample shell script, ftpandir.scp, will create an anonymous directory structure
for you, containing required and optional structures. Or, a superuser can create the
anonymous directory structure. In this section, the steps a superuser would follow to
create an anonymous HFS directory structure are outlined.

For the following steps, assume that the RACF user ID that is used when an
anonymous user logs in is called GUEST, that the HOME directory in that user’s
OMVS segment in RACF is /u/guest, and that FTP.DATA contains a statement
similar to this: ANONYMOUS GUEST

1. Create a bin subdirectory in the anonymous root containing the executables ls
and sh. This is a required directory. ls can be copied from the standard
directory. sh is part of the standard MVS search order, so you need only create
an empty file with the sticky bit.

The following example shows how to create ls and sh in the user GUEST’s
home directory:
===> cd /u/guest
===> mkdir bin
===> chmod 711 bin
===> cd bin

===> cp /bin/ls ls
===> chmod 711 ls
===> touch sh
===> chmod 711 sh
===> chmod +t sh

An ls -al command should give the following results. Owner and group attributes
may be different in your system.
ls -al
total 280
drwx--x--x 2 USER22 0 8192 Sep 21 17:39 .
drwx--x--x 7 USER22 0 8192 Nov 1 14:44 ..
-rwx--x--x 1 USER22 0 126976 Sep 21 17:39 ls
-rwx--x--t 1 USER22 0 0 Sep 21 17:39 sh

2. Create a usr/sbin sudirectory of the anonymous root containing the executable
file ftpdns. This is a required subdirectory. The file ftpdns can be empty with the
sticky bin on.

The following example is for anonymous user GUEST:
===> cd /u/guest
===> mkdir usr
===> chmod 711 usr

===> cd usr
===> mkdir sbin
===> chmod 711 sbin
===> cd sbin
===> touch ftpdns
===> chmod 711 ftpdns
===> chmod +t ftpdns

402 z/OS V1R4.0 CS: IP Configuration Guide

If you do not configure the subdirectories, bin and usr/sbin, and their contents
correctly, the FTP server will not be able to accept anonymous logins and
message EZYFT731 will be displayed.

3. Create a dev subdirectory within the anonymous root. This is a required
subdirectory. A null file is created in this directory and used during the open of
syslog.

The following example is for anonymous user GUEST:
===> cd /u/guest
===> mkdir dev
===> chmod 711 usr

If you do not have the dev subdirectory, syslog might not open correctly.
Messages such as EZA2830I will not be logged out correctly.

4. Set up the public directory structure. This is a required directory.

This is the directory structure into which you place files that can be downloaded
by the anonymous FTP user. It does not have to be named pub; it can be any
name you choose. A general convention for anonymous FTP sites is to call it
pub:
===> cd /u/guest
===> mkdir pub
===> cd pub

If you want to structure the files you allow to be accessed, you can create
multiple subdirectories underneath this directory.

For simplicity, assume a single level directory, the pub directory. Into this
directory you copy the files you want to allow the anonymous user to download:
===> cp /x/y/z/prodinfo1.txt prodinfo1.txt
===> cp /x/y/z/prodinfo2.txt prodinfo2.txt
===> cd ..

Make sure that the permission bits are set correctly by using the following shell
command when executed in the /u/guest directory. This will set the permission
bits of all files in the pub directory and its subdirectories to 755:
===> chmod -R 755 pub

If your system does not require an incoming or extract directory, the system is
configured for anonymous FTP. An ls -al command of the pub directory should
give the following results:
drwxr-xr-x 3 IBMUSER SYS1 8192 May 13 21:15 .
drwxr-xr-x 6 IBMUSER SYS1 8192 May 20 14:51 ..
-rwxr-xr-x 1 IBMUSER SYS1 12 May 11 12:41 prodinfo1.txt
-rwxr-xr-x 1 IBMUSER SYS1 12 May 11 12:41 prodinfo2.txt

5. Set up an incoming directory (optional).

If you want anonymous users to be able to upload files to your FTP server, you
need some additional setup. The objective is to allow an anonymous user to
upload a file, but not to allow another anonymous user to download or even be
aware of the existence of the file until after an administrative user has verified
that the content of the file is acceptable. You do not want your FTP server site
to become a store-and-forward site for files of questionable ethical content.

Positioned at the /u/guest directory, a superuser issues the following shell
command:
===> cd /u/guest
===> mkdir incoming
===> chmod 733 incoming

Chapter 9. Transferring files using FTP 403

|
|
|

|

|
|
|

|
|

|

It does not have to be named incoming; it can be any name you choose. A
general convention for anonymous FTP sites is to call it incoming.

The 733 permission bits means that a non-superuser cannot list the content of
the incoming directory, but can write a file to it. Because the FTP server
enforces a UMASK of 777 when an anonymous user logs in, these files will be
written with permission bits 000, which means that they cannot be accessed by
the anonymous user or by any other user except a superuser.

An FTP client user can normally change the UMASK via a SITE UMASK
command or the user can change the permission bits of files they own through
a SITE CHMOD command.

If you define ANONYMOUSLEVEL 3, you can use the
ANONYMOUSHFSDIRMODE keyword to set the permission bits of any
directory created by an anonymous user, and the ANONYMOUSHFSFILEMODE
to set the permission bits of any file created by an anonymous user.

If you do allow anonymous users to store files on your FTP server, you should
ensure that the directory into which these files are stored is in an HFS that can
fill up without impacting other work on your z/OS system. The best way to do
that is to allocate the /u/guest/incoming directory in its own HFS data set. If an
anonymous user uploads large amounts of data to the incoming directory, only
this separate HFS will be filled up. Filling this separate HFS will prevent other
anonymous users from storing new files on the server, but will not affect other
functions on your system. At a minimum, you should make sure that the
incoming directory is not in the same HFS as your /tmp directory.

6. Set up the extract directory (optional).

If you need to make files available to certain anonymous users, but not to
everyone, you can create a directory that cannot be listed, but files in it can be
downloaded if the anonymous user knows the name of the file.

Positioned at the /u/guest directory, a superuser issues the following shell
commands:
===> cd /u/guest
===> mkdir extract
===> chmod 711 extract

It does not have to be named extract; it can be any name you choose. A
general convention for anonymous FTP sites is to call it extract.

A superuser can then copy files into this directory, ensure they have
permissions of 755, inform the intended anonymous user of the file name, and
that user can then log on as anonymous and retrieve the file.

An ls -al command at the /u/guest location should give the following result, if
you created all four subdirectories:
drwxr-xr-x 6 IBMUSER SYS1 8192 May 20 14:51 .
dr-xr-xr-x 6 IBMUSER SYS1 0 Jun 10 15:43 ..
drwx--x--x 2 IBMUSER SYS1 8192 May 11 12:44 bin
drwx--x--x 3 IBMUSER SYS1 8192 May 11 13:39 extract
drwx-wx-wx 3 IBMUSER SYS1 8192 May 25 09:35 incoming
drwxr-xr-x 3 IBMUSER SYS1 8192 May 13 21:15 pub

404 z/OS V1R4.0 CS: IP Configuration Guide

Configure the Welcome Banner Page, Login, and Directory Message
(optional)

Starting in V2R10, the FTP server now provides support to allow FTP administrators
to provide useful information about the site to FTP users. The following FTP.DATA
statements are available:

v BANNER

v LOGINMSG

v ANONYMOUSLOGINMSG

v MVSINFO

v ANONYMOUSMVSINFO

v HFSINFO

v ANONYMOUSHFSINFO

You can use the LOGINMSG statement in FTP.DATA to point to a set of messages
displayed when a known user logs in to FTP. Similarly, ANONYMOUSLOGINMSG
can point to a set of messages displayed when an anonymous user logs in to FTP.

You can use the MVSINFO statement to point to a set of messages displayed when
a known user changes the working directory to a particular MVS data set path.
Likewise, use the ANONYMOUSMVSINFO statement to point to a set of messages
displayed when an anonymous user changes working directory to a particular MVS
data set path.

You can use the HFSINFO statement to point to a set of messages displayed when
a client changes the working directory to a particular HFS directory. Likewise, use
the ANONYMOUSHFSINFO statement to point to a set of messages displayed
when an anonymous user changes working directory to a particular HFS directory.

Using magic cookies to represent information
The content of all the informational messages may include a predefined set of
magic cookies, which are substituted by the FTP server before the data is sent to
the FTP client. The following magic cookies are supported:

v %T — Local time

v %C — Current working directory

v %E — The FTP server administrators e-mail address

v %R — Remote host name

v %L — Local host name

v %U — Username (logged in user)

If %R is used, a long delay in login processing might occur as the FTP server will
issue a DNS query to resolve the remote host IP address. In order to use %E, the
ADMINEMAILADDR keyword must be specified in the server FTP.DATA
configuration file.

Chapter 9. Transferring files using FTP 405

|
|

Configuring to send detailed login failure replies to an FTP client
(optional)

The FTP server returns minimal information to the client when the PASS command
fails. However, you can configure the FTP server to send additional information by
coding ACCESSERRORMSGS TRUE in FTP.DATA. This directs the server to reply
to the client with detailed login failure data. The reply might report server errors,
such as failing function calls with diagnostic return codes. It might report user
errors, such as an expired or incorrect password, an unknown user ID, or a revoked
user ID. You should not code ACCESSERRORMSGS TRUE in FTP.DATA if you do
not want to share this type of information with users logging in to FTP.

You can capture the same information in syslog by coding FTPLOGGING TRUE
and ANONYMOUSFTPLOGGING TRUE in FTP.DATA. You can also turn on the
DEBUG option called ACC to log the error messages in the syslog. For more
information on coding FTP.DATA statements, see z/OS Communications Server: IP
Configuration Reference.

Install the SQL query function (optional) and access the DB2 modules
To use FTP to do SQL queries, bind the DBRM called EZAFTPMQ to the plan used
by FTP, and grant execution privileges for that plan to PUBLIC. (The name of the
plan can be specified by the DB2PLAN keyword in FTP.DATA or defaulted to
EZAFTPMQ.) This FTP facility only performs SELECT operations on the DB2
tables. It does not perform UPDATE, INSERT, or DELETE.

Note: If secondary authorization for SQL queries is required, the DSN3SATH
sample exit shipped by DB2 must be modified. The exit will return the
primary AUTHID for requests originating from the FTP server.

The following sample job is provided in the FTOEBIND member of the SEZAINST
data set. It can be used to enable the FTP server and client to do SQL queries.
//FTPSETUP JOB FTPSETUP,
// CLASS=A,
// NOTIFY=&SYSUID
//**
//*
//* File name: tcpip.SEZAINST(FTOEBIND)
//* SMP/E distribution name: EZAFTPAB
//*
//* Licensed Materials - Property of IBM
//* This product contains "Restricted Materials of IBM"
//* 5647-A01 (C) Copyright IBM Corp. 1997, 2002
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by GSA ADP Schedule
//* Contract with IBM Corp.
//* See IBM Copyright Instructions.
//*
//* This JCL binds the EZAFTPMQ DBRM to the specified
//* DB2 subsystem and allows execution of the
//* EZAFTPMQ plan by PUBLIC.
//*
//* The FTP server and client use this plan. (See
//* Usage note #7)
//*
//*
//* Usage notes:
//*
//* 1. You must execute this job from a user ID that has

406 z/OS V1R4.0 CS: IP Configuration Guide

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

//* the authority to bind the EZAFTPMQ plan.
//*
//* 2. Change the STEPLIB DD statement in the FTPBIND and
//* FTPGRANT steps to reflect the DB2 DSNLOAD data set.
//*
//* 3. Change the DB2 sybsystem name in the FTPBIND and
//* FTPGRANT steps from SYSTEM(xxx) to the
//* installation defined DB2 subsystem name.
//*
//* 4. Change the library parameter in the FTPBIND step from
//* TCPIP.SEZADBRM to the installation defined TCPIP
//* SEZADBRM library.
//*
//* 5. Change the plan name in the FTPGRANT step from
//* DSNTIAYY to reflect the plan associated with the
//* program DSNTIAD.
//*
//* 6. Change the library parameter in the FTPGRANT step
//* from xxxxxx.RUNLIB.LOAD to reflect the library
//* where the DSNTIAD program resides.
//*
//* 7. You can bind the DBRM to a plan name other than EZAFTPMQ
//* by changing the plan specified in the FTPBIND and
//* FTPGRANT steps. If you do this, you must use the
//* DB2PLAN keyword in FTP.DATA to change the plan name
//* used by the FTP server and/or client to the plan name
//* specified here.
//*
//**
//FTPBIND EXEC PGM=IKJEFT01,DYNAMNBR=20
//STEPLIB DD DSN=xxxxxx.DSNLOAD,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(xxx)
BIND ACQUIRE(USE) -

ACTION(REPLACE) -
CACHESIZE(1024) -
CURRENTDATA(NO) -
EXPLAIN(NO) -
ISOLATION(CS) -
LIBRARY(’TCPIP.SEZADBRM’) -
MEMBER(EZAFTPMQ) -
NODEFER(PREPARE) -
PLAN(EZAFTPMQ) -
RELEASE(COMMIT) -
VALIDATE(RUN) -
RETAIN

END
//*
//FTPGRANT EXEC PGM=IKJEFT01,DYNAMNBR=20
//STEPLIB DD DSN=xxxxxx.DSNLOAD,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(xxx)
RUN PROGRAM(DSNTIAD) -

PLAN(DSNTIAYY) -
LIBRARY(’xxxxxx.RUNLIB.LOAD’)

END
//SYSIN DD *
GRANT EXECUTE ON PLAN EZAFTPMQ TO PUBLIC;
//*

Chapter 9. Transferring files using FTP 407

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Accessing DB2 modules
The FTP server or client loads 3 DB2 modules into storage to perform an SQL
query. These modules are:
v DSNALI
v DSNHLI2
v DSNTIAR

The modules are usually found in the DB2 load library with the suffix DSNLOAD.
The DB2 administrator or system programmer should add the DSNLOAD library to
the LINKLIST to ensure FTP has access to this library.

Another way to ensure access is to add the DSNLOAD library to the FTP STEPLIB.
For the FTP server this means the JCL used to start the FTP server has a
STEPLIB DD statement referring to the DSNLOAD library or, if the FTP daemon is
started from the z/OS shell, the STEPLIB environment variable is set. For the FTP
client, this means a TSO CLIST must allocate the DSNLOAD library as the
STEPLIB.

If the FTP client is to be run from a batch job to perform SQL queries, the
DSNLOAD library must be added to the STEPLIB DD statement for the batch job.

Usage notes:

To allow FTP access to multiple levels of DB2, link to the libraries that contain the
lowest level of DB2 to be accessed.

FTP.DATA updates for SQL query function
To obtain FTP.DATA updates for the SQL query function, follow these steps:

1. Set the FTP.DATA DB2 statement to specify the name of the DB2 subsystem.

2. Set DB2PLAN to specify the DB2 plan to be used by the FTP server.

3. Set the SPREAD statement to specify whether SQL output is in spreadsheet
format.

4. Set SQLCOL to specify the column headings of the output data.

Trivial File Transfer Protocol (TFTP)
TFTP is a TCP/IP protocol used to transfer files. TFTP can read or write files from
or to a remote server. On the z/OS system, TFTP is a server you can configure with
the command line option during TFTP invocation.

Considerations for z/OS
TFTP is installed in the /usr/lpp/tcpip/sbin/ directory.

CAUTION:
The TFTP server uses well-known port 69. The TFTP server has no user
authentication. Any client that can connect to port 69 on the server has
access to TFTP. If the TFTP server is started without a directory, it allows
access to the entire HFS. To restrict access to the HFS, start the TFTP server
with a list of directories.

To start the TFTP server from the command line, type the tftpd command.
tftpd [-l] [-p port] [-t timeout] [-r maxretries] [-c concurrency_limit]

[-s maxsegsize] [-f file] [-a archive directory [-a ...]]
[directory ...]

408 z/OS V1R4.0 CS: IP Configuration Guide

|

The following are parameters used for the tftpd command:

-l Logs all incoming read and write requests and associated information to the
system log. Logged information includes the IP address of the requestor,
the file requested, and whether the request was successful.

-p port
Uses the specified port. The TFTP server usually receives requests on
well-known port 69. You can specify the port in which requests are to be
received.

-t timeout
Sets the packet timeout. The TFTP server usually waits 5 seconds before
assuming a transmitted packet has been lost. You can specify a different
timeout period in seconds.

-r maxretries
Sets the retry limit. The TFTP server usually limits the number of
retransmissions it performs due to lost packet to 5. You can specify a
different retry limit.

-c concurrency_limit
Sets the concurrency limit. The TFTP server spawns both threads and
processes to handle incoming requests. You can specify the limit for the
number of threads that may be concurrently processing requests under a
single process. When the limit is exceeded, a new process is spawned to
handle requests. The default is 200 threads.

-s maxsegsize
Sets the maximum block size that can be negotiated by the TFTP block
size option. The default is 8192.

-f file Specifies a cache file. You can specify a file containing information on files
to be preloaded and cached for transmission. A cache file consists of one or
more entries. For clarity, place each entry on a separate line. An entry has
the form:

a | b <pathname>

where:

v a indicates that the specified file is cached in ASCII form. The file is
preconverted to netascii format.

v b indicates that the specified file is cached in binary form, with no
conversion.

Following are examples of cache file entries,

a /usr/local/textfile
b local/binaryfile

If a relative pathname to the file is specified, the TFTP server searches the
specified directories for the file.

The cached version of a file is only used for requests requiring the specified
format. For example, the binary cached version of a file is not used in
satisfying a request for the file in netascii format. If a file is to be retrieved
in both binary and ASCII formats, the user must specify that two copies of
the file be cached with one in binary format, and the other in netascii
format.

Chapter 9. Transferring files using FTP 409

Caching is not dynamic. The cache files are read in when the TFTP server
is started and are not updated, even if the file on disk is updated. To update
or refresh the cache, the TFTP server must be recycled.

-a archive directory
Specifies an archive directory. The files in this directory and its
subdirectories are treated as binary files for downloading. This option is
useful on EBCDIC machines that act as file servers for ASCII clients.
Multiple -a options can be specified; one directory per -a option. Directories
must be specified as absolute path names. You can specify no more than
20 directories.

directory
Specifies an absolute path name for a directory. You may specify no more
than 20 directories on the tftpd command line.

If the TFTP server is started without a list of directories, all mounted
directories are considered active.

If a list of directories is specified, only those directories specified are active.
That list is used as a search path for incoming requests specifying a
relative path name for a file.

Activating a directory activates all of its subdirectories.

For a file to be readable by the TFTP server, the file must be in an active
directory and have world (″other″) read access enabled. For a file to be
writable by the TFTP server, the file must already exist in an active directory
and have world (″other″) write access.

The TFTP server preforks a child process to handle incoming requests when the
concurrency limit is exceeded. Consequently, immediately after starting the TFTP
server, two TFTP processes exist.

In case of a flood of concurrent TFTP commands, the TFTP server may fork
additional processes. When the number of concurrent requests being processed
drops below the concurrency limit, the number of TFTP processes is decreased
back to two.

To terminate the TFTP server, send a SIGTERM signal to the oldest existing TFTP
process. This is the process with a parent process ID of 1. Termination of this
process will cause all of its children to terminate.

Verification of FTP

Verify server
If FTP is in the autolog list and the TCP/IP address space is restarted, FTP should
start automatically. For other cases, it should be started manually. To do this, go to
the MVS Console and enter the following command:
S FTPD

Note: The above command assumes the FTP procedure name is FTPD.

If the FTP server startup is complete, the following message should be seen on the
MVS console:
EZY2702I Server-FTP: Initialization completed at 17:37:29 on 12/17/99.

410 z/OS V1R4.0 CS: IP Configuration Guide

|

If the message is not seen, a message explaining why FTP did not start up will
appear in SYSLOG. Even if the above message is issued, it would be beneficial to
inspect SYSLOG for warning messages issued during FTP initialization. EZY2700I
displays the port FTP uses as the control port, the port it listens to for incoming
connections from clients. In this example, FTP is listening to standard port 21.

The file syslog uses is defined in /etc/syslog.conf. The statement daemon.info
/tmp/daemon.log directs SYSLOGD to save all the daemon messages in
/tmp/daemon.log. Below is an example of output error messages.
EZYFT18I Using catalog ’/usr/lib/nls/msg/C/ftpdmsg.cat’ for FTP messages.
EZY2697I IBM FTP CS V1R4 17:34:04 on 10/15/01
EZY2640I Using dd:SYSFTPD=USER1.FTP.DATA for local site configuration parameters
EZYFT46E Error in dd:SYSFTPD file: line 4 near column 9.
EZY2636E SMFLOGN value not specified.
EZYFT46E Error in dd:SYSFTPD file: line 5 near column 8.
EZY2636E SMFREN value not specified.
EZYFT47I dd:SYSFTPD file, line 21: Ignoring keyword "EXTENSIONS REST_STREAM".
EZYFT47I dd:SYSFTPD file, line 29: Ignoring keyword "CTRLCONN".
EZYFT21I Using catalog ’/usr/lib/nls/msg/C/ftpdrply.cat’ for FTP replies.
EZYFT26I Using 7-bit conversion derived from ’ISO8859-1’ and ’IBM-1047’ for the control connection.
EZYFT33I Unable to open DDNAME ’SYSFTSX’ for the data connection: EDC5129I No such file or directory.
EZYFT31I Using //’TPOUSER.STANDARD.TCPXLBIN’ for FTP translation tables for the data connection.
EZYFT09I system information for VIC135: OS/390 version 03 release 12.00 (4381)
EZY2700I Using port FTP control (21)
EZY2701I Inactivity time is 0
EZYFT57I FTP registering with WLM as group = ftpgroup host = VIC135
EZY2702I Server-FTP: Initialization completed at 17:35:05 on 10/15/01.
EZYFT41I Server-FTP: process id 16777255, server job name FTPD11

Verify client
To verify that the FTP client works correctly, log onto TSO and issue the NETSTAT
HOME command, or issue NETSTAT –h from the z/OS UNIX shell. These
commands will show the interface addresses that are known to the system. Below
is an example of the output from NETSTAT HOME:
netstat home
MVS TCP/IP NETSTAT CS V1R4 TCPIP NAME: TCPCS 21:10:56
Home address list:
LinkName: OSAQDIO5L

Address: 9.67.115.13
Flags: Primary

LinkName: LOOPBACK
Address: 127.0.0.1

Flags:
IntfName: OSAQDIO56

Address: fec9:c2d4::9:67:115:13
Type: Site_Local
Flags:

IntfName: OSAQDIO56
Address: fec9:c2d4::67:115:13:1234

Type: Site_Local
Flags:

IntfName: LOOPBACK6
Address: ::1

Type: Global
Flags:

IntfName: OSAQDIO56
Address: fe80::6:29dc:21bc:4

Type: Link_Local
Flags:

To invoke the FTP client, use any address shown on the NETSTAT HOME address
list. The first example below shows how you could log in to the FTP server at
9.67.115.13 using a batch job (the output of the batch job is not shown). The
second example shows logging in to the FTP server at 9.67.113.37 from the TSO
environment.

Chapter 9. Transferring files using FTP 411

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

//FTPBATCH JOB FTPUSER,
// USER=USER1,PASSWORD=TCPSUP
//BATCH EXEC PGM=FTP
//OUTPUT DD SYSOUT=*
//INPUT DD *

9.67.115.13
USER10 tcpusr
SITE FILE=SEQ
QUIT

//*

IBM FTP CS V1R4
FTP: using TCPCS
Connecting to: 9.67.113.37 port: 21.
220-FTPD1 IBM FTP CS V1R4 at vic135, 20:01:42 on 2001-11-07.
220 Connection will close if idle for more than 5 minutes.
>>> FEAT
211- Extensions supported
SIZE
MDTM
REST STREAM
UTF8
LANG en*
211 End
>>> LANG en
200 - Language is en-US (United States English)
NAME (9.67.113.37:USER10):

user10
>>> USER user10
331 Send password please.
PASSWORD:

>>> PASS
230 USER10 is logged on. Working directory is "/tmp".
Command:

Verify FTP.DATA statements
Many FTP.DATA statements can be verified via the FTP client STAT and LOCSTAT
commands. The output from each installation’s STAT and LOCSTAT will depend on
the client and server copy of FTP.DATA. Below is sample output of one system.
stat
EZA1701I >>> STAT
211-Server FTP talking to host 127.0.0.1, port 1027
211-User: USER1 Working directory: USER1.
211-The control connection has transferred 2006 bytes
211-There is no current data connection.
211-The next data connection will be actively opened
211-to host 127.0.0.1, port 1027,
211-using Mode Stream, Structure File, type ASCII, byte-size 8
211-Automatic recall of migrated data sets.
211-Automatic mount of direct access volumes.
211-Auto tape mount is allowed.
211-Inactivity timer is set to 600
211-VCOUNT is 59
211-ASA control characters in ASA files opened for text processing
211-will be transferred as ASA control characters.
211-Trailing blanks are removed from a fixed format
211-data set when it is retrieved.
211-Data set mode. (Do not treat each qualifier as a directory.)
211-ISPFSTATS is set to FALSE
211-Primary allocation 5 tracks. Secondary allocation 2 tracks.
211-Partitioned data sets will be created with 15 directory blocks.

412 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

211-FileType SEQ (Sequential - default).
211-Number of access method buffers is 5
211-RDWs from variable format data sets are discarded.
211-Records on input tape are unspecified format
211-SITE DB2 subsystem name is DB2
211-Data not wrapped into next record.
211-Tape write is not allowed to use BSAM I/O
211-Truncated records will not be treated as an error
211-JESLRECL is 80
211-JESRECFM is Fixed
211-JESINTERFACELEVEL is 2
211-ENcoding is set to SBCS
211-SBSUB is set to FALSE
211-SBSUBCHAR is set to SPACE
211-SMS is active.
211-Mgmtclass for new data sets is TCPMGMT
211-New data sets will be catalogued if a store operation ends abnormally
211-Single quotes will override the current working directory.
211-UMASK value is 027
211-Process id is 12
211-Checkpoint interval is 0
211-Authentication type: None
211-Record format VB, Lrecl: 128, Blocksize: 6144
211 *** end of status ***

locstat
EZA1600I Trace: FALSE, Send Port: TRUE
EZA1601I Send Site with Put command: TRUE
EZA2676I Connected to:127.0.0.1, Port: FTP control (21), logged in
EZA1605I Local Port: 1027
EZA1606I Data type:a, Transfer mode:s, Structure:f
EZA2098I Automatic recall of migrated data sets.
EZA2100I Automatic mount of direct access volumes.
EZA2101I Data set mode. (Do not treat each qualifier as a directory.)
EZA2844I ISPFSTATS is set to FALSE
EZA2134I Primary allocation 5 tracks, Secondary allocation 2 tracks.
EZA2138I Partitioned data sets will be created with 15 directory blocks
EZA2103I FileType is SEQ (Sequential - the default).
EZA2141I Number of access method buffers is 5.
EZA2948I ENcoding is set to SBCS
EZA2943I SBSUB is set to FALSE
EZA2944I SBSUBCHAR is set to SPACE
EZA2142I Mgmtclass for new data sets is TCPMGMT
EZA2145I RDW’s from VB/VBS files are discarded.
EZA2518I Records on input tape are unspecified format
EZA2148I DB2 subsystem name is DB2
EZA2152I Volid of Migrated Data Sets is MIGRAT
EZA2154I Trailing blanks in records read from RECFM F datasets are discarded.
EZA2535I Record format: VB, Lrecl: 128, Blocksize: 6144.
EZA2801I Data not wrapped into next record.
EZA2529I Truncated records will not be treated as an error.
EZA2494I Checkpoint interval is 0
EZA2511I Checkpoint data set will be opened for GET
EZA2428I CHKPTPrefix uses Home to determine the HLQ of the FTP.CHECKPOINT file.
EZA2817I Automatic mount of tape volumes.
EZA2809I CCONNTIME is 120
EZA2810I DATACTTIME is 120
EZA2811I DCONNTIME is 120
EZA2812I INACTTIME is 120
EZA2813I MYOPENTIME is 120
EZA2815I VCOUNT is 59
EZA2689I Prompting: ON, Globbing: ON
EZA2719I ASA control characters transferred as ASA control characters
EZA2720I New data sets catalogued if a store operation terminates abnormally
EZA2722I Single quotes will override the current working directory
EZA2724I UMASK value is 027

Chapter 9. Transferring files using FTP 413

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

EZA2819I Data connections for the client are not firewall friendly.
EZA2889I Authentication mechanism: None
EZA2866I Tape write is not allowed to use BSAM I/O
EZY2640I Using ’SYS1.TCPPARMS(FTPDATA)’ for local site configuration parameters.
EZA1460I Command:

Verifying anonymous, banner, and other optional configuration
information

Depending on your installation’s choices for anonymous level, banner support
chosen, exits, and so on, verification of support output will differ. To verify
anonymous configuration at a particular installation, log in as anonymous and verify
the behavior is as expected. For example, if EMAILADDRCHECK FAIL is specified
in FTP.DATA, try to log in as anonymous using an incorrect e-mail address as
password. To verify banner support, login and verify the banners are displayed as
expected. Below is a sample of FTP.DATA and FTP client output for one such
installation.
; BANNER STUFF
EMAILADDRCHECK FAIL
BANNER USER1.TEST1
ADMINEMAILADDR FTPADMIN@MYSYSTEM.COM
; ANONYMOUS STUFF
ANONYMOUSLEVEL 3
STARTDIRECTORY HFS

ftp 9.67.113.63
IBM FTP CS V2R10 1999 349 01:35 UTC
FTP: using TCPCS
Connecting to: 9.67.113.63 port: 21.
220-FTPD1 IBM FTP CS V2R10 at HOSTA, 19:02:45 on 1999-12-17.
220-You have just read ’USER1.TEST1’
220-ADMINEMAILADDRESS is FTPADMIN@MYSYSTEM.COM
220 Connection will not timeout.
NAME (9.67.113.63:USER4):
anonymous no-email-pw
>>> USER anonymous
331 Send password please.
>>> PASS
530 PASS command failed.
Command:

Verify FTP-JES interface (optional)
As with the other optional configuration information, FTP-JES support can best be
verified by logging in and confirming the FTP.DATA parameters chosen. To verify
JES support, a simple batch job can be created if the JESINTERFACELEVEL is set
to the security requirements of an installation. Below is the batch job and FTP client
output for JESINTERFACELEVEL 2.
EDIT USER1.FTP.JCL.TEST Columns 00001 00072
Command ===> Scroll ===> CSR
****** ***************************** Top of Data *****************************
000100 //JOBTEST JOB MSGCLASS=H,MSGLEVEL=(1,1),CLASS=A,
000200 // USER=USER1
000300 //STEP1 EXEC PGM=IEBGENER
000400 //OBJTMP1 DD DSN=&PRLOBJ,DISP=(NEW,PASS,DELETE),
000500 // SPACE=(CYL,(1,1,10)),
000600 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
000700 //SYSPRINT DD SYSOUT=A
000800 //SYSUT1 DD DSN=SYS1.PROCLIB(JES2),DISP=SHR
000900 //SYSIN DD DUMMY
001000 //SYSUT2 DD SYSOUT=H
001100 //
001200 // EXEC PGM=IEFBR14
****** **************************** Bottom of Data ***************************

414 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

site file=jes jesjobname=jobtest jesowner=* jesstatus=all
EZA1701I >>> SITE file=jes jesjobname=jobtest jesowner=* jesstatus=all
200 Site command was accepted
EZA1460I Command:
put ’user1.ftp.jcl.test’
EZA1701I >>> SITE FIXrecfm 80 LRECL=80 RECFM=FB BLKSIZE=32720
200 Site command was accepted
EZA1701I >>> PORT 127,0,0,1,4,12
200 Port request OK.
EZA1701I >>> STOR ’user1.ftp.jcl.test’
125 Sending Job to JES internal reader FIXrecfm 80
250-It is known to JES as JOB00076
250 Transfer completed successfully.
EZA1617I 984 bytes transferred in 0.005 seconds. Transfer rate 196.80 Kbytes/sec.
EZA1460I Command:
dir j76
EZA1701I >>> PORT 127,0,0,1,4,13
200 Port request OK.
EZA1701I >>> LIST j76
125 List started OK for JESJOBNAME=JOBTEST, JESSTATUS=ALL and JESOWNER=*
EZA2284I JOBNAME JOBID OWNER STATUS CLASS
EZA2284I JOBTEST JOB00076 USER1 OUTPUT A RC=000
EZA2284I ID STEPNAME PROCSTEP C DDNAME BYTE-COUNT
EZA2284I 001 JESE H JESMSGLG 1084
EZA2284I 002 JESE H JESJCL 1023
EZA2284I 003 JESE H JESYSMSG 1143
EZA2284I 004 STEP1 H SYSUT2 741
EZA2284I 005 STEP1 A SYSPRINT 209
EZA2284I 5 spool files
250 List completed successfully.
EZA1460I Command:

Chapter 9. Transferring files using FTP 415

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

416 z/OS V1R4.0 CS: IP Configuration Guide

Chapter 10. Domain Name System (DNS)

This chapter contains information about configuring the name server in a
BIND-based Domain Name System (DNS). BIND was developed at the University
of California, Berkeley and is currently maintained by the Internet Software
Consortium (ISC). The name servers discussed in this chapter are based on BIND
4.9.3 and BIND 9.

This chapter also contains information about connection optimization, which uses
DNS for distributing connections among hosts or server applications within a
sysplex domain.

The Domain Name System is a client/server model in which programs called name
servers contain information about host systems and IP addresses. Name servers
provide this information to clients called resolvers.

This chapter is not intended to be a comprehensive description of DNS or of BIND.
For more complete descriptions, refer to the latest edition of DNS and BIND by Paul
Albitz and Cricket Liu (O’Reilly & Associates, Inc.).

DNS and BIND overview
TCP/IP applications map fully qualified domain names to 32-bit IPv4 IP addresses
or 128-bit IPv6 addresses to identify network nodes. The z/OS BIND 9 name server
supports resource records for IPv6 address mapping. It also accepts IPv6
connections, depending on the z/OS TCP/IP stack setup and profile, and on the
name server configuration. While TCP/IP applications refer to host computers by
their IP addresses, it is easier to use host names. To enable the use of host names
in a network, the Domain Name System (DNS) translates host names to IP
addresses. Mapping must be consistent across the network to ensure
interoperability. DNS provides the host name-to-IP address mapping through
network server hosts called domain name servers. For detailed information about
name servers, see “Domain name servers” on page 419. DNS can also provide
other information about server hosts and networks such as the TCP/IP services
available at a server host and the location of domain name servers in a network.

DNS organizes the hosts in a network into domains. A domain is a group of hosts
that share the same name space in the domain hierarchy and are usually controlled
within the same organization. Domains are arranged in a hierarchy. A special
domain known as the root domain exists at the top of the hierarchy. The root
domain servers store information about server hosts in the root domain and the
name servers in the delegated, top-level domains, such as com (commercial), edu
(education), and mil (military). The name servers in the top-level domain, in turn,
store the names of name servers for their delegated domains, and so on.

The complete name of a host, also known as the fully qualified domain name
(FQDN), is a series of labels separated by dots or periods. Each label represents
an increasingly higher domain level within a network. The complete name of a host
connected to one of the larger networks generally has more than one subdomain,
as shown in the following examples:
host1.subdomain2a.subdomain2.rootdomain
user4720.eng.mit.edu

© Copyright IBM Corp. 2000, 2002 417

|
|
|
|
|

|
|

A domain name server requires the FQDN. The client resolver combines the host
name with the domain name to create the FQDN before sending the name
resolution request to the domain name server.

DNS also provides IP address-to-host name mapping. The DNS defines a special
domain called in-addr.arpa to translate IPv4 addresses to host names, and the
ip6.int and ip6.arpa domains for IPv6 address-to-host name translation. This kind of
mapping is useful for producing output (host names) that is easy to read. An
in-addr.arpa name is composed of the reverse octet order of an IP address
concatenated with the in-addr.arpa string. For example, a host named Host1 has
9.67.43.100 as an IP address. The in-addr.arpa domain translates the Host1 IP
address 9.67.43.100 to 100.43.67.9.in-addr.arpa.

For IPv6 reverse lookups, BIND 9 supports the bitstring and nibble formats.

A system administrator can name the host systems and domains in the local,
private network with any name you want, but to link with name servers in a public
network like the Internet, you need to determine which domain you want to be in
(which parent domain) and then contact the registrar in that domain to register the
names and IP addresses of your name servers. This ensures that queries from
outside the domain being defined can be answered by this name server if need be.

Note: Contact the InterNetwork Information Center (InterNIC) for more information
about Internet registration. You can contact InterNIC by pointing your Web
browser at http://www.internic.net.

Domain names
The DNS uses a hierarchical naming convention for naming hosts. Each host name
is composed of domain labels separated by periods. Local network administrators
have the authority to name local domains within an intranet. Each label represents
an increasingly higher domain level within an intranet. The fully qualified domain
name of a host connected to one of the larger intranets generally has one or more
subdomains:

v host.subdomain.subdomain.rootdomain

v host.subdomain.rootdomain

Domain names often reflect the hierarchy level used by network administrators to
assign domain names. For example, the domain name eng.mit.edu. is the fully
qualified domain name, where eng is the host, mit is the subdomain, and edu is the
highest level domain (root domain).

Figure 57 on page 419 is an example of the DNS used in the hierarchy naming
structure across an intranet.

418 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|

|

|

|
|
|
|

|
|
|

http://www.internic.net

You can refer to hosts in your domain by host name only; however, a name server
requires a fully qualified domain name. The local resolver appends the domain
name before sending the query to the Domain Name Server for address resolution.

Domain name servers
Domain name servers are designated network nodes that maintain a database of
information about all nodes in some part of the domain name space, called a zone.
A name server is said to be authoritative for its zone. A zone consists of the
resources within a single domain (for example, commercial or .com) or subdomain
(for example, raleigh.ibm.com). Typically, a zone is administered by a single
organization or individual. The complete database is not kept by any one name
server on a network. A name server is authoritative only within its zone of authority.

All host systems in a given zone share the same higher level domain name (for
example, host1.raleigh.ibm.com, host2.raleigh.ibm.com, host3.raleigh.ibm.com,
and so on). As system administrator, you create a zone of authority by listing all the
host systems in your zone in the database file of the name server that is
authoritative for the zone.

If a domain name server receives a query about a host for which it has information
in its database or in its cache, it performs the name resolution and returns all the
address records associated with the host to the client. Some hosts (for example,
routers or gateways between two or more networks) might have more than one IP
address.

Alternatively, the name server can query other name servers for information. This
process is called iterative resolution. The local name server successively queries
other name servers, each of which responds by referring the local name server to a
remote name server that is closer to the name server authoritative for the target
domain. Finally, the local name server queries the authoritative name server and
gets an answer. If the information about a requested host name does not exist or if
a name server does not know where to go for the information, it sends a negative
response back to the client.

There are multiple name server modes in the DNS:

v Authoritative

– Master (primary)

– Slave (secondary)

v Caching-only servers

STATE SCOUTS USOYALE

BUSINESS

DIVISION REDCROSSMIT

ENG

(root)

EDU
GOV ORG

Figure 57. Hierarchical naming tree. Hierarchical naming tree

Chapter 10. Domain Name System (DNS) 419

|

|
|
|
|
|
|

|
|
|
|
|
|
|

v Forwarders

v Stealth

A single server can perform multiple functions. For example, it can be a primary
server and a slave server for different zones. The purpose of having these different
kinds of servers is to provide redundancy (in case of system failure), to distribute
the workload among multiple servers, to speed up the name-resolution process, and
to provide flexibility in network design. In addition to being an authoritative or
caching-only server, a name server can be defined to only contact a specific set of
name servers if queries cannot be resolved locally (through the use of forwarders).

The following sections discuss authoritative servers, caching-only servers, and
forwarding.

Authoritative servers
An authoritative server is the authority for its zone. It queries and is queried by
other name servers in the DNS. The data it receives in response from other name
servers is cached. Authoritative servers are not authoritative for cached data.

There are two types of authoritative servers: master (primary) and slave
(secondary). Each zone must have only one master name server, and it should
have at least one slave name server for backup to minimize dependency on a
particular node. Calling a particular name server a master or slave is misleading.
Any given name server can take on either or both roles, as defined by the boot or
conf file.

The zone data updates and maintenance are reflected in the master name server.
The slave name servers update their databases by contacting the master name
server at regular intervals or possibly (BIND 9) after being notified of an update by
the master name server. Both master and slave name servers are authoritative for a
zone.

The zones of authority are arranged in a hierarchy based on the domain origin
components. A special zone known as the root exists at the top of the domain name
hierarchy in a network. The root zone contains a list of all the root servers. For
example (see Figure 57 on page 419), in the Internet, the root name servers store
information about nodes in the root domain, and information about the delegated
domains, such as com (commercial), edu (education), and mil (military). The root
name servers store the names of name servers for each of these domains, which in
turn store the names of name servers for their delegated subdomains.

TCP/IP applications contact a name server whenever it is necessary to translate a
domain name into an IP address, or when information is required about a domain.
The name server performs the translation if it has the necessary information. If it
does not have the necessary information, the name server can contact other name
servers, which in turn can contact other name servers. This process is called a
recursive query. Alternatively, a name server can simply return the address of
another name server that might hold the requested information. This is called a
referral response to a query. Name server implementations must support referrals,
but are not required to perform recursive queries. See “Resolvers” on page 422 for
more information about query responses.

Master name servers: A master name server maintains all the data for its zone.
Static resources are kept in database files called domain data files. For information
on creating domain data files, see “Step 5. Create the domain data files (master
name server only)” on page 433. Master name servers can also receive zone

420 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

updates dynamically. For information on dynamic DNS, see “Dynamic IP” on
page 496. For information on dynamic generation of resources, see “Connection
optimization in a sysplex domain” on page 482.

Slave name servers: A slave name server acts as an alternate to the master
server if the master name server becomes unavailable or overloaded. The slave
name server receives zone data directly from the master name server in a process
called zone transfer. Zone transfers, which only occur when data has changed, are
based on the refresh interval in the Start of Authority (SOA) resource record or, for
BIND 9 name servers only, on using the DNS Notify function. For a description of
the SOA resource record, see z/OS Communications Server: IP Configuration
Reference. A slave server, like a master server, is authoritative for a zone.

Caching-only servers
All name servers cache (store) the data they receive in response to a query. A
caching-only server, however, is not authoritative for any domain. Responses
derived from cached information are flagged in the response. When a caching-only
server receives a query, it checks its cache for the requested information. If it does
not have the information, it queries a local name server or a root name server,
passes the information to the client, and caches the answer for future queries. The
names and addresses of the root name servers are acquired from the servers listed
in the hints file, the name and file path of which are specified in the name server’s
configuration file.

You can use caching servers to create a large cache of responses to frequently
requested queries and reduce the number of queries made to master servers. The
caching server stores data for a period of time determined by the time-to-live (ttl)
value, and the cached information is lost if the name server is restarted.

Forwarders
Normally, name servers answer queries from cached data or, if that does not
succeed, they attempt to contact other name servers identified in their data files as
authoritative for certain domains. However, name servers can also be configured to
contact special servers called forwarders before contacting the name servers listed
in their data files. If a forwarder cannot process the query and if the local name
server is not a forward-only name server, the local name server contacts the name
servers in its data files. A forward-only name server relies completely on its
forwarders. It does not try to contact other servers to find out information if the
forwarders do not give it an answer.

The forwarding function is useful for reducing the number of queries to servers on
the Internet and for creating a large cache of information on forwarders. It is also a
useful function for providing Internet access for local servers that, for one reason or
another, do not have access themselves.

Stealth server
A stealth server is a server that answers authoritatively for a zone, but is not listed
in that zone’s NS records. Stealth servers can be used as a way to centralize
distribution of a zone, without having to edit the zone on a remote nameserver.
When the master file for a zone resides on a stealth server in this way, it is often
referred to as a hidden primary configuration. Stealth servers can also be a way to
keep a local copy of a zone for rapid access to the zone’s records, even if all
official nameservers for the zone are inaccessible.

Chapter 10. Domain Name System (DNS) 421

|
|

|
|

Resolvers
Programs that query a name server are called resolvers. Because many TCP/IP
applications need to query the name server, a set of routines is usually provided for
application programmers to perform queries. On z/OS, these routines are available
in the resolver provided by z/OS Communications Server.

z/OS CS provides programs for interactively querying a name server:

v NSLOOKUP (TSO)

v onslookup/nslookup (z/OS UNIX)

v DIG (TSO)

v dig (z/OS UNIX)

v host

Note: The nsupdate program also makes queries to name servers as part of its
operations.

For information on these programs, see z/OS Communications Server: IP System
Administrator’s Commands.

The BIND 4 onslookup and TSO DIG commands use the resolver provided by z/OS
Communications Server for all their resolver facilities. The BIND 9 onslookup and
dig commands use the resolver initialization facilities of the resolver provided by
z/OS Communications Server, but use their own resolver for any additional resolver
facilities needed.

Resolver directives for nslookup
The onslookup program uses the following resolver directives (TCPIP.DATA
statements):

v domain/domainorigin

v search

v nameserver/nsinteraddr

v sortlist

v options debug/options ndots

Resolver directives for dig
The dig program uses the following resolver directives (TCPIP.DATA statements):

v domain/domainorigin

v search

v nameserver/nsinteraddr

v options ndots

Query Packets
Resolvers operate by sending query packets to a name server, either over the
network or to the local name server.

A query packet contains the following fields:

v Domain name

v Query type

v A query class

For information on valid query class (network class) and query type (data type)
values, see z/OS Communications Server: IP Configuration Reference. The name

422 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|
|

|

|

|

|

|

|

|
|

|
|

|
|
|
|
|

|
|
|

|

|

|

|

|

|
|

|

|

|

|

|
|
|

|

|

|

|

|
|

server attempts to match the three fields of the query packet to its database. For
flexibility, the following wildcard query types are defined:

Type Description

ANY Indicates any record type for the domain name.

AXFR Indicates the query type used by secondary name servers to transfer
all records in the zone. (The query class is set to IN when using the
AXFR query type.)

MAILB Indicates any mailbox records for the domain name.

The name server can return the following query responses:

Response Description

Authoritative Is returned from a primary or secondary name server. The name
server contains all the domain data used to define the zone for the
specified query.

BADVERS The name server received a request which contained a bad EDNS
version.

Nonauthoritative Is returned from a cache kept by a name server. The cache does not
contain the domain data used to define the zone for the specified
query.

Format Error The name server found an error in the query packet sent by the
resolver.

Name Error No resource records of any type (including wildcards) exist for the
domain name specified.

NXDOMAIN
(negative)

No records of the requested type were found for the domain name
specified.

Not-implemented The name server does not support the type of query requested.

NOTAUTH The name server is not authoritative for the zone.

NOTZONE A dynamic update failed because the name to be updated is not
contained within the given zone.

NXRRSET A dynamic update failed because the prerequisites were not satisfied.
The Resource Record set existed when the prerequiste stated it
should not.

Referral Contains the addresses of other name servers that might be able to
answer the query. A referral response is returned when a recursive
query is not supported, not requested, or cannot be answered
because of network connectivity.

Refused The name server refuses to perform the specified operation. For
example, some root name servers limit zone transfers to a set
number of IP addresses.

YXDOMAIN DNAME mapping failed because the new name was too long.

YXRRSET A dynamic update failed because the prerequisites were not satisfied.
The Resource Record set did not exist when the prerequiste stated it
should.

Resource Records
Data from a name server is stored and distributed in a format known as a resource
record. Resource record fields are described in detail in z/OS Communications
Server: IP Configuration Reference. Each response from a name server can contain

Chapter 10. Domain Name System (DNS) 423

|
|

|||

||

||
|
|

||
|

|

|||

||
|
|

||
|

||
|
|

||
|

||
|

|
|
|
|

||

||

||
|

||
|
|

||
|
|
|

||
|
|

||

||
|
|
|

|
|
|
|

several resource records, which can contain a variety of information. The format of
a response is defined in RFC 1035. It includes the following sections:

v A question section, echoing the query for which the response is returned.

v An answer section, containing resource records matching the query.

v An additional section, containing resource records that do not match the query,
but might provide useful information for the client. For example, the response to
a query for the host name of a name server for a specific zone includes the IP
address of that name server in the additional section.

v An authority section, containing information specific to the type of response made
to the query. If a referral is returned, this section contains the domain names of
name servers that could provide an authoritative answer. If a negative response
is returned indicating the name does not exist, this section contains a Start Of
Authority (SOA) record defining the zone of authority of the responding name
server.

Recommended reading
DNS and BIND, 4th Edition by Paul Albitz and Cricket Liu (O’Reilly & Associates,
Inc.) gives a comprehensive description of DNS and BIND, and specifically contains
information on BIND 9.1.0. The BIND 9 name server in V1R4 is based upon BIND
9.2.0.

For additional information on DNS in a sysplex, refer to the following Redbooks:

v z/OS eNetwork Communications Server V2R7 TCP/IP Implementation Guide
Volume 2: UNIX Applications, SG24-5228

v TCP/IP in a Sysplex, SG24-5235-01

For information on Dynamic IP, see “Dynamic IP” on page 496.

If you wish to participate, a BIND users mailing list can be subscribed to
at http://www.isc.org/products/BIND/

DNS protocols are described in various Request for Comments (RFC) papers and
Internet drafts. RFCs outline existing protocols, suggest new protocols, and
establish standards for the Internet protocol suite. Internet drafts are proposals,
techniques, and mechanisms that document Internet Engineering Task Force (IETF)
work-in-progress.

For information about obtaining RFCs, refer to http://ftp.ietf.org/rfc.html.

A list of RFCs related to DNS are located in “DNS-related RFCs” on page 535.

Migrating to BIND 9
Refer to the z/OS Communications Server: IP Migration for detailed information.

Performance issues
The BIND 9 name server supports multithreading and DNSSEC which creates extra
overhead. Multithreading might improve performance for large zones but can be a
disadvantage for small zones. The BIND 9 name server might perform slower than
the BIND 4.9.3 name server for small zones on simple query and response
operations, or might be as fast as a BIND 4.9.3 name server but with higher CPU
consumption, depending on whether your system is already CPU constrained.

424 z/OS V1R4.0 CS: IP Configuration Guide

|
|

|

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

Because of the multithreading, BIND 9 name servers are able to answer queries
during zone transfers. BIND 4.9.3 name servers are unable to answer queries for a
period of time during zone transfers; the larger the zone, the more noticeable this
can become. BIND 9 name servers are also capable of Incremental Zone Transfers,
while BIND 4.9.3 name servers are not. Incremental Zone Transfer allows only the
changed information in a zone to be sent to slave name servers instead of the
entire zone. If your name servers employ dynamic update for frequent zone
changes, the Incremental Zone Transfer feature of BIND 9 might offer some
performance advantages while reducing network traffic.

The use of DNSSEC (authenticating DNS data with digital signatures) will have a
performance cost. The authentication process requires more CPU, and signing a
zone greatly increases the zone’s size. DNS message sizes will also increase
between client and server, and between DNS servers. If the message size becomes
too large for UDP, the message will be sent by TCP, which is more resource
intensive.

Since the BIND 9 name server is multithreaded, it can take advantage of any
additional processors you add to the system. The BIND 9 name server will detect
the number of logical CPUs configured for the system (if not running partitioned) or
LPAR (if running partitioned), and create additional worker threads accordingly. For
relatively simply configured name servers that are small, are not using DNSSEC, or
are not kept busy, the overhead in managing the extra threads created on a
multiprocessor image can actually be disadvantageous. If you feel this might be the
case, you can override the number of worker threads created by using the -n option
when starting the name server. The number of logical CPUs detected (and
therefore, the number of worker threads created by default) is logged when the
name server is started.

Compatibility considerations

Zone transfers
It is not recommended to have a BIND 4.9.3– DNS act as a slave name server to a
BIND 9 master. However, if required, it can be done under certain conditions. If the
BIND 9 master contains any resource records (RRs) that BIND 4.9.3–DNS does not
understand, the zone will fail to load. A BIND 9 nameserver with BIND 4 slaves
should specify the ’transfer-format one-answer’ option in its named.conf. Otherwise,
any transfer will also fail.

BIND 4.9.3 does not understand NOTIFY, therefore, if BIND 4.9.3 is running as a
slave name server to a BIND 9 master, the DNS Change Notification protocol will
not work. The standard method of zone transfers applies, where the slave
periodically polls the master for an updated SOA serial number.

Queries
BIND 4.9.3 can participate in DNS queries when BIND 9 name servers are in the
DNS tree structure, even when the queries are for RR types that BIND 4.9.3 does
not understand. For example, if a resolver is pointed to a BIND 4.9.3–DNS and is
asked for an AAAA record (an RR type that BIND 4.9.3 name server does not
understand), BIND 4.9.3–DNS will recursively query other (possibly BIND 9) name
servers and return the answer to the client. The BIND 4.9.3–DNS will not cache the
response (in the case of RR types it does not understand), which may mean a little
more network traffic. This caching issue may or may not be significant depending
on your particular network traffic patterns.

Chapter 10. Domain Name System (DNS) 425

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

Dynamic update
BIND 4.9.3 version of Dynamic Update is incompatible with the BIND 9 version. For
dynamic update on BIND 4.9.3-DNS, use nsupdate with -V v4 start option. For
dynamic update on BIND 9-DNS, use nsupdate with -V v9 start option. Additionally,
only the DHCP server on z/OS and OS/2 can successfully dynamically update the
BIND 4.9.3–DNS.

DNSSEC
BIND 4.9.3 does not support DNSSEC.

TSIG
BIND 4.9.3 does not support TSIG security which may be used on queries, update
and zone transfers on BIND 9 name servers.

DNS/WLM (Sysplex connection balancing)
Cannot be done by a name server running in BIND 9 mode.

IPv6 support
Not supported by a BIND 4.9.3 name server.

Stack affinity
The BIND 9 name server is a generic server, unlike the BIND 4.9.3 name server
which has stack affinity. If stack affinity is desired for the BIND 9 name server, use
the _BPXK_SETIBMOPT_TRANSPORT environment variable.

NOTIFY
This function notifies the slave of a change in the master. It is not supported by a
BIND 4.9.3 name server.

Running the name server in BIND 9 and BIND 4.9.3 mode
simultaneously

The following describes the tasks involved in setting up the name server to run in
BIND 9 and BIND 4.9.3 modes simultaneously:

1. Bind each name server to its own set of IP interfaces.

a. Bind the BIND 9 name server to the set of IPv4 interfaces you wish to be
serviced by the BIND 9 name server using the ’listen-on{}’ option in the
named.conf file. The BIND 4.9.3 name server is unable to listen on IPv6
interfaces while the BIND 9 name server can. Therefore, IPv6 interfaces
cannot be shared among the BIND 4.9.3 and BIND 9 name servers. To
further specify interfaces for queries, transfers and notifies from a BIND 9
name server, the following BIND 9 configuration file options are also
available:

v query-source{}

v transfer-source{}

v notify-source{}

b. The BIND 4.9.3 name server cannot specify its own IPv4 interfaces in its
configuration file but it will listen, query and transfer on the IPv4 interfaces
not taken by the BIND 9 name server.

426 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|

|
|

Both servers can share port 53 if they connect to clients or other servers on
different IP addresses.

2. Specify port ownership.

Assign unique job names to the BIND 4.9.3 and BIND 9 name servers. Reserve
port 53 for TCP for both job names. Port 53 TCP port reservation jobname must
have a suffix of ’2’ for BIND 4.9.3 and a suffix of ’1’ for BIND 9. UDP port
reservation for multiple job names is not allowed.

3. Use the _BPX_JOBNAME environment variable if starting the name server from
the z/OS UNIX shell to distinguish the job names of the two name server
daemons.

Notes:

a. MVS jobname cannot be named for both BIND 4 and BIND 9 servers (for
example, call them namedv4 and namedv9).

b. PORT 53 UDP can only be reserved for one jobname because of a TCP/IP
profile restriction.

c. Jobname/step is unpredictable if the name server is directly started from the
z/OS UNIX shell.

d. Whether started from an MVS procedure or the z/OS UNIX shell, the port
can be generically reserved to UNIX applications: PORT 53 TCP (also UDP)
OMVS.

4. Store the name server process IDs (PIDs) in unique files.

Configure the BIND 9 name server to store the process ID (PID) in a file other
than the one used for the BIND 4.9.3 name server (/etc/named.pid). This is
done with the ’pid-file’ named.conf file option.

5. Configure client resolvers.

Configure clients’ resolver configuration data set or HFS file so that it points to
the interface or interfaces of the desired name server. This is typically specified
by the NSINTERADDR statement, or an equivalent statement. For more
information on how to configure the resolver, refer to “Understanding resolvers”
on page 12.

Setting up and running the name server
This section describes the tasks involved in configuring the name server and
verifying that the name server is working correctly.

Name server configuration files are arranged in a Hierarchical File System (HFS).
Before configuring DNS, the TSO user ID from which the name server is started
must have the proper authority to access the name server configuration and zone
files. For a complete description of file permissions within the HFS, refer to z/OS
UNIX System Services Planning.

Configuring a master (primary) name server
The name resolution process is an example of a client/server relationship in which
clients, through their resolvers, request a service (name resolution) from name
servers. For a general overview of name servers, see “Domain name servers” on
page 419.

The following summary lists the steps for configuring a master server or a
caching-only server:

1. Create a configuration file for your environment. Select a) or b):

a. Create the boot file for BIND 4.9.3–DNS .

Chapter 10. Domain Name System (DNS) 427

|

|
|

b. Create the configuration file for BIND 9–DNS.

2. For BIND 4.9.3 DNS only — Specify stack affinity (multiple stack environment).

3. Specify port ownership.

4. Update the name server start procedure.

5. Create the domain data files (master name server only).

6. Create the hints (root server) file.

7. Create the loopback file.

8. Ensure that the syslog daemon is running on your system.

9. Specify whether the name server is to run swappable or nonswappable.

10. Start the name server.

11. Verify that the name server started correctly.

12. Verify that the name server can accept queries.

The difference between configuring a master (primary) name server and slave
(secondary) and caching-only servers is the creation of domain data files (the
database files containing host-to-address and address-to-host mappings). The
domain data files are maintained on the master name server, and the slave name
server transfers this data to its own database. Examples of slave, caching-only, and
forward-only configurations are in “Configuring a slave name server” on page 450,
“Configuring a cache-only name server” on page 453, and “Adding forwarding to
your name server” on page 456.

Note: Continue with selecting Step 1a. or 1b.

Step 1a. Create the boot file for BIND 4.9.3–DNS
The boot file is the main configuration file for a domain name server. The named
daemon reads the boot file for information about how to set up the local name
server. The records in the boot file identify the type of name server, the zones over
which it has authority, the location of data for setting up its name resolution
database, and other configuration options. The default name of the boot file is
/etc/named.boot. You can specify an alternate boot file using the -b named start
option. For information about named options, refer to z/OS Communications Server:
IP Configuration Reference.

Note: The named daemon reads the boot file only when the named daemon starts
or when it receives a SIGHUP signal. For a description of named signals,
refer to z/OS Communications Server: IP Configuration Reference.

Each type of name server has a special boot file configuration. You create a boot
file using directives. Refer to z/OS Communications Server: IP Configuration
Reference for more information.

Boot files created locally for use by the name server are assumed to be in code
page IBM-1047. For systems using other code pages, use the iconv command to
translate from the local code page to code page IBM-1047. See z/OS UNIX System
Services Command Reference for more information.

A boot file for a master name server (a name server that maintains all the data for
its zone in database files) will need, at a minimum, to specify the zones for which
the name server will be authoritative, their locations in the HFS, and the location of
the hints file (the location of root name servers). A loopback file is also
recommended.

428 z/OS V1R4.0 CS: IP Configuration Guide

This example illustrates a name server acting as master for the forward zone
mycorp.com and the reverse zone 34.37.9.in-addr.arpa.

The sample BIND 4.9.3–DNS boot file shipped in /usr/lpp/tcpip/samples/named.boot
is shown below. Refer to the program directory for its location.
; LICENSED MATERIALS - PROPERTY OF IBM
; "RESTRICTED MATERIALS OF IBM"
; 5694-A01 (C) COPYRIGHT IBM CORP. 2001
;
; (C) COPYRIGHT International Business Machines Corp. 1985, 1993
; All Rights Reserved
; US Government Users Restricted Rights - Use, duplication or
; disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
;
; Licensed Materials - Property of IBM
;
;
; NOTICE TO USERS OF THE SOURCE CODE EXAMPLES
;
; INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE SOURCE CODE
; EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS, "AS IS" WITHOUT
; WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
; LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
; PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
; OF THE SOURCE CODE EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS,
; IS WITH YOU. SHOULD ANY PART OF THE SOURCE CODE EXAMPLES PROVE DEFECTIVE
; YOU ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR
; CORRECTION.
;
; Note: This file must be copied and renamed to /etc/named.boot and all
; zone files referenced below must be copied to /etc/dnsdata/ for
; this file to function as intended.
;
; /etc/named.boot
;
; boot file for name server
;
;
;type domain source file or host
;
directory /etc/dnsdata {1}
primary mycorp.com {2} db.mycorp.v4 {3}
primary 34.37.9.in-addr.arpa db.34.37.9.v4 {4} {5}
primary 0.0.127.in-addr.arpa db.loopback.v4 {7}
cache . db.cache {6}
options query-log {8}

This boot file specifies:

1. The location of the files (/etc/dnsdata).

2. The name server will be the primary name server for the mycorp.com zone.

3. The data for mycorp.com is contained in db.mycorp.v4.

4. The name server will be the primary name server for the reverse mapping zone,
34.37.9.in-addr.arpa.

5. The data for addresses 9.37.34.x contained in the zone will be specified in
db.34.37.9.v4.

6. The list of root name servers is in db.cache.

7. The name server defines the loopback address in the 0.0.127.in-addr.arpa
zone and the data is contained in the file, db.loopback.v4.

8. All queries coming in to this name server will be logged in the syslog daemon
output file.

Chapter 10. Domain Name System (DNS) 429

|

Step 1b. Create the configuration file for BIND 9–DNS.
The sample BIND 9-DNS configuration file shipped in
/usr/lpp/tcpip/samples/named.conf is shown below. Refer to the program directory
for its location.
LICENSED MATERIALS - PROPERTY OF IBM
"RESTRICTED MATERIALS OF IBM"
5694-A01 (C) COPYRIGHT IBM CORP. 2001
#
(C) COPYRIGHT International Business Machines Corp. 1985, 1993
All Rights Reserved
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
Licensed Materials - Property of IBM
#
#
NOTICE TO USERS OF THE SOURCE CODE EXAMPLES
#
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE SOURCE CODE
EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS, "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE SOURCE CODE EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS,
IS WITH YOU. SHOULD ANY PART OF THE SOURCE CODE EXAMPLES PROVE DEFECTIVE
YOU ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.
#
Note: This file must be copied and renamed to /etc/named.conf and all
all zone files referenced below must be copied to /etc/dnsdata/ for
this file to function as intended. In addition, the default location
for the process id file is in /var/run/pid.file; if that directory
does not exist a different one can be configured with the option:
#
pid-file "path/file-name";
#
/etc/named.conf
#
conf file for name server
#

options {
directory "/etc/dnsdata";

};

logging {
category "queries" {

default_syslog;
};

};

zone "mycorp.com" in {
type master;
file "db.mycorp.v9";

};

zone "34.37.9.in-addr.arpa" in {
type master;
file "db.34.37.9.v9";

};

zone "0.0.127.in-addr.arpa" in {
type master;
file "db.loopback.v9";

};

430 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|

zone "." in {
type hint;
file "db.cache";

};

Step 2. For BIND 4.9.3–DNS only: specify stack affinity (Multiple
stack environment)
In a multiple stack environment, the name server is like any application. It binds to
the stack specified by TCPIPJOBNAME. To run multiple name servers, each must
use a different TCPIPJOBNAME. See “Considerations for multiple instances of
TCP/IP” on page 54 for more information about specifying TCPIPJOBNAME.

Note: When changing TCPIPJOBNAME, any client needing to be connected to the
new stack name must be restarted (for example, any application, including
the name server, that is currently running, that is bound to the new stack
name specified by TCPIPJOBNAME).

Step 3. Specify port ownership
The name server uses a single port (53) for TCP and UDP sessions. Both servers
can share port 53 if they connect to clients or other servers on different IP
addresses:

v A BIND 9 server can specify IP addresses to listen on and from which to send
queries, notifies and zone transfers in its configuration file.

v A BIND 4 server cannot specify IP addresses in its configuration file but will use
any IP address not already selected by a BIND 9 server.

To specify port ownership when using the named start procedure for BIND 4.9.3,
add the following statements to the PROFILE.TCPIP data set:
PORT

53 TCP NAMED2
53 UDP NAMED2

To specify port ownership when using the named start procedure for BIND 9, add
the following statements to the PROFILE.TCPIP data set:
PORT

53 TCP NAMED1
53 UDP NAMED1

Notes:

1. MVS jobname cannot be named for both BIND 4 and BIND 9 servers (for
example, call them namedv4 and namedv9).

2. The jobname on the TCP and UDP port reservation statements requires a suffix
of 2 for BIND 4.9.3.

3. The jobname on the TCP and UDP port reservation statements requires a suffix
of 1 for BIND 9.

4. PORT 53 UDP can only be reserved for one jobname because of a TCP/IP
profile restriction.

5. Jobname/step is unpredictable if the name server is directly started from the
z/OS UNIX shell.

6. Whether started from an MVS procedure or the z/OS UNIX shell, the port can
be generically reserved to UNIX applications: PORT 53 TCP (also UDP) OMVS.

For more information on the PORT statement, refer to z/OS Communications
Server: IP Configuration Reference.

Chapter 10. Domain Name System (DNS) 431

|

|

Note: In order to pick up changes in the PROFILE.TCPIP data set, stop and restart
TCP/IP. As an alternative to stopping the stack, use the VARY
TCPIP,,OBEYFILE command to reserve the ports while the stack is up.

Step 4. Update the name server start procedure (Optional)
When choosing to start the name server from MVS, create a start procedure. This
is not necessary if the name server is started from the z/OS UNIX shell. Move the
sample start procedure, SEZAINST(NAMED), to a recognized PROCLIB. Specify name
server parameters and change the data set names as required to suit local
configuration. The boot file path (for BIND 4.9.3–DNS) or the conf file path (for
BIND 9–DNS) can also be changed as shown below in the sample start
procedures. If you want to have NAMED messages written out to SYSLOGD (HFS
file) instead of the system console (syslog), then you must start NAMED via
BPXBATCH as shown below:

BIND 4.9.3–DNS:
//*
//* TCP/IP for MVS
//* SMP/E Distribution Name: EZANSPRO
//*
//* Licensed Materials - Property of IBM
//* This product contains "Restricted Materials of IBM"
//* 5694-A01 (C) Copyright IBM Corp. 1997, 2000.
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions.
//*
//* NAMED can be started with a variety of parameters.
//* In this example, the "-b" parameter describes which
//* boot file NAMED should be started with.
//*
//NAMED PROC B=’/etc/named.boot’
//NAMED EXEC PGM=BPXBATCH,REGION=0K,TIME=NOLIMIT,
// PARM=’PGM /usr/lpp/tcpip/sbin/named -b &B ’
//*
//* NAMED can use certain environmental variables, such
//* as NLSPATH (to determine the location of the message
//* catalog), and RESOLVER_CONFIG (to determine the location
//* of the file that contains the parameter TCPIPjobname).
//* These variables can be specified in a file defined
//* by STDENV.
//* An example of the contents of this file follows:
//*
//* RESOLVER_CONFIG=//’SYS1.TCPPARMS(TCPDATA2)’
//* or
//* RESOLVER_CONFIG=/etc/resolv.conf.tcp2
//* or
//* _BPXK_SETIBMOPT_TRANSPORT=TCPCS
//* or
//* DNS_VERSION=v4
//*
//* Define STDENV with the name of the file that contains
//* the environmental variables to be used for this
//* invocation of NAMED.
//*
//*STDENV DD PATH=’/etc/named.env’,
//* PATHOPTS=(ORDONLY)
//*STDENV DD DSN=SAMPLE.NAMED(ENV&SYSCLONE),DISP=SHR
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//SYSIN DD DUMMY

432 z/OS V1R4.0 CS: IP Configuration Guide

|
|

//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//CEEDUMP DD SYSOUT=*

BIND 9–DNS:
//*
//* TCP/IP for MVS
//* SMP/E Distribution Name: EZANSPR9
//*
//* Licensed Materials - Property of IBM
//* This product contains "Restricted Materials of IBM"
//* 5694-A01 (C) Copyright IBM Corp. 1997, 2000.
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions.
//*
//* NAMED can be started with a variety of parameters.
//* In this example, the "-c" parameter describes which
//* configuration file NAMED should be started with.
//*
//NAMED PROC C=’/etc/named.conf’
//NAMED EXEC PGM=BPXBATCH,REGION=0K,TIME=NOLIMIT,
// PARM=’PGM /usr/lpp/tcpip/sbin/named -c &C ’
//*
//* NAMED can use certain environmental variables, such
//* as NLSPATH (to determine the location of the message
//* catalog), and RESOLVER_CONFIG (to determine the location
//* of the file that contains the parameter TCPIPjobname).
//* These variables can be specified in a file defined
//* by STDENV.
//* An example of the contents of this file follows:
//*
//* RESOLVER_CONFIG=//’SYS1.TCPPARMS(TCPDATA2)’
//* or
//* RESOLVER_CONFIG=/etc/resolv.conf.tcp2
//* or
//* DNS_VERSION=v9
//*
//* Define STDENV with the name of the file that contains
//* the environmental variables to be used for this
//* invocation of NAMED.
//*
//*STDENV DD PATH=’/etc/named.env’,
//* PATHOPTS=(ORDONLY)
//*STDENV DD DSN=SAMPLE.NAMED(ENV&SYSCLONE),DISP=SHR
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//CEEDUMP DD SYSOUT=*

Step 5. Create the domain data files (master name server only)
The domain data files contain information about a domain, such as the IP
addresses and names of the hosts in the domain for which the master name server
is authoritative. The forward domain data file contains entries that provide forward
mapping (host names-to-IP addresses for each host system in the zone) as well as
additional information about system resources. The reverse domain data file
contains entries that provide reverse mapping (IP addresses-to-host names). A
separate reverse domain data file for each network (or subnet) in a domain can be

Chapter 10. Domain Name System (DNS) 433

|

|

created. Definition of WLM and dynamic zones is covered in “Advanced BIND
4.9.3–Name server topics” on page 482. DNS/WLM is only supported by the BIND
4.9.3 name server.

Note: The TSO user ID from which the name server is started must have the
proper authority to access the name server configuration and zone files. For
a complete description of file permissions within the HFS, see the z/OS
UNIX System Services Planning (SC28–1890–02).

Naming of domain data files is flexible. For convenience in maintaining the
database files, it is common to give them names such as db.extension, where
extension identifies the domain of the data contained within. This document uses
this convention. It also uses the .v4 and .v9 suffixes to indicate the appropriate
nameserver version and the suffix .bak to specify a slave backup file.

Use the following to create domain data files:

v Control entries

v Resource records

v Special characters

Note: Refer to z/OS Communications Server: IP Configuration Reference for more
information about these files.

BIND 4.9.3–DNS: The sample forward domain file,
/usr/lpp/tcpip/samples/db.mycorp.v4, is listed below. Continuing the example that
started in the boot file, the file would be /etc/dnsdata/db.mycorp.v4.
; LICENSED MATERIALS - PROPERTY OF IBM
; "RESTRICTED MATERIALS OF IBM"
; 5694-A01 (C) COPYRIGHT IBM CORP. 2001
;
;
; (C) COPYRIGHT International Business Machines Corp. 1985, 1993
; All Rights Reserved
; US Government Users Restricted Rights - Use, duplication or
; disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
;
; Licensed Materials - Property of IBM
;
;
; NOTICE TO USERS OF THE SOURCE CODE EXAMPLES
;
; INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE SOURCE CODE
; EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS, "AS IS" WITHOUT
; WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
; LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
; PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
; OF THE SOURCE CODE EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS,
; IS WITH YOU. SHOULD ANY PART OF THE SOURCE CODE EXAMPLES PROVE DEFECTIVE
; YOU ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR
; CORRECTION.
;
;
; /etc/dnsdata/db.mycorp.v4
; name server zone data
;
$ORIGIN com.
mycorp IN SOA ns1.mycorp admin.mycorp ({1}

1 ; Serial (incremented when database is changed
10800 ; Refresh (slave will check every 3 hours
3600 ; Retry (retry every hour after refresh failure
604800 ; Expire (slave gives up retry after one week

434 z/OS V1R4.0 CS: IP Configuration Guide

86400) ; Time to Live (data cached in other servers 1 day
;
$ORIGIN mycorp.com. {2}
; define domain nameservers

IN NS ns1 {3}
IN NS ns2

; example delagation of a subdomain
;intranet IN NS ns1.intranet
;intranet IN NS ns2.intranet
;ns1.intranet IN A 9.37.35.10
;ns2.intranet IN A 9.37.35.11

_http._tcp SRV 0 0 80 www.mycorp.com. {4}
SRV 10 0 8000 www2.mycorp.com. {4)

_http._tcp.w3 SRV 0 0 80 www.mycorp.com. {5}
SRV 10 0 8000 www2.mycorp.com. {5}

localhost IN A 127.0.0.1
ns1 IN A 9.37.34.10
ns2 IN A 9.37.34.11

gateway IN A 9.37.34.30 {6}
IN A 9.37.35.30 {6}

host1 IN A 9.37.34.1
host2 IN A 9.37.34.2
host3 IN A 9.37.34.3
host4 IN A 9.37.34.4

www2 IN A 9.37.34.5
www IN A 9.37.34.6
www IN A 9.37.34.7

mail IN CNAME ns1 {7}
ftp IN CNAME ns2

{1}
The SOA (Start of Authority) record specifies the name server ns1 as the

authoritative name server for the domain mycorp.com. The mail address of the
person responsible for domain data is admin@mycorp.com.
The numbers enclosed in parentheses are parameters used to set different values
for the zone.

{2}
The control entry $ORIGIN appends the string mycorp.com. to all the following

host names that do not end with a dot (’.’).

{3}
The NS (Name Server) records specify the name servers in the zone. Note that

NS records do not distinguish between primary and secondary name servers.

{4}
The SRV records specify the location for the ’http’ service using the ’tcp’
protocol. The first record has a priority of 0, a weight of 0, uses port 80 and
the service is provided at host, www.mycorp.com. The second record has a priority
of 10 which is lower, a different port and target. A web client capable of using
SRV records requesting http://mycorp.com/ would be directed to www.mycorp.com and
www2.mycorp.com. The client would be responsible for determining which site to
connect to first based first on priority and then on weight.

{5}
The SRV record also specifies the location for the ’http’ service using the
’tcp’ protocol. A web client capable of using SRV records requesting
http://w3.mycorp.com/ would also be directed www.mycorp.com and www2.mycorp.com.

{6}

Chapter 10. Domain Name System (DNS) 435

These A (Address) records map the host name (gateway.mycorp.com) to the IP
addresses of the two networks to which it is connected.

{7}
The CNAME record specifies that the name mail is an alias for the host name

ns1.mycorp.com.

BIND 9–DNS: The sample forward domain file,
/usr/lpp/tcpip/samples/db.mycorp.v9, is listed below. Continuing the example that
started in the boot file, the file would be /etc/dnsdata/db.mycorp.v9.
; LICENSED MATERIALS - PROPERTY OF IBM
; "RESTRICTED MATERIALS OF IBM"
; 5694-A01 (C) COPYRIGHT IBM CORP. 2001
;
;
; (C) COPYRIGHT International Business Machines Corp. 1985, 1993
; All Rights Reserved
; US Government Users Restricted Rights - Use, duplication or
; disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
;
; Licensed Materials - Property of IBM
;
;
; NOTICE TO USERS OF THE SOURCE CODE EXAMPLES
;
; INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE SOURCE CODE
; EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS, "AS IS" WITHOUT
; WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
; LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
; PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
; OF THE SOURCE CODE EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS,
; IS WITH YOU. SHOULD ANY PART OF THE SOURCE CODE EXAMPLES PROVE DEFECTIVE
; YOU ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR
; CORRECTION.
;
;
; /etc/dnsdata/db.mycorp.v9
; name server zone data
;
; Default TTL value
$TTL 86400 {1}
$ORIGIN com.
mycorp IN SOA ns1.mycorp admin.mycorp ({2}

1 ; Serial (incremented when database is changed)
10800 ; Refresh (slave will check every 3 hours)
3600 ; Retry (retry every hour after refresh failure)
604800 ; Expire (slave gives up retry after 1 week)
7200) ; Negative caching (NXDOMAIN/NXRRSET responses, 2 hrs){3}

;
$ORIGIN mycorp.com. {4}
; define domain nameservers

IN NS ns1 {5}
IN NS ns2

; example delagation of a subdomain
;intranet IN NS ns1.intranet
;intranet IN NS ns2.intranet
;ns1.intranet IN A 9.37.35.10
;ns2.intranet IN A 9.37.35.11

_http._tcp SRV 0 0 80 www.mycorp.com. {6}
SRV 10 0 8000 www2.mycorp.com. {6}

_http._tcp.w3 SRV 0 0 80 www.mycorp.com. {7}
SRV 10 0 8000 www2.mycorp.com. {7}

localhost IN A 127.0.0.1
ns1 IN A 9.37.34.10
ns2 IN A 9.37.34.11

gateway IN A 9.37.34.30 {8}

436 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

IN A 9.37.35.30

host1 IN A 9.37.34.1
host2 IN A 9.37.34.2
host3 IN A 9.37.34.3
host4 IN A 9.37.34.4

www2 IN A 9.37.34.5
www IN A 9.37.34.6
www IN A 9.37.34.7

;IPv6 addresses
www IN AAAA 3ffe:8050:201:1860:42::1 {9}
www IN A6 0 3ffe:8050:201:1860:42::1 {10}

mail IN CNAME ns1 {11}
ftp IN CNAME ns2

{1}
The rules for time-to-live values have been complicated somewhat in BIND v9. If

named finds a $TTL directive it follows TTL semantics defined in RFC 2308, which
states that records not explicitly setting a TTL inherit the TTL from the $TTL value.
If there is no $TTL set, it follows TTL semantics from RFCs 1035 and 1035, which
state that records with no explicit TTL inherit one from the previous record.
This implies that to follow RFC 1034/1035 semantics, the SOA RR must set its
TTL value. For simplicity, it is recommended that you always specify a $TTL
value. This line sets the default TTL for all records to 86400 seconds (one day).

{2}
The SOA (Start of Authority) record specifies the name server ns1 as the

authoritative name server for the domain mycorp.com. The mail address of the
person responsible for domain data is admin@mycorp.com. The numbers enclosed
in parentheses are parameters used to set different values for the zone.

{3}
The meaning of the last SOA value has changed from BIND v4 to V9. It

now represents length of time other servers should cache negative responses
from this zone. This line sets that value to 7200 seconds (two hours).

{4}
The control entry $ORIGIN appends the string mycorp.com. to all the

following host names that do not end with a dot (’.’).

{5}
The NS (Name Server) records specify the name servers in the zone. Note

that NS records do not distinguish between primary and secondary name servers.

{6}
The SRV records specify the location for the ’http’ service using the

’tcp’ protocol. The first record has a priority of 0, a weight of 0, uses
port 80 and the service is provided at host, www.mycorp.com. The second record
has a priority of 10 which is lower, a different port and target. A web client
capable of using SRV records requesting http://mycorp.com/ would be directed to
www.mycorp.com and www2.mycorp.com. The client would be responsible for
determining which site to connect to first based first on priority
and then on weight.

{7}
The SRV record also specifies the location for the ’http’ service using the
’tcp’ protocol. A web client capable of using SRV records requesting
http://w3.mycorp.com/ would also be directed www.mycorp.com and www2.mycorp.com.

{8}
These A (Address) records map the host name (gateway.mycorp.com) to the IP

addresses of the two networks to which it is connected.

{9}
The AAAA IPv6 record type sets the IPv6 address of www.mycorp.com to

3ffe:8050:201:1860:42::1.

{10}
The A6 IPv6 record type is an experimental way of specifying IPv6 addresses.

Chapter 10. Domain Name System (DNS) 437

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

This record sets the address of www.mycorp.com to 3ffe:8050:201:1860:42::1. The ’0’
indicates that the address value is fully qualified (starts at bit 0). See the
most recent edition of DNS and BIND by Cricket Liu and Paul Albitz (O’Reilly and
Associates, Inc.) for more information on A6 records.

{11}
The CNAME record specifies that the name mail is an alias for the host name

ns1.mycorp.com.

BIND 4.9.3–DNS: The sample reverse domain file
/usr/lpp/tcpip/samples/db.34.37.9.v4 is listed below. Continuing the example that
started in the boot file, the file would be /etc/dnsdata/db.34.37.9.v4.
; LICENSED MATERIALS - PROPERTY OF IBM
; "RESTRICTED MATERIALS OF IBM"
; 5694-A01 (C) COPYRIGHT IBM CORP. 2001
;
; /etc/dnsdata/db.34.37.9.v4
;
$ORIGIN 37.9.in-addr.arpa.

34 IN SOA ns1.mycorp.com. admin.mycorp.com. (
1 10800 3600 604800 86400)

34 IN NS ns1.mycorp.com.
34 IN NS ns2.mycorp.com.
$ORIGIN 34.37.9.in-addr.arpa.
10 IN PTR ns1.mycorp.com.
11 IN PTR ns2.mycorp.com.

1 IN PTR host1.mycorp.com.
2 IN PTR host2.mycorp.com.
3 IN PTR host3.mycorp.com.
4 IN PTR host4.mycorp.com.
5 IN PTR www2.mycorp.com.
6 IN PTR www.mycorp.com.
7 IN PTR www.mycorp.com.

20 IN PTR printserver.mycorp.com.

Note: Data files created locally for use by the name server are assumed to be in
code page IBM-1047. For systems using other code pages, use the iconv
command to translate from the local code page to code page IBM-1047.
Refer to z/OS UNIX System Services Command Reference for more detailed
information about this command. Files read through a network connection
(for example, secondary data files) are converted to IBM-1047 by the name
server before they are written to the local file system.

FTP can also be used to convert the files to code page IBM-1047.

BIND 9–DNS: The sample reverse domain file /usr/lpp/tcpip/samples/db.34.37.9.v9
is listed below. Continuing the example that started in the boot file, the file would be
/etc/dnsdata/db.34.37.9.v9.
; LICENSED MATERIALS - PROPERTY OF IBM
; "RESTRICTED MATERIALS OF IBM"
; 5694-A01 (C) COPYRIGHT IBM CORP. 2001
;
; /etc/dnsdata/db.34.37.9.v9
;
; Default TTL value
$TTL 86400
$ORIGIN 37.9.in-addr.arpa.

34 IN SOA ns1.mycorp.com. admin.mycorp.com. (

438 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

1 10800 3600 604800 7200)

34 IN NS ns1.mycorp.com.
34 IN NS ns2.mycorp.com.
$ORIGIN 34.37.9.in-addr.arpa.
10 IN PTR ns1.mycorp.com.
11 IN PTR ns2.mycorp.com.

; Build similar reverse lookup records
$GENERATE 1-4 $ PTR host$.mycorp.com. {1}
; The following records are generated by the above $GENERATE directive.
;1 IN PTR host1.mycorp.com.
;2 IN PTR host2.mycorp.com.
;3 IN PTR host3.mycorp.com.
;4 IN PTR host4.mycorp.com.
5 IN PTR www2.mycorp.com.
6 IN PTR www.mycorp.com.
7 IN PTR www.mycorp.com.

20 IN PTR printserver.mycorp.com.

{1}
$GENERATE is a v9-specific directive that is useful for creating a series of
records that differ only by an iterator. This line prompts the name server to
create the records listed below upon zone load. For more information on
$GENERATE, refer to the z/OS Communications Server: IP Configuration Reference.

Note: Data files created locally for use by the name server are assumed to be in
code page IBM-1047. For systems using other code pages, use the iconv
command to translate from the local code page to code page IBM-1047.
Refer to z/OS UNIX System Services Command Reference for more detailed
information about this command. Files read through a network connection
(for example, secondary data files) are converted to IBM-1047 by the name
server before they are written to the local file system.

FTP can also be used to convert the files to code page IBM-1047.

Step 6. Create the hints (root server) file
The hints file contains the names and IP addresses of the authoritative root domain
name servers. The root name servers contain the names of name servers in the
top-level domains such as com, edu, and mil. The name server uses root server
information when deciding which name server to contact when it receives a query
for a host outside its zone of authority and it does not have the data in its cache.

Note: The hints file does not contain cached data nor does the name server
provide other hosts with the information contained in the hints file. A
forward-only server is the only type of name server that does not require a
hints file.

To obtain a hints file, point your Web browser at ftp://ftp.rs.internic.net and
retrieve the file named.root from the domain subdirectory. Update your hints file on a
regular basis.

The cache directive in a BIND 4.9.3 boot file specifies the path and name of the
hints file.

The hints file in a BIND 9 config file is specified with a zone{} statement of type
’hints’.

Chapter 10. Domain Name System (DNS) 439

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

An example of a hints file originally copied from
ftp://ftp.rs.internic.net/domain/named.root is listed below. Continuing the
example that began in the boot and conf files, the file would be
/etc/dnsdata/db.cache.

; This file holds the information on root name servers needed to
; initialize cache of Internet domain name servers
; (e.g., reference this file in the "cache . <file>"
; or zone "." { type hint; file "db.cache"; };
; in a v4 or v9 config file, respectively.
; configuration file of BIND domain name servers).
;
; This file is made available by InterNIC registration services
; under anonymous FTP as
; file /domain/named.root
; on server FTP.RS.INTERNIC.NET
; -OR- under Gopher** at RS.INTERNIC.NET
; under menu InterNIC Registration Services (NSI)
; submenu InterNIC Registration Archives
; file named.root
;
; last update: May 19, 1997
; related version of root zone: 1997051700
;
; formerly NS.INTERNIC.NET
;
. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
;
; formerly NS1.ISI.EDU
;
. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107
;
; formerly C.PSI.NET
;
. 3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12
;
; formerly TERP.UMD.EDU
;
. 3600000 NS D.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET. 3600000 A 128.8.10.90
;
; formerly NS.NASA.GOV
;
. 3600000 NS E.ROOT-SERVERS.NET.
E.ROOT-SERVERS.NET. 3600000 A 192.203.230.10
;
; formerly. NS.ISC.ORG
;
. 3600000 NS F.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET. 3600000 A 192.5.5.241
;
; formerly NS.NIC.DDN.MIL
;
. 3600000 NS G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4
;
; formerly AOS.ARL.ARMY.MIL
;
. 3600000 NS H.ROOT-SERVERS.NET.
H.ROOT-SERVERS.NET. 3600000 A 128.63.2.53
;
; formerly NIC.NORDU.NET
;
. 3600000 NS I.ROOT-SERVERS.NET.

440 z/OS V1R4.0 CS: IP Configuration Guide

I.ROOT-SERVERS.NET. 3600000 A 192.36.148.17
;
; temporarily housed at NSI (InterNIC)
;
. 3600000 NS J.ROOT-SERVERS.NET.
J.ROOT-SERVERS.NET. 3600000 A 198.41.0.10
;
; housed in LINX, operated by RIPE NCC
;
. 3600000 NS K.ROOT-SERVERS.NET.
K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129
;
; temporarily housed at ISI (IANA)
;
. 3600000 NS L.ROOT-SERVERS.NET.
L.ROOT-SERVERS.NET. 3600000 A 198.32.64.12
;
; temporarily housed at ISI (IANA)
;
. 3600000 NS M.ROOT-SERVERS.NET.
M.ROOT-SERVERS.NET. 3600000 A 198.32.65.12
; End of File

Step 7. Create the loopback file
The loopback file contains the loopback address. This is the address that a host
uses to route queries to itself. The preferred loopback address is 127.0.0.1,
although you can configure additional loopback interfaces in the PROFILE.TCPIP.
For BIND 4.9.3, DNS will bind to 127.0.0.1 in addition to the first loopback address
configured in PROFILE.TCPIP. BIND 9 mode requires the availability to bind onto
loopback address 127.0.0.1.

BIND 9 and BIND 4 server modes coexistence on the same host requires different
loopback addresses. If BIND 9 and BIND 4.9.3 are to be started on the same host,
once BIND 9 mode is started, BIND 4 mode server will have to use a different
loopback address. BIND 4 server master forward and reverse zone files should
define A and PTR resource records, respectively, for the appropriate loopback
addresses.

This guide uses the extension .loopback to specify the loopback file.

Note: In addition to creating the loopback file, add an address resource record
called localhost to the forward domain data file. This record supports proper
two-way resolution.

Use the following elements to create the loopback file:

v Control entries

v Resource records

v Special characters

Note: Refer to z/OS Communications Server: IP Configuration Reference for more
information about these files.

BIND 4.9.3–DNS: The sample loopback file for BIND 4.9.3 shipped in
/usr/lpp/tcpip/samples/db.loopback.v4 is listed below. Continuing the example that
started in the boot and .conf files, the file would be /etc/dnsdata/db.loopback.v4.
; LICENSED MATERIALS - PROPERTY OF IBM
; "RESTRICTED MATERIALS OF IBM"
; 5694-A01 (C) COPYRIGHT IBM CORP. 2001
;
; /etc/dnsdata/db.loopback.v4

Chapter 10. Domain Name System (DNS) 441

;
0.0.127.in-addr.arpa. IN SOA ns1.mycorp.com. admin.mycorp.com. (

1
10800
3600
604800
86400)

0.0.127.in-addr.arpa. IN NS ns1.mycorp.com.
0.0.127.in-addr.arpa. IN NS ns2.mycorp.com.
1.0.0.127.in-addr.arpa. IN PTR localhost.

For DNS/WLM and BIND 4.9.3: To get the sysplex domain name, add the
following PTR record to the loopback file in the loopback zone:

128.0.0.127.in-addr.arpa. IN PTR Sysplex_Domain_Name.

Sysplex_Domain_Name is the domain name of the sysplex (specified as cluster
zone in the master boot file). Do not forget to put a period (.) after the
Sysplex_Domain_Name. Note that all of the sysplex name servers must be updated
with this change.

BIND 9–DNS: The sample loopback file for BIND 9 shipped in
/usr/lpp/tcpip/samples/db.loopback.v9 is listed below. Continuing the example that
started in the boot file, the file would be /etc/dnsdata/db.loopback.v9.
; LICENSED MATERIALS - PROPERTY OF IBM
; "RESTRICTED MATERIALS OF IBM"
; 5694-A01 (C) COPYRIGHT IBM CORP. 2001
;
; /etc/dnsdata/db.loopback.v9
;
; Default TTL value
$TTL 86400
0.0.127.in-addr.arpa. IN SOA ns1.mycorp.com. admin.mycorp.com. (

1
10800
3600
604800
7200)

0.0.127.in-addr.arpa. IN NS ns1.mycorp.com.
0.0.127.in-addr.arpa. IN NS ns2.mycorp.com.
1.0.0.127.in-addr.arpa. IN PTR localhost.

A separate loopback file is required for use with the IPv6 loopback address (::1).
The following shows an example named.conf configuration and the associated zone
file.
IPv6 loopback master zone simple definition in named.conf: zone
"1.0.ip6.arpa" { type master; file "loopback.v6"; };

loopback.v6 zone file (with implied domain origin from above master zone definition)

$TTL 86400
@ IN SOA ns1.mycorp.com. admin.mycorp.com. (

1
10800
3600
604800
7200)

NS ns1.mycorp.com.
PTR localhost.

Step 8. For BIND 9 only — configure logging
A wide variety of logging options for the nameserver can be configured via the
logging statement. Its channel phrase associates output methods, format options

442 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

and severity levels with a name that can then be used with the category phrase to
select how various classes of messages are logged.

Only one logging statement is used to define as many channels and categories as
are wanted. If there is no logging statement, the logging configuration will be:
logging {

category "default" { "default_syslog"; "default_debug"; };
};

In BIND 9, the logging configuration is only established when the entire
configuration file has been parsed. When the server is starting up, all logging
messages regarding syntax errors in the configuration file go to the default
channels. Therefore, if started from a procedure, the logging messages will be
written to syslogd. If started from z/OS UNIX, the logging messages may be written
to ’named.run’ if started with the –d option, in addition to syslog.

All log output goes to one or more channels; you can make as many of them as
you want. Every channel definition must include a clause that says whether
messages selected for the channel go to a file, to a particular syslog facility, or are
discarded. It can optionally also limit the message severity level that will be
accepted by the channel (the default is info), and whether to include a
named-generated time stamp, the category name, the severity level, and the thread
ID (the default is to include all).

Messages written to logging files can be buffered according to the value on the
max-buffered-messages options statement. The default value is the maximum
allowed value of 35. Buffering messages to logging files will provide some amount
of a performance advantage. However, it might be misleading when viewing a
logging file while the name server is running, since the most recent logging
information might not have been written yet to the file.

The word null specified as the destination option for the channel will cause all
messages sent to it to be discarded; in that case, other options for the channel are
meaningless.

The file names the HFS path name for the log file and can include limitations, both
on how large the file is allowed to become and how many versions of the file will be
saved each time the file is opened.

The size option for files is simply a hard ceiling on log growth. If the file ever
exceeds the size and the version is zero, then named will not write anything more
to it until the file is reopened, which will be done after the file is renamed or erased.
If version option value is 1 or more, the current file, when full, is renamed with a
suffix and another file is opened with the original name. In the latter case, logging
will continue in a round robin fashion using the current file name and the suffixed
file names. The default behavior is not to limit the size of the file. Note that if debug
is enabled, the logs can grow large very quickly and you may run the risk of filling
up your HFS. Therefore, it is recommended that you limit the size of the file when
debugging is enabled.

If you use the version log file option, then named will retain that many backup
versions of the file by renaming them when opening. For example, if you choose to
keep 3 old versions of the file lamers.log then just before it is opened lamers.log.1
is renamed to lamers.log.2 , lamers.log.0 is renamed to lamers.log.1 , and

Chapter 10. Domain Name System (DNS) 443

|
|

|
|
|
|
|
|

|

|

lamers.log is renamed to lamers.log.0 . No rolled versions are kept by default; any
existing log file is simply appended. The unlimited keyword is synonymous with 99
in current BIND releases.

Example usage of the size and versions options:
channel "an_example_channel" {

file "example.log" versions 3 size 20m;
print-time yes;
print-category yes;
print-threadid yes;

};

The argument for the syslog clause is a syslog facility. Refer to the z/OS
Communications Server: IP Configuration Reference for more detailed parameter
information.

The severity clause works like syslog’s priorities, except that they can also be used
if you are writing straight to a file rather than using syslog . Messages which are not
at least of the severity level given will not be selected for the channel; messages of
higher severity levels will be accepted. Severity level decreases from critical down
to info, and further decreases from debug 1 down to debug 99.

If you are using syslog , then the syslog.conf priorities will also determine what
eventually passes through. For example, defining a channel facility and severity as
daemon and debug but only logging daemon.warning via syslog.conf will cause
messages of severity info and notice to be dropped. If the situation were reversed,
with named writing messages of only warning or higher, then syslogd would print all
messages it received from the channel.

The server can supply extensive debugging information when it is in debugging
mode. If the server’s global debug level is greater than zero, then debugging mode
will be active. The global debug level is set by starting the named server with the -d
flag followed by a positive integer. All debugging messages in the server have a
debug level, and higher debug levels give more detailed output. The maximum
debug level is 99. Channels that specify a specific debug severity, for example:
channel "specific_debug_level" {

file "foo";
severity debug 3;

};

will get debugging output of level 3 or less any time the server is in debugging
mode, regardless of the global debugging level. Channels with dynamic severity use
the server’s global level to determine what messages to print.

The print– options can be used in any combination.

If the following is turned on . . . Then the following is logged . . .

print–time date and time

print–category category of the message

print–severity severity level of the message

print–threadid the thread ID that is issuing the message

Note: print–time can be specified for a syslog channel, but is usually pointless since syslog
also prints the date and time.

444 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|

|
|

|

|||

||

||

||

||

|
|
|

The print– options are always printed in the following order: time, category, severity,
and thread ID. Here is an example:
Apr 24 09:28:05.848 queries: info: 0a923850: EZZ8828I client 127.0.0.1#20021:

query: host1.mycorp.com IN A

There are four predefined channels that are used for named ’s default logging as
follows:
channel "default_syslog" {

syslog daemon; // end to syslog’s daemon
// facility

severity info; // only send priority info
// and higher

};
channel "default_debug" {

file "named.run"; // write to named.run in
// the working directory
// Note: stderr is used instead
// of "named.run"
// if the server is started
// with the ’-f’ option.

severity dynamic // log at the server’s
// current debug level

};
channel "default_stderr" { // writes to stderr

file "<stderr>"; // this is illustrative only;
// there’s currently no way of
// specifying an internal file
// descriptor in the
// configuration language.

severity info; // only send priority info
// and higher

};
channel "null" {

null; // toss anything sent to
// this channel

};

The default_debug channel normally writes to a file named.run in the server’s
working directory. For security reasons, when the -u command line option is used,
the named.run file is created only after named has changed to the new UID, and
any debug output generated while named is starting up and still running as root is
discarded.

Once a channel is defined, it cannot be redefined. Thus you cannot alter the built-in
channels directly, but you can modify the default logging by pointing categories at
channels you have defined.

There are many categories, so you can send the logs you want to see wherever
you want, without seeing logs you do not want. If you don’t specify a list of
channels for a category, then log messages in that category will be sent to the
default category instead. If you don’t specify a default category, the following
″default default″ is used:
category "default" { "default_syslog"; "default_debug"; };

As an example, say you want to log security events to a file, but you also want
keep the default logging behavior. You would specify the following:
channel "my_security_channel" {

file "my_security_file";
severity info;

};
category "security" {

Chapter 10. Domain Name System (DNS) 445

|
|

|
|

"my_security_channel";
"default_syslog";
"default_debug";

};

To discard all messages in a category, specify the null channel:
category "xfer-out" { "null"; };
category "notify" { "null"; };

In the following example:

v Four channels have been defined to make it possible to browse and keep logs
for some categories separately. In theory, each category can log to one or more
different channels, but keeping the number of channels to a minimum is
recommended.

v Most existing categories have been specifically associated with one or more
channels to demonstrate logging flexibility. However, categories directed to the
main log only may be omitted and instead, covered by the default category. One
exception is the queries category, which requires a specific channel association
to enable queries logging.

v Every channel log entry will be prefixed with time stamp, category, severity, and
thread ID.

Note: The default for all print- options is yes.

v Every channel has been customized for maximum file size and for keeping 2
archived files in addition to the active log file. Make sure the disk has enough
space for the total maximum size of active and archived log files, and extra
space for any other growing logs or files.

v Every channel but transfer_log will log messages up to debug level 99 which is
the suggested detailed level to gather problem documentation but can fill up
logging files quickly. Lower debug levels (e.g. 11, info, error) may be used for
normal operation.

v - transfer_log is shown at debug level 7, where minimal zone transfer starting
and stopping activity is recorded. Increasing level to 8 and above will
considerably increase logging activity, mainly for large zones with one-answer
transfer format.

v ″severity dynamic;″ can also be set for any channel, in which case debug level is
determined by named -d start option value.

v The default_debug channel can be specified instead of one or more user defined
channels, in which case logging goes to ″named.run″ file in the named working
directory. No maximum file size will stop logging to named.run.

logging {
channel main_log {

file "/tmp/named_main.log" versions 2 size 20M;
print-time yes;
print-category yes;
print-severity yes;
print-threadid yes;
severity debug 99;

};
channel security_log {

file "/tmp/named_security.log" versions 2 size 1M;
severity info;
severity debug 99;

};
channel query_log {

file "/tmp/named_query.log" versions 2 size 10M;
severity info;

446 z/OS V1R4.0 CS: IP Configuration Guide

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

severity debug 99;
};

channel transfer_log {
file "/tmp/named_transfer.log" versions 2 size 10M;
severity debug 7;

};

category client { main_log; };
category config { main_log; };
category database { main_log; };
category dispatch { main_log; };
category dnssec { security_log; main_log; };
category general { main_log; };
category network { main_log; };
category notify { main_log; };
category resolver { main_log; };
category security { security_log; main_log; };
category update { main_log; };
category queries { query_log;};
category lame-servers { query_log; main_log; };
category xfer-in { "transfer_log"; };
category xfer-out { "transfer_log"; };
category default { main_log; };
category unmatched { main_log; };

};

More detail about the available categories and brief descriptions of the types of log
information they contain can be found in the z/OS Communications Server: IP
Configuration Reference.

Step 9. Ensure that the syslog daemon is running on your
system
The name server uses the syslog daemon to log messages. To verify that the name
server starts correctly or to diagnose problems, the syslog daemon should be
running.

If your syslog daemon is not configured, see “Creating the syslog file” on page 458
for information regarding the syslog daemon.

Step 10. Specify whether the name server is to run swappable or
nonswappable
You might want to run the name server in a swappable state, as it has in the past.
This is an optional step. Keep in mind that when an application makes an address
space nonswappable, it might convert additional real storage in the system to
preferred storage. Because preferred storage cannot be configured offline, allowing
the name server to run in a nonswappable state can reduce the installation’s ability
to reconfigure storage in the future.

If you want to run the name server as swappable, you must have the
″BPX.STOR.SWAP″ FACILITY class profile defined to RACF with no universal
access. To do this, enter the following commands from a RACF user ID.
RDEFINE FACILITY BPX.STOR.SWAP UACC(NONE)
SETROPTS RACLIST(FACILITY) REFRESH

The name server will also run as swappable if the ″BPX.STOR.SWAP″ FACILITY is
not defined and the name server is started from a user ID with a UID not equal to
0.

Chapter 10. Domain Name System (DNS) 447

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

If you want the name server to run in a nonswappable state, do one of the
following:

v Do not define the BPX.STOR.SWAP facility to RACF and start the name server
from a user ID with a UID=0.

v Define the facility to RACF and allow the appropriate users at least READ access
to the facility.

The latter method can be accomplished with the following set of commands:
RDEFINE FACILITY BPX.STOR.SWAP UACC(NONE)
PERMIT BPX.STOR.SWAP CLASS(FACILITY) ID(userid) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

Step 11. Start the name server
Your name server is ready to start. Start the name server using the following
methods:

v A supervisor with an authorized TSO ID can start a name server from the MVS
operator’s console by starting the named start procedure. If the boot or config file
path is not /etc, specify the correct path in the start procedure. Refer to z/OS
Communications Server: IP Configuration Reference for start options. A sample
start procedure is provided with the product and is found in SEZAINST(NAMED4)
for BIND 4.9.3 and in SEZAINST(NAMED9) for BIND 9.

v A user ID with superuser authority can start the name server from the shell by
starting z/OS UNIX, then issuing the named command and, optionally, any
parameters.

v It is also possible to start the server automatically when z/OS UNIX is started by
specifying the path and file name of the z/OS UNIX initialization shell script in the
/etc/init.options file using the -sc option:
-sc /etc/rc shell script = /etc/rc

The file /etc/rc is the default z/OS UNIX initialization shell script that is executed
when z/OS UNIX is started. See z/OS Communications Server: IP Migration for
more detail. Information such as the following can be entered in /etc/rc:
FOR BIND 4.9.3-DNS

Start name server
/usr/lpp/tcpip/sbin/named -b /named/production/named.boot &

FOR BIND 9-DNS

Start name server
/usr/lpp/tcpip/sbin/named -c /named/production/named.conf &

Port 53 may be reserved for the name server in the PROFILE.TCPIP data set.
For directions on specifying port ownership, see “Step 3. Specify port ownership”
on page 431. Only when in BIND 4 mode, when the stack to which named binds
is started, named completes initialization. The BIND 9 name server may only be
started after TCP/IP is up. In rare circumstances, the BIND 9 name server may
complete initialization before all of the stack’s interfaces have been brought up.
In this case, the name server will not be listening on all desired interfaces.
Eventually, the name server will scan the stack interfaces again, and begin
listening on all desired interfaces. The default time period for this rescan is one
minute. You can have the name server rescan the interfaces at the interval you
desire by specifying the ″interface-interval″ option in the named.conf file.

448 z/OS V1R4.0 CS: IP Configuration Guide

|
|

v If you are starting the BIND 4.9.3 name server, use the AUTOLOG statement to
start the name server automatically during initialization with z/OS UNIX running.
Insert the name of the named start procedure in the AUTOLOG statement of the
PROFILE.TCPIP data set.
AUTOLOG

NAMED
ENDAUTOLOG

The JOBNAME keyword should not be added to the AUTOLOG statement for
named.

If you are starting the BIND 9 name server, use some other automation outside
of AUTOLOG to automatically start the name server since it is a generic server.
For more information on the AUTOLOG statement, refer to z/OS Communications
Server: IP Configuration Reference.

Note: Named cannot be started from INETD.

Step 12. Verify that the name server started correctly

BIND 4.9.3–DNS: After starting the name server, ensure that no errors occurred
when it was started. Look at the syslog daemon output data set for name server
messages. If startup is successful, messages similar to the following are displayed:
named[22]: EZZ6698I name server starting. @(#) ddns/ns/ns_main.c,

dns_ns, dns_r1.1 1.62 9/23/97 10:57:21
named[22]: EZZ6701I named established affinity with ’TCPCS’
named[22]: EZZ6540I Static primary zone ’raleigh.ibm.com’ loaded (serial 1)
named[22]: EZZ6540I Static primary zone ’34.37.9.inaddr.arpa’ loaded (serial 1)
named[22]: EZZ6540I Static primary zone ’0.0.127.inaddr.arpa’ loaded (serial 1)
named[22]: EZZ6540I Static cache zone ’’ loaded (serial 0)
named[23]: EZZ6475I named: ready to answer queries.

To correct errors, either stop and restart the name server to pick up the changes, or
reload the name server with the -SIGHUP signal.

To stop the name server from the z/OS UNIX shell, issue:
kill -TERM $(cat /etc/named.pid)

To stop the name server from the MVS console, issue the following:
p named3
(Use the name of the procedure that is currently active. This is
usually the proc name that was used to start the name server, followed
by a ’1’ for BIND 9 server, by a ’3’ for BIND 4 server, due to extra forking
steps on startup)

To reload the BIND 4.9.3 name server with a signal, issue the following command
from the z/OS UNIX shell:
kill -HUP $(cat bind9_pid_file)

where named_pid_path is derived from pid-file option in named v9 configuration file.

BIND 9–DNS: After starting the name server, ensure that no errors occurred when
it was started. Look at the syslog daemon output data set for name server
messages. If startup is successful, messages similar to the following are displayed:
Mar 26 ... mvsw named[...29]: EZZ9172I VM mode detected. Using 1 CPU(s) for -n option
Mar 26 ... mvsw named[...56]: EZZ9547I starting named, BIND 9.2.0 -c /etc/namedgm.conf
Mar 26 ... mvsw named[...56]: EZZ9095I STARTING NAMED, BIND 9.2.0
Mar 26 ... mvsw named[...56]: EZZ9217I Running non-swappable
Mar 26 ... mvsw named[...56]: EZZ9540I using 1 CPU

Chapter 10. Domain Name System (DNS) 449

|

|
|

|

|

|
|
|
|
|
|

Mar 26 ... mvsw named[...56]: EZZ9126I loading configuration from ’/etc/namedgm.conf’
Mar 26 ... mvsw named[...56]: EZZ8842I the default for the ’auth-nxdomain’ option is now ’no’
Mar 26 ... mvsw named[...56]: EZZ9052I no IPv6 interfaces found
Mar 26 ... mvsw named[...56]: EZZ9046I listening on IPv4 interface VLINK1, 9.67.116.122#53
Mar 26 ... mvsw named[...56]: EZZ9046I listening on IPv4 interface TR1, 9.67.113.75#53
Mar 26 ... mvsw named[...56]: EZZ9046I listening on IPv4 interface loopback127, 127.0.0.1#53
Mar 26 ... mvsw named[...56]: EZZ9111I command channel listening on 9.67.113.75#953
Mar 26 ... mvsw named[...56]: EZZ9130I NAMED, BIND 9.2.0 IS RUNNING

To stop the name server from the z/OS UNIX shell, issue:
kill -TERM $(cat /etc/named.pid)

To stop the name server from the MVS console, issue the following:
p named1
(Use the name of the procedure that is currently active. This is
usually the proc name that was used to start the name server, followed
by a ’1’ for BIND 9 server, by a ’3’ for BIND 4 server, due to extra
forking steps on startup)

To reload the BIND 9 name server with a signal, issue the following command from
the z/OS UNIX shell:
kill -HUP $(cat bind9_pid_file)

rndc can also be used to reload or stop the server. Refer to “Remote Name
Daemon Control (rndc)” on page 458 for more details on the rndc command.

Step 13. Verify the name server can accept queries
When the name server is up with no logged errors, ensure that it can accept
queries. Ensure that the name server can accept queries locally from both the MVS
and z/OS UNIX environments. In order to correctly set up these environments, see
“Understanding search orders of configuration information” on page 18 for
instructions.

After the resolver configuration is correct, test with the nslookup or dig command.
An example using nslookup follows.

Issue the following command from both the z/OS UNIX shell and the TSO ready
prompt. In the following example, the name ’host1.mycorp.com.’ is used for the
search.

Note: Choose any name in the domain you have defined.
nslookup host1.mycorp.com

Using the sample files in this example, the following should be the result when the
command is issued:
$ nslookup host1.mycorp.com
Defaulting to nslookup version 4
Starting nslookup version 4
Server: localhost
Address: 127.0.0.1

Name: host1.mycorp.com
Address: 9.37.34.1

Configuring a slave name server
After setting up a working master name server, one or more slave name servers
can be set up. This process is very similar as configuring a master name server.
The differences are in the boot file for BIND 4.9.3 and the conf file for BIND 9 and
the absence of the domain data files.

450 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

For example, see “Configuring a master (primary) name server” on page 427 to
configure a slave server for the forward and reverse mapping zones. The steps are
identical to the steps for configuring a master name server, except for step 1. For
step 1, more information is included below in the subsections following the steps.

1. Create a configuration file for your environment:

a. Create the boot file for BIND 4.9.3–DNS. See “Step 1a. Create the boot file
for BIND 4.9.3–DNS”.

b. Create the configuration file for BIND 9–DNS. See “Step 1b. Create the
configuration file for BIND 9–DNS.” on page 452.

2. See “Step 2. For BIND 4.9.3–DNS only: specify stack affinity (Multiple stack
environment)” on page 431.

3. See “Step 3. Specify port ownership” on page 431.

4. See “Step 4. Update the name server start procedure (Optional)” on page 432.

5. See “Step 5. Create the domain data files (master name server only)” on
page 433.

6. See “Step 6. Create the hints (root server) file” on page 439.

7. See “Step 7. Create the loopback file” on page 441.

8. See “Step 8. For BIND 9 only — configure logging” on page 442.

9. See “Step 9. Ensure that the syslog daemon is running on your system” on
page 447.

10. See “Step 10. Specify whether the name server is to run swappable or
nonswappable” on page 447.

11. See “Step 11. Start the name server” on page 448.

12. See “Step 12. Verify that the name server started correctly” on page 449.

13. See “Step 13. Verify the name server can accept queries” on page 450.

The difference between configuring a master and slave name server is the creation
of domain data files (the database files containing host-to-address and
address-to-host mappings). The domain data files are maintained on the master
name server, and the slave name server transfers this data to its own database.

Instructions for creating the boot file for a slave name server are below. All
remaining steps are identical to those in “Configuring a master (primary) name
server” on page 427.

Step 1a. Create the boot file for BIND 4.9.3–DNS
The easiest way to create a boot file for a slave name server is to start from the
boot file for the master name server. The sample boot file,
/usr/lpp/tcpip/samples/slave.boot (based on named.boot), reflects the setup for a
slave name server and is shown below.
; LICENSED MATERIALS - PROPERTY OF IBM
; "RESTRICTED MATERIALS OF IBM"
; 5694-A01 (C) COPYRIGHT IBM CORP. 2001
;
; (C) COPYRIGHT International Business Machines Corp. 1985, 1993
; All Rights Reserved
; US Government Users Restricted Rights - Use, duplication or
; disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
;
; Licensed Materials - Property of IBM
;
;
; NOTICE TO USERS OF THE SOURCE CODE EXAMPLES
;
; INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE SOURCE CODE

Chapter 10. Domain Name System (DNS) 451

|
|

|

|
|

|
|

|
|
|
|

; EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS, "AS IS" WITHOUT
; WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
; LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
; PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
; OF THE SOURCE CODE EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS,
; IS WITH YOU. SHOULD ANY PART OF THE SOURCE CODE EXAMPLES PROVE DEFECTIVE
; YOU ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR
; CORRECTION.
;
; Note: This file must be copied and renamed to /etc/named.boot and
; all zone files referenced below must be copied to /etc/dnsdata/ for
; this file to function as intended. Also note this example is
; built on the assumption that there is a master server for the zones
; at 9.37.34.10.
;
; /etc/named.boot
;
; boot file for name server
;
;
;type domain source file or host
;
directory /etc/dnsdata
secondary mycorp.com 9.37.34.10 db.mycorp.bak
secondary 34.37.9.in-addr.arpa 9.37.34.10 db.34.37.9.bak
primary 0.0.127.in-addr.arpa db.loopback.v4
cache . db.cache
options query-log

This boot file specifies:

1. The location of the files (/etc/dnsdata).

2. The name server will be the slave name server for the mycorp.com zone.

3. The primary name server is located at IP address 9.37.34.10.

4. The data for mycorp.com will be stored in /etc/dnsdata/db.mycorp.bak after it is
retrieved from the primary name server by doing a zone transfer.

5. The name server will be the slave name server for the reverse mapping zone,
34.37.9.in-addr.arpa.

6. The primary name server is located at IP address 9.37.34.10.

7. The data for addresses 9.37.34.x contained in the zone will be stored in
/etc/dnsdata/db.34.37.9.bak after it is retrieved from the primary name server
by doing a zone transfer.

8. The name server will continue to function in the primary role for the loopback
address (127.0.0.1).

9. The list of root name servers is in /etc/dnsdata/db.cache.

10. All queries coming in to this name server will be logged in the syslog daemon
output file.

Step 1b. Create the configuration file for BIND 9–DNS.
This example illustrates the equivalent configuration for a v9 name server where the
sample configuration file, /usr/lpp/tcpip/samples/slave.conf (based on named.conf),
reflects the setup for a slave name server.
LICENSED MATERIALS - PROPERTY OF IBM
"RESTRICTED MATERIALS OF IBM"
5694-A01 (C) COPYRIGHT IBM CORP. 2000
#
(C) COPYRIGHT International Business Machines Corp. 1985, 1993
All Rights Reserved
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#

452 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|

Licensed Materials - Property of IBM
#
#
NOTICE TO USERS OF THE SOURCE CODE EXAMPLES
#
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE SOURCE CODE
EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS, "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE SOURCE CODE EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS,
IS WITH YOU. SHOULD ANY PART OF THE SOURCE CODE EXAMPLES PROVE DEFECTIVE
YOU ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.
#
Note: This file must be copied and renamed to /etc/named.conf and all
all zone files referenced below must be copied to /etc/dnsdata/ for
this file to function as intended. Also note this example is
built on the assumption that there is a master server for the zones
at 9.37.34.10. In addition, the default location for the process
id file is in /var/run/pid.file; if that directory does not exist
a different one can be configured with the option:
#
pid-file "path/file-name";
#
/etc/named.conf
#
conf file for name server
#
options {
directory "/etc/dnsdata";
};

logging {
category "queries" {
default_syslog;
};
};

zone "mycorp.com" in {
type slave;
file "db.mycorp.bak";
masters { 9.37.34.10; };
};

zone "34.37.9.in-addr.arpa" in {
type slave;
file "db.34.37.9.bak";
masters { 9.37.34.10; };
};

zone "0.0.127.in-addr.arpa" in {
type master;
file "db.loopback.v9";
};

zone "." in {
type hint;
file "db.cache";
};

Configuring a cache-only name server
If the name server does not need to be authoritative for any data, choose a special
type of name server, called a caching-only name server. A caching-only name

Chapter 10. Domain Name System (DNS) 453

server can improve performance by reducing the number of network flows required
for names or addresses that are frequently requested.

Use the following steps to configure a basic name server. More information for step
1 is included in the subsections following the steps. For the subsequent steps, see
the appropriate sections elsewhere in the book.

1. Create a configuration file for your environment:

a. Create the boot file for BIND 4.9.3–DNS. See “Step 1a. Create the boot file
for BIND 4.9.3–based DNS.”.

b. Create the configuration file for BIND 9–DNS. See “Step 1b. Create the
configuration file for BIND 9–DNS.” on page 455.

2. See “Step 2. For BIND 4.9.3–DNS only: specify stack affinity (Multiple stack
environment)” on page 431.

3. See “Step 3. Specify port ownership” on page 431.

4. See “Step 4. Update the name server start procedure (Optional)” on page 432.

5. See “Step 6. Create the hints (root server) file” on page 439.

Following is an example of a hints (root server) file for a cache-only server:
;
; Cache-only "hints" file
;
. 3600000 IN NS hostname
hostname. 3600000 A ipaddress

where hostname is the fully qualified host name of an authoritative name
server for the root (’.’) domain and ipaddress is the IP address for the specified
hostname. How this file is configured depends on whether you are behind a
firewall or not. If behind a firewall, hostname should be the name of an internal
root name server if internal roots are being used. If you are behind a firewall
and not using internal roots, then requests are probably being forwarded to a
name server on a bastion host, which can resolve internal and internet names.
In the latter case, what is in the hints file is unimportant since it will not be
used, and if the name server does attempt to use it, the firewall would block it
from contacting the internet root name servers. If you are not behind a firewall,
follow the example in “Step 6. Create the hints (root server) file” on page 439
and instructions on getting a recent copy of the internet root name servers.

6. See “Step 7. Create the loopback file” on page 441.

7. See “Step 8. For BIND 9 only — configure logging” on page 442.

8. See “Step 9. Ensure that the syslog daemon is running on your system” on
page 447.

9. See “Step 10. Specify whether the name server is to run swappable or
nonswappable” on page 447.

10. See “Step 11. Start the name server” on page 448.

11. See “Step 12. Verify that the name server started correctly” on page 449.

12. See “Step 13. Verify the name server can accept queries” on page 450.

The difference between configuring a master name server and configuring a
caching-only server is the creation of domain data files (the database files
containing host-to-address and address-to-host mappings). A caching-only name
server will only contain the loopback zone file and the hints file.

Step 1a. Create the boot file for BIND 4.9.3–based DNS.
The easiest way to create a boot file for a caching-only name server is to use the
boot file for the master name server. The sample boot file

454 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|

|

|
|

|
|

|
|

/usr/lpp/tcpip/samples/caching.boot (based on named.boot), reflects the setup for a
caching-only name server and is shown below.
; LICENSED MATERIALS - PROPERTY OF IBM
; "RESTRICTED MATERIALS OF IBM"
; 5694-A01 (C) COPYRIGHT IBM CORP. 2000
;
; (C) COPYRIGHT International Business Machines Corp. 1985, 1993
; All Rights Reserved
; US Government Users Restricted Rights - Use, duplication or
; disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
;
; Licensed Materials - Property of IBM
;
;
; NOTICE TO USERS OF THE SOURCE CODE EXAMPLES
;
; INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE SOURCE CODE
; EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS, "AS IS" WITHOUT
; WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
; LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
; PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
; OF THE SOURCE CODE EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS,
; IS WITH YOU. SHOULD ANY PART OF THE SOURCE CODE EXAMPLES PROVE DEFECTIVE
; YOU ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR
; CORRECTION.
;
; Note: This file must be copied and renamed to /etc/named.boot and all
; all zone files referenced below must be copied to /etc/dnsdata/ for
; this file to function as intended.
;
; /etc/named.boot
;
; boot file for name server
;
;
;type domain source file or host
;
directory /etc/dnsdata {1)
primary 0.0.127.in-addr.arpa db.loopback.v4 {2}
cache . db.cache {3}
options query-log {4}

This boot file specifies:

1. The location of the files (/etc/dnsdata).

2. The name server will continue to function in the primary role for the loopback
address (127.0.0.1).

3. The list of root name servers is in /etc/dnsdata/db.cache.

4. All queries coming in to this name server will be logged in the syslog daemon
output file.

Step 1b. Create the configuration file for BIND 9–DNS.
The following sample configuration sets up an equivalent configuration for a BIND 9
nameserver where the sample configuration file, /usr/lpp/tcpip/samples/caching.conf
(based on named.conf), reflects the setup for a caching-only name server.
LICENSED MATERIALS - PROPERTY OF IBM
"RESTRICTED MATERIALS OF IBM"
5694-A01 (C) COPYRIGHT IBM CORP. 2000
#
#(C) COPYRIGHT International Business Machines Corp. 1985, 1993
All Rights Reserved
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#

Chapter 10. Domain Name System (DNS) 455

|
|

|
|
|

Licensed Materials - Property of IBM
#
#
NOTICE TO USERS OF THE SOURCE CODE EXAMPLES
#
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE SOURCE CODE
EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS, "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE SOURCE CODE EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS,
IS WITH YOU. SHOULD ANY PART OF THE SOURCE CODE EXAMPLES PROVE DEFECTIVE
YOU ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.
#
#
Note: This file must be copied and renamed to /etc/named.conf and all
all zone files referenced below must be copied to /etc/dnsdata/ for
this file to function as intended. In addition, the default location
for the process id file is in /var/run/pid.file; if that directory
does not exist a different one can be configured with the option:
#
pid-file "path/file-name";
#
/etc/named.conf
#
conf file for name server
#
options {
directory "/etc/dnsdata";
};

logging {
category "queries" {
default_syslog;
};
};

zone "0.0.127.in-addr.arpa" in {
type master;
file "db.loopback.v9";
};

zone "." in {
type hint;
file "db.cache";
};

Configuring a stealth name server
A stealth server is a server that answers authoritatively for a zone, but is not listed
in that zone’s NS records. Configure a master or slave stealth server for a zone like
you would configure a visible master or slave server for the zone, except do not
create an NS record for the stealth server in the master zone. The named server
configuration option also-notify may be used to notify stealth slave servers of a
zone update. In order to configure a stealth server, follow the steps in “Configuring
a slave name server” on page 450.

Adding forwarding to your name server
In order to use forwarding in any BIND 4.9.3 or BIND 9 name server, update the
boot file for BIND 4.9.3 or the conf file for BIND 9.

Add the following statement to the BIND 4.9.3 boot file:
forwarders 9.4.2.1

456 z/OS V1R4.0 CS: IP Configuration Guide

Add the following statement to the BIND 9 conf file in the options section:
options {

..............
forwarders {9.4.2.1;};
..............

};

where 9.4.2.1 is the IP address of the machine where queries should be
forwarded. This sends unresolved queries to 9.4.2.1 before trying to resolve the
query using root name servers (specified in the hints file) or other cached name
servers authoritative for or ’closer’ to the authoritative name server.

For a name server to only use forwarders and not use the root servers, in addition
to the forwarders directive, also add the following directive to its BIND 4.9.3 file:
options forward-only

OR to its BIND 9 conf file:
options {

..............
forward only;

};

A name server with this option can still answer queries from its cached data. The
cache is checked first and if the cache does not contain the answer, the query is
sent to the name servers in the forwarders list.

Configuring host resolvers: Name server considerations
If the name server will run on the host being configured, create a loopback file.
Specify the loopback address in the first name server directive of the resolver
configuration file so local clients can access the name server. Refer to “Step 7.
Create the loopback file” on page 441 for loopback address considerations.

The BIND 9 name server and BIND 9 DNS utilities (e.g. v9 nslookup and z/OS
UNIX dig) use a private resolver that is different from the resolver used by other
z/OS UNIX socket programs. The name server has the following functional
differences:

v z/OS UNIX nslookup does not use site tables (for example, /etc/hosts) for host
name resolution.

v Only the built-in translation table is used for BIND 4.9.3, BIND 9 and all DNS
utilities (for example, v9 and v4 nslookup, v9 dig, etc.).

For a complete discussion of resolver configuration files, see z/OS Communications
Server: IP Configuration Reference.

Configuring host resolvers: onslookup considerations
Programs that query a name server are called resolvers. Because many TCP/IP
applications need to query the name server, a set of routines is usually provided for
application programmers to perform queries. Under MVS, these routines are
available in the TCP/IP application programming interface (API) for each supported
language, LE for z/OS UNIX C/C++ Sockets API or z/OS UNIX Assembler Callable
Services API.

The v9 nslookup command uses a private resolver that is different from the z/OS
UNIX resolver used by other z/OS UNIX socket programs. The v4 nslookup
command uses the same resolver as other z/OS UNIX socket programs. The
onslookup command has the following functional differences:

Chapter 10. Domain Name System (DNS) 457

|

|
|
|
|
|
|

|
|
|
|

v The HFS file, /etc/hosts, is required for host table lookup if name services do
not exist. Following is a sample /etc/hosts file:
#
z/OS UNIX Resolver /etc/hosts file on mvss18oe.
#
The format of this file is:
#
Internet Address Hostname Aliases # Comments
#
Items are separated by any number of blanks and/or tabs. A ’#’
indicates the beginning of a comment; characters up to the end of the
line are not interpreted by routines which search this file. Blank
lines are allowed in this file.

9.24.104.126 mvs18oe mvsoe # z/OS UNIX host
192.168.210.1 mvs18an # AnyNet MVS host
192.168.210.8 mypcaa # AnyNet gw host
9.24.104.79 mypc # A workstation

Note: The presence of /etc/hosts will prevent the z/OS UNIX resolver from
accessing prefix.HOSTS.SITEINFO and prefix.HOSTS.ADDRINFO data
sets. The use of /etc/hosts is not recommended unless it is used for
purposes other than onslookup.

v Only the built-in translation table is used for both versions of BIND (V4 and V9).

If the z/OS UNIX name server will run on the host being configured, you need to
configure the first name server (or NsInterAddr) directive in the resolver
configuration file as the loopback address (127.0.0.1) or any address in your home
list.

Creating the syslog file
If your syslog daemon is not configured, see “Configuring the syslog daemon
(syslogd)” on page 101 for information regarding the syslog daemon.

Syslog daemon (syslogd) is a server process that is typically started as one of the
first processes in a z/OS UNIX environment. Servers and stack components use
syslogd for logging purposes and can also send trace information to syslogd. The
named daemon logs messages to the syslog daemon. For BIND 9, specify the
syslog option in the channel phrase of the logging statement in the named.conf file
in order to use this function. Also for BIND 9, you can direct a category to the
default_syslog channel. For information about the syslog daemon, see “Configuring
the syslog daemon (syslogd)” on page 101.

If you will be using syslogd with BIND 9, refer to “Step 8. For BIND 9 only —
configure logging” on page 442 for detailed information.

The name and location of your syslog file is specified in /etc/syslog.conf.

BIND 9 security considerations

Remote Name Daemon Control (rndc)
rndc is a tool that allows the system administrator some degree of control over the
name server. The functions available are:

v Reload configuration file and zones.

v Reload the given zone.

v Schedule zone maintenance for the given zone.

458 z/OS V1R4.0 CS: IP Configuration Guide

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|

|
|

|

|

v Reload the configuration file and load new zones, but do not reload existing zone
files even if they have changed. This is faster than a full reload, when there is a
large number of zones, because it avoids the need to examine the modification
times of the zone files.

v Write server statistics to the statistics file.

v Toggle query logging.

v Dump the current contents of the cache.

v Stop the server, making sure any recent changes made through dynamic update
or IXFR are first saved to the master files of the updated zones.

v Stop the server immediately. Recent changes made through dynamic update or
IXFR are not saved to the master files, but will be rolled forward from the journal
files when the server is restarted.

v Increment the server’s debugging level by one.

v Set the server’s debugging level to an explicit value.

v Set the server’s debugging level to 0.

v Flush the server’s cache.

v Display status of the server.

For more detail, refer to z/OS Communications Server: IP System Administrator’s
Commands, the rndc man page, the rndc.conf man page, and the rndc-confgen
man page.

A configuration file is required, since all communication with the server is
authenticated with digital signatures that rely on a shared secret, and there is no
way to provide that secret other than with a configuration file. The default location
for the rndc configuration file is /etc/rndc.conf, but an alternate location can be
specified with the -c option. If the configuration file is not found, rndc will also look
in /etc/rndc.key. The rndc.key file is generated by running rndc-confgen -a.

The format of the configuration file is similar to that of named.conf, but limited to
only four statements:

v options

v key

v server

v include

These statements are what associate the secret keys to the servers with which they
are meant to be shared. The order of statements is not significant.

The options statement has three clauses:

v default-server

v default-key

v default-port

The default-server clause takes a host name or address argument and represents
the server that will be contacted if no -s option is provided on the command line.
The default-key clause takes the key name as its argument, as defined by a key
statement. The default-port clause specifies the port to which rndc should connect if
no port is given on the command line or in a server statement.

The key statement names a key with its string argument. The string is required by
the server to be a valid domain name, though it need not actually be hierarchical;
thus, a string like ″rndc_key″ is a valid name. The key statement has two clauses:

Chapter 10. Domain Name System (DNS) 459

|
|
|
|

|
|

|
|
|

|

|

|

|

|

|
|
|

|
|
|
|
|
|

|
|

|

|

|

|

|
|

|

|

|

|

|
|
|
|
|

|
|
|

v algorithm

v secret

While the configuration parser will accept any string as the argument to algorithm,
currently only the string ″hmac-md5″ has any meaning. The secret is a base-64
encoded string.

Since the tool may be used remotely, rndc and the name server must communicate
using digital transaction signatures (TSIG). Therefore, rndc and the name server
must be configured with a shared-secret. There are two ways to configure a
shared-secret key. One way is to use the /etc/rndc.key file generated by the
rndc-confgen -a command. This file is shared between the name server and the
rndc utility. The other way is to generate a shared-secret TSIG key with the
HMAC-MD5 algorithm using the dnssec-keygen utility. The key must be configured
in the name server under the controls section, and in the rndc.conf file on the key
clause.

The server statement uses the key clause to associate the server with a key. The
argument to the server statement is a host name or address (addresses must
appear in double quotation marks). The argument to the key clause is the name of
the key as defined by the key statement. The port clause can be used to specify
the port to which rndc should connect on the given server.

The include statement can be used to insert the contents of another file within the
rndc configuration file (for example, to include the contents of a file that contains
sensitive key information).

A sample minimal configuration file is as follows:
key rndc_key {

algorithm "hmac-md5";
secret "c3Ryb25nIGVub3VnaCBmb3IgYSBtYW4gYnV0IG1hZGUgZm9yIGEgd29tYW4K";

};
options {

default-server localhost;
default-key rndc_key;

};

This file, if installed as /etc/rndc.conf, would allow the rndc reload command to
connect to 127.0.0.1 port 953 and cause the nameserver to reload, if a nameserver
on the local machine were running with the following controls statements and it had
an identical key statement for rndc_key:
controls {

inet 127.0.0.1 allow { localhost; } keys { rndc_key; };
};

Running the rndc-confgen program will conveniently create a rndc.conf file for you,
and also display the corresponding controls statement that you need to add to
named.conf. Alternatively, you can run rndc-confgen -a to set up a rndc.key file and
not modify named.conf at all.

Access Control Lists
Access Control Lists (ACLs), are address match lists that you can set up and
nickname for future use in allow-query , allow-recursion , blackhole , allow-transfer ,
etc. Using ACLs allows you to have finer control over who can access your
nameserver, without cluttering up your config files with huge lists of IP addresses. It
is a good idea to use ACLs, and to control access to your server. Limiting access to

460 z/OS V1R4.0 CS: IP Configuration Guide

|

|

|
|
|

|
|
|
|
|
|
|

|

|

|

|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

your server by outside parties can help prevent spoofing and DoS (Denial of
Service) attacks against your server. Here is an example of how to properly apply
ACLs:
// Set up an ACL named "bogusnets" that will block RFC1918 space,
// which is commonly used in spoofing attacks.

acl bogusnets { 0.0.0.0/8; 1.0.0.0/8; 2.0.0.0/8; 192.0.2.0/24; 224.0.0.0/3;
10.0.0.0/8; 172.16.0.0/12; 192.168.0.0/16; };

// Set up an ACL called our-nets. Replace this with the real IP numbers.

acl our-nets { x.x.x.x/24; x.x.x.x/21; };

options {
...
...
allow-query { our-nets; };
allow-recursion { our-nets; };
...
blackhole { bogusnets; };
...

};
zone "example.com" {

type master;
file "m/example.com";
allow-query { any; };

};

This allows non-recursive queries for example.com from inside and outside nets,
except from bogusnets, and allows recursive queries from our-nets to outside nets
unless recursion no; is also specified in the configuration file.

For more information on how to use ACLs to protect your server, see the AUSCERT
advisory at: ftp://ftp.auscert.org.au/pub/auscert/advisory/AL-1999.004.dns_dos

chroot and setuid
It is possible to run BIND in a chrooted environment (chroot()) by specifying the -t
option. This can help improve system security by placing BIND in a sandbox, which
will limit the damage done if a server is compromised.

Another useful feature is the ability to run the daemon as a nonprivileged user (-u
user). We suggest running as a nonprivileged user when using the chroot feature.

Here is an example command line to load BIND in a chroot() sandbox,
/var/named, and to run named setuid to user 202:
<>/usr/local/bin/named -u 202 -t /var/named

The chroot environment: In order for a chroot() environment to work properly in
a particular directory (for example, /var/named), you will need to set up an
environment that includes everything BIND needs to run. From BIND’s point of view,
/var/named is the root of the filesystem. You will need /dev/null, and any library
directories and files that BIND needs to run on your system.

Using the setuid function: Prior to running the named daemon, use the touch
utility (to change file access and modification times) or the chown utility (to set the
user id and/or group id) on files to which you want BIND to write.

Dynamic update security
Access to the dynamic update facility should be strictly limited. For these reasons,
we strongly recommend that updates be cryptographically authenticated by means

Chapter 10. Domain Name System (DNS) 461

|
|
|

of transaction signatures (TSIG). That is, the allow-update option should list only
TSIG key names, not IP addresses or network prefixes. Alternatively, the
update-policy option can be used.

Some sites choose to keep all dynamically updated DNS data in a subdomain and
delegate that subdomain to a separate zone. This way, the top-level zone
containing critical data such as the IP addresses of public web and mail servers
need not allow dynamic update at all.

Special considerations when using Dynamic VIPA
If you run a name server on a host that is using Dynamic VIPA (DVIPA), you may
be required to do some additional configuration. Name servers running on a host
using DVIPA need to BIND the UDP port that the name server listens on (usually
53) to the DVIPA, if you wish DNS to make use of the DVIPA. This can be done by
using the BIND option on the UDP PORT statement in the TCPIP.PROFILE. If you
do BIND the DNS UDP port to the DVIPA, then all references to that name server
must use the DVIPA whether those references are from other name servers or from
resolvers.

References to a name server could occur in a number of places, and should be
changed to use the DVIPA if BINDing a DNS UDP port to the DVIPA. This list is not
exhaustive, but is intended to aid you for some of the most common cases. In
general, you may need to change any place that references a name server by its IP
address when using DVIPAs.

Task Location

Delegating a DNS subdomain to a name
server running on a host using DVIPA

The ’A’ record in the glue records for the
delegated (child) name server in the domain
data file of the delegating (parent) name
server

Designating a slave (secondary) name server
when master (primary) name server is
running on a host using DVIPA

The ’secondary’ statement in the boot file of
the secondary (slave) name server for BIND
4.9.3 or the ’masters’ option of the ’zone’
statement for BIND 9

Configuring resolvers ’NSINTERADDR’ or ’nameserver’ directive of
the resolver configuration file

Using a name server as the target of other
forwarding name servers when the target
name server resides on a host using DVIPA

’forwarders’ directive in the boot file of the
forwarding name servers for BIND 4.9.3 or
the ’forwarders{}’ option of the ’options{}’
statement for BIND 9

Using a name server as an intranet root
name server when the root name server is
running on a host using DVIPA

’A’ record of the intranet root name server in
the hints file on all name servers within the
intranet

Dynamic primary DNS movement using Dynamic VIPA
To use DNS along with DVIPA takeover functionality to provide a high availability
environment, perform the following steps:

1. Define a distributed DVIPA with the VIPADISTribute statement, specifying a port
on the PORT parameter that will not be used by the Sysplex Distributor (to
prevent undesired distribution of connections). DESTIP should be the DXCF
addresses of all the members that will be backup servers. For example:

462 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|

|
|
|
|

VIPADYNAMIC
VIPADEFINE 255.255.255.192 10.134.61.190
VIPADISTRIBUTE 10.134.61.190 PORT 8081 DESTIP ALL
ENDVIPADYNAMIC

2. Define VIPABACKUPs on all the members that will be backup servers. For
example:
VIPADYNAMIC
VIPABACKUP 50 10.134.61.190
ENDVIPADYNAMIC

3. On both the Distributor and all the targets, define the following statements.

Note: The following example applies to the BIND 4.9.3 name server only.
PORT...
53 TCP NAMED2 BIND 10.134.61.190
53 UDP NAMED2 BIND 10.134.61.190

4. Update /etc/resolv.conf and TCPDATA on all SYSPLEX members to point to that
address. For example:
...
NSINTERADDR 10.134.61.190...

5. Update all of the glue records (NS records and their corresponding A records),
in the sysplex name servers and the sysplex parent’s name servers that point to
the sysplex name server, to use the dynamic VIPA.

After doing the above configuration, stack termination will cause the DVIPA to be
taken over, making DNS on the new DVIPA owning stack reachable after route
convergence completes (OMPROUTE recommended).

Querying name servers
This section describes how to use the nslookup command to query the name
server. onslookup is an alias of nslookup in the z/OS UNIX environment.

Notes:

1. The z/OS UNIX nslookup command runs only from the z/OS shell. The
nslookup command can query the name server from TSO or the z/OS shell.
However, only the legacy TSO version of NSLOOKUP is available from TSO.
Refer to z/OS Communications Server: IP System Administrator’s Commands
for detailed information.

2. The host and dig commands are another way to query name servers from the
z/OS shell. See the z/OS Communications Server: IP User’s Guide and
Commands for a list of host commands.

nslookup command

The z/OS UNIX nslookup and TSO NSLOOKUP commands can be used to query
the name server to perform the following tasks:
v Identifying the location of name servers
v Examining the contents of a name server database
v Establishing the accessibility of name servers

Note: sortlist is not supported by nslookup

The z/OS UNIX nslookup and TSO NSLOOKUP commands have two modes of
operation: interactive mode and command mode. nslookup also has two versions in

Chapter 10. Domain Name System (DNS) 463

|
|
|
|

|
|

|
|
|

|

|

||||
|
|

|
|
|||
||||
|
|
|

|
|
|

z/OS UNIX: v4 and v9, where v4 gives the legacy z/OS UNIX (o)nslookup function,
and v9 gives the BIND 9 version of nslookup. In either mode, the address of the
default name server comes from the resolver configuration data. In the sample data
below, the default domain is raleigh.ibm.com, and the default name server is at
9.37.34.149. If that name server fails to respond, the one at 9.37.34.7 is used.
domain raleigh.ibm.com
nameserver 9.37.34.149
nameserver 9.37.34.7

Entering the interactive mode
Interactive mode can be used to repetitively query one or more name servers for
information about various hosts and domains, to display that information on the
console, and, in some cases, to write response data to a file.

You can enter the interactive mode under the following conditions only:

v No arguments are supplied on command invocation or the –v option is specified;
the default name server is used.

v The first argument is a hyphen, and the second argument is the host name or
Internet address of a name server.

For a complete description of the z/OS UNIX and TSO nslookup interactive modes,
refer to z/OS Communications Server: IP User’s Guide and Commands.

Entering the command line mode
The command line mode displays or stores the output from the query supplied as
part of the invocation string and then exits.

To enter the command line mode, provide a complete query with the z/OS UNIX
nslookup command invocation string.

For a complete description of the z/OS UNIX and TSO nslookup command line
modes, refer to z/OS Communications Server: IP System Administrator’s
Commands.

nslookup configuration

nslookup for BIND 4.9.3: The configuration options of z/OS UNIX nslookup
determine the operation and results of the name server queries. The values for
z/OS UNIX nslookup options can be specified in more than one location, as shown
in Table 19 on page 465. Values specified as z/OS UNIX nslookup command
options have priority over values specified in the .onslookuprc file (for nslookup
version 4), which have priority over the value specified by the environment variable,
and so on. For example, the value specified by the querytype option in the z/OS
UNIX nslookup command has priority over the value specified by the querytype
option in the .onslookuprc file.

The letters beside some settings indicate that the terms are functionally equivalent.
For example, the term domain (the letter ″A″) is functionally equivalent to the terms
DomainOrigin and LOCALDOMAIN. If two functionally equivalent settings are listed in
the same file, the one listed last has priority. For example, if domain and
DomainOrigin are both listed in the Resolver configuration data set, and domain is
listed first, the value specified by DomainOrigin has priority.

The numeric column headings in Table 19 on page 465 correspond to the following:

464 z/OS V1R4.0 CS: IP Configuration Guide

|

1 z/OS UNIX nslookup command options. Refer to z/OS Communications
Server: IP User’s Guide and Commands for more details about the z/OS
UNIX nslookup command.

2 .onslookuprc file in the home directory. Refer to z/OS Communications
Server: IP User’s Guide and Commands for more details.

3 Environment variable (set by the z/OS UNIX command ″export
LOCALDOMAIN=domain_origin″).

4 Resolver configuration data set Refer to z/OS Communications Server:
IP Configuration Reference for more details.

For example, column 1 lists z/OS UNIX nslookup options and column 2 lists options
you can set in the .onslookuprc file.

Table 19. Settings that affect nslookup operation

Settings 1 2 3 4

All x x

Class x x

no[d2] x x

[no]debug x x

[no]defname x x

domain (A) x x x

[no]ignoretc x x

port (B) x x

querytype x x

[no]recurse x x

retry (C) x x

root x x

[no]search x x

srchlist (D) x x

timeout (E) x x

[no]vc (F) x x

search (D) x

nameserver (G) x

sortlist x

options debug x

options ndots x

DomainOrigin (A) x

NsInterAdd (G) x

NsPortAddr (B) x

ResolveVia (F) x

ResolverTimeout (E) x

ResolverUdpRetries (C) x

LOCALDOMAIN (A) x

Chapter 10. Domain Name System (DNS) 465

|

nslookup for BIND 9: There are fewer ways to configure BIND 9 (v9) nslookup in
comparison to BIND 4.9.3 (v4) nslookup. There are only two places to specify v9
nslookup options: as command options, or from the resolver configuration data set.
Only a few of the options may be set in the resolver configuration data set. The
command options always have precedence over any option configured in the
resolver configuration data set.

Only the following options can be specified in the resolver configuration data set for
v9 nslookup:

v nameserver/nsinteraddr

v options ndots: n

v search

v domain/domainorigin

Programs that query a name server are called resolvers. Refer to “Understanding
resolvers” on page 12 for more detailed information. Because many TCP/IP
applications need to query the name server, a set of routines is usually provided for
application programmers to perform queries. Under MVS, these routines are
available in the TCP/IP application programming interface (API) for each supported
language or LE for z/OS UNIX Sockets API.

The z/OS UNIX v4 and v9 nslookup commands use a private resolver that is
different from the resolver used by other z/OS UNIX socket programs. The z/OS
UNIX nslookup command has the following functional differences:

v z/OS UNIX nslookup does not use SiteTables (for example, /etc/hosts) for host
name resolution.

v Only the built-in translation table is used for v4 and v9 nslookup.

v z/OS UNIX v4 nslookup uses the LOCALDOMAIN environment variable, whereas
no other resolvers use this.

For a complete discussion of resolver configuration files, see Chapter 1,
“Configuration overview” on page 3.

If the name server will run on the host being configured, you need to configure the
first name server (or NsInterAddr) directive in the resolver configuration file as the
loopback address (127.0.0.1 or any address in your home list).If any VIPA
addresses are used with the NsInterAddr statement, ensure that IPCONFIG
SOURCEVIPA is coded in PROFILE.TCPIP. If it is not, UDP packets returned from
the VIPA address will have the physical interface address as the destination
address instead of the VIPA address that it sent. The UDP packet will be discarded
when it is received because the addresses do not match.

Diagnosing problems
This section describes the following methods for diagnosing problems:

v Checking messages on the operators console

v Checking the syslog messages

v Using name server signals

v Using rndc to diagnose BIND 9 problems

v Checking name server logging files to diagnose BIND 9

v Using nslookup program

v Using the dig command

466 z/OS V1R4.0 CS: IP Configuration Guide

|

These methods are discussed below. In addition to these methods, diagnosing
problems for a dynamic zone can be done with nsupdate. This allows debugging of
problems between DHCP and the dynamic zone in a more controlled manner.

For DNS configuration firewall considerations, refer to “Split DNS” on page 471, and
the latest edition of DNS and BIND by Paul Albitz and Cricket Liu (O’Reilly &
Associates, Inc.).

Checking messages sent to the operators console
Messages displayed on the operators console indicate the status of your DNS.
Messages fall into the following categories:

v Name server initialization

v Name server initialization failure

v Name server initialization complete

v Name server termination

v Assertion failures (unexpected errors) (v9 only)

Regularly check console messages to identify problems.

Checking the syslog messages
Error messages may also be displayed in the syslog output file, which is pointed to
by the syslog configuration file. (/etc/syslog.conf is the default configuration file.)
For BIND 9, refer to “Step 8. For BIND 9 only — configure logging” on page 442.
For the BIND 9 name server, initial startup messages go to syslog, later messages
will be directed to other defined or default logs according to logging statements
found or implied in the configuration file. For descriptions of the syslog file and the
syslog daemon, see “Configuring the syslog daemon (syslogd)” on page 101.

Using name server signals to diagnose BIND 4.9.3 DNS problems
You can use name server signals to send messages to a BIND 4.9.3 or a BIND 9
DNS. Note that some of the signals may have different consequences if a signal is
sent to a BIND 4.9.3 name server instead of a BIND 9 nameserver. These signals
control various functions that can be used to diagnose problems.

Diagnostic functions include the following:

v Enabling and disabling debug message logging

v Dumping the contents of the name server database

v Getting short status

v Logging queries

For an explanation of the format of the dumped database or the name server
statistics file that can be generated with these signals, refer to publications such as
DNS and Bind by Albitz and Liu.

The issuing of a signal is done by using the z/OS UNIX kill command and also
involves specifying the process ID. The BIND 4.9.3 name server always stores its
process ID in the file, /etc/named.pid.

Using name server signals to diagnose BIND 9 DNS problems
You can use name server signals to send messages to a BIND 4.9.3 or a BIND 9
DNS name server. Note that some of the signals may have different consequences

Chapter 10. Domain Name System (DNS) 467

|
|

|

|

|
|

if a signal is sent to a BIND 4.9.3 name server instead of a BIND 9 name server.
These signals control various functions that can be used to diagnose problems.

The BIND 9 name server relies on a start option, rndc, or the configuration file to
define and alter the debug level. You can change the logging options in named.conf
to gather more information, and then issue the SIGHUP signal or ’rndc reload’ to
have the new logging options take effect. However, the preferred method is by
using ’rndc trace level’.

For an explanation of the format of the dumped database or the name server
statistics file that can be generated with these signals, refer to publications like DNS
and Bind by Albitz and Liu.

Signals are issued with the z/OS UNIX kill command using the name server
process ID as a parameter. The file where the BIND 9 process ID is stored is
determined by the user. The file name is specified by the ’pid-file’ option in the
named.conf file. Refer to z/OS Communications Server: IP Configuration Reference
for further details.

Using rndc to diagnose BIND 9 problems
The rndc utility can be used to provide a variety of functions that can be helpful in
debugging name server problems. For example, the name server’s cache can be
viewed using the dumpdb parameter and debug trace can be turned on or off using
the trace parameter. If you suspect your cache is corrupted, you can flush the name
server’s cache with the flush parameter. For more information, see z/OS
Communications Server: IP System Administrator’s Commands.

Checking name server logging files to diagnose BIND 9
Error, debug and informational messages can be written to the name server’s
logging files. Refer to “Step 8. For BIND 9 only — configure logging” on page 442
for more information.

Using nslookup to diagnose problems
The z/OS UNIX nslookup program lets you query other name servers with the same
query packet another name server would use. This is helpful in diagnosing lookup
problems in TCP/IP.

It is recommended that you use z/OS UNIX or TSO nslookup with each NsInterAddr
used in TCPIP.DATA to ensure you receive the expected results. Some name server
clients, on other platforms, may require the address you specify for the name server
to match the source IP address in the response from the name server. For
example, if a static VIPA address is specified as the address of the name server,
and IPCONFIG SOURCEVIPA is not specified in PROFILE.TCPIP, then nslookup on
some platforms will discard the returned packet because it will have the destination
address of the physical interface instead of the VIPA interface. If you wish to specify
a Dynamic VIPA (DVIPA) as the address of the name server, then the name server
must BIND the UDP port to the DVIPA. Refer to z/OS Communications Server: IP
Configuration Reference for information on how to specify the BIND parameter on
the PORT statement in the TCPIP.PROFILE.

Debugging is available at different levels for BIND 9 and 4.9.3. The commands are
similar but the output differs between BIND 9 and BIND 4.9.3. Refer to the z/OS
Communications Server: IP System Administrator’s Commands for more detailed
information on the z/OS UNIX nslookup command.

468 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|

|
|

|
|

|
|
|
|
|
|

Using dig to diagnose problems
The dig command is an alternate and recommended choice for resource record
lookup. The dig response format is similar to the resource record (RR) definitions in
master zone files. The dig command will not attempt a reverse lookup on the
address provided for the server, which sometimes makes nslookup fail initialization
if reverse lookup fails. The dig command offers flexible options, including toggling
flags for checking response authority or authentication. It is the only v9 lookup utility
that can list the complete contents of a zone. This can be accomplished with the -t
AXFR option.

Advanced BIND 9 name server topics

Multiple TCP/IP stack (common INET) considerations
The BIND 9 name server is a generic server which does not have stack affinity.
This is in contrast to the BIND 4.9.3 name server which does have stack affinity.
This has certain implications.

v If you wish to run multiple BIND 9 name servers, you must divide the interfaces
between the name servers with the listen-on named.conf file option. For
example, you may want one stack serviced by one BIND 9 name server, and a
second stack serviced by a second BIND 9 name server. Each name server
would contain only the IP addresses of the assigned stack in its listen-on option.

v Any time a stack is brought up or a stack is brought down, the name server will
essentially restart. On the MVS console, you will see the NAMED Exiting,
NAMED Starting, and NAMED Running messages (messages EZZ9096I,
EZZ9095I, and EZZ9130I).

v Be aware, that once you start a TCP/IP stack, all of the adapters may not be
active immediately, and therefore will not be usable by the name server
immediately. When the name server is started manually or restarted automatically
by stack bring up or bring down, it immediately queries the available TCP/IP
stacks for active adapters. Often times, it will take some time for all of the
adapters to become active (this is independent of the name server). The name
server will re-query the stacks every minute, by default, for any changes in the
active/inactive status of adapters and then make use of them once they are
active. The one minute interval can be lengthened by the interface-interval
named.conf file option if desired, but this is not recommended.

v By default, the name server will unpredictably choose one adapter from any of
the active stacks to use when it must communicate with other name servers. If
some adapters do not have the capability to route into the network, you may see
unpredictable results on name server queries. This unpredictable behavior can
be eliminated by making use of the query-source option in the named.conf file.
The query-source option should specify an adapter address that will always
have network routing capability. The query-source option then places a
dependency on the stack that owns that address to be active. If the owning
TCP/IP stack of the query-source option address is taken down, the name
server will end, since it will no longer have a way to communicate with the
network, and thus, other name servers.

v BIND 9 is restricted to listening on all IPv6 interfaces or none of them. Therefore,
if you want to run multiple BIND 9 name servers, you need to choose one of
them to answer all IPv6 queries. Use the listen-on-v6 named.conf option with the
value of any; to get BIND 9 to listen on your IPv6 interfaces.

Chapter 10. Domain Name System (DNS) 469

|
|

|

|
|
|
|

Dynamic update
Dynamic update is the term used for the ability under certain specified conditions to
add, modify or delete records or RRsets in the master zone files. Dynamic update is
fully described in RFC 2136.

Dynamic update is enabled on a zone-by-zone basis, by including an allow-update
or update-policy clause in the zone statement. Preferably, use TSIG security
between the nsupdate utility and the targeted name server. BIND 9 name server
configuration processing messages will remind you when nsupdate authorization is
only based on client IP address.

Updating of secure zones (zones using DNSSEC) is modelled after the
simple-secure-update proposal, a work in progress in the DNS Extensions working
group of the IETF. (See http://www.ietf.org/html.charters/dnsext-charter.html for
information about the DNS Extensions working group.) SIG and NXT records
affected by updates are automatically regenerated by the server using an online
zone key. Update authorization is based on transaction signatures and an explicit
server policy. On z/OS, dynamic DNSSEC zones should use the RSA encryption
algorithm when creating the zone key, or they can use the DSA algorithm if the
’random-device’ option is also specified in the named.conf file. Non-dynamic
DNSSEC zones can use any other supported encryption algorithm.

The zone files of dynamic zones must not be edited by hand. If the zone file of a
dynamic zone is edited by hand, corrupt .jnl files can result and all changes not
written to the zone file may be lost.The zone file on disk at any given time may not
contain the latest changes performed by dynamic update. The zone file is written to
disk only periodically, and changes that have occurred since the zone file was last
written to disk are stored only in the zone’s journal (.jnl) file. Depending on signal or
rndc stop options, BIND 9 name server may or may not update the zone file.
Therefore, editing the zone file manually is unsafe even when the server has been
shut down.

Incremental zone transfers (IXFR)
The incremental zone transfer (IXFR) protocol is a way for slave servers to transfer
only changed data, instead of having to transfer the entire zone. The IXFR protocol
is documented in RFC 1995.

When acting as a master server, BIND 9 supports IXFR for those zones where the
necessary change history information is available. These include master zones
maintained by dynamic update and slave zones (to transfer to other slave servers)
whose data was obtained by IXFR, but not manually maintained master zones or
slave zones obtained by performing a full zone transfer (AXFR).

When acting as a slave server, after the initial full zone transfer, BIND 9 will request
IXFR by default when notified of a change by the zone master server. IXFR updates
are applied to the slave zone database and also kept in a journal file (*.jnl)
associated with any existing backup file for the slave zone.

Master and slave servers can each have IXFR globally or partially disabled through
the use of the provide-ixfr and request-ixfr options under the general options or the
server statements of the BIND 9 configuration file.

470 z/OS V1R4.0 CS: IP Configuration Guide

|

|

|

|

|
|
|
|

|
|
|

Split DNS
Setting up different views, or visibility, of DNS space to internal and external
resolvers is usually referred to as a Split DNS setup. There are several reasons an
organization would want to set up its DNS this way.

One common reason for setting up a DNS system this way is to hide internal DNS
information from external clients on the Internet. There is some debate as to
whether or not this is actually useful. Internal DNS information leaks out in many
ways (via e-mail headers, for example) and most savvy attackers can find the
information they need using other means.

Another common reason for setting up a Split DNS system is to allow internal
networks that are behind filters or in RFC 1918 space (reserved IP space, as
documented in RFC 1918) to resolve DNS on the Internet. Split DNS can also be
used to allow mail from outside back in to the internal network.

Here is an example of a split DNS setup:

A company named Example, Inc. (example.com) has several corporate sites that
have an internal network with reserved Internet Protocol (IP) space and an external
demilitarized zone (DMZ), or outside section of a network, that is available to the
public.

Example, Inc. wants its internal clients to be able to resolve external hostnames
and to exchange mail with people on the outside. The company also wants its
internal resolvers to have access to certain internal-only zones that are not
available at all outside of the internal network.

In order to accomplish this, the company will set up two sets of nameservers. One
set will be on the inside network (in the reserved IP space) and the other set will be
on bastion hosts, which are proxy hosts that can talk to both sides of its network, in
the DMZ.

The internal servers will be configured to forward all queries, except queries for
site1.internal, site2.internal, site1.example.com, and site2.example.com, to the
servers in the DMZ. These internal servers will have complete sets of information
for site1.example.com, site2.example.com, site1.internal, and site2.internal.

To protect the site1.internal and site2.internal domains, the internal nameservers
must be configured to disallow all queries to these domains from any external
hosts, including the bastion hosts.

The external servers, which are on the bastion hosts, will be configured to serve the
public version of the site1 and site2.example.com zones. This could include things
such as the host records for public servers (www.example.com and
ftp.example.com), and mail exchange (MX) records (a.mx.example.com and
b.mx.example.com).

In addition, the public site1 and site2.example.com zones should have special MX
records that contain wildcard (*) records pointing to the bastion hosts. This is
needed because external mail servers do not have any other way of looking up how
to deliver mail to those internal hosts. With the wildcard records, the mail will be
delivered to the bastion host, which can then forward it on to internal hosts.

Here’s an example of a wildcard MX record:

Chapter 10. Domain Name System (DNS) 471

* IN MX 10 external1.example.com.

Now that they accept mail on behalf of anything in the internal network, the bastion
hosts will need to know how to deliver mail to internal hosts. In order for this to
work properly, the resolvers on the bastion hosts will need to be configured to point
to the internal nameservers for DNS resolution. Queries for internal hostnames will
be answered by the internal servers, and queries for external hostnames will be
forwarded back out to the DNS servers on the bastion hosts. In order for all this to
work properly, internal clients will need to be configured to query only the internal
nameservers for DNS queries. This could also be enforced via selective filtering on
the network.

If everything has been set properly, Example, Inc.’s internal clients will now be able
to:

v Look up any hostnames in the site1 and site2.example.com zones.

v Look up any hostnames in the site1.internal and site2.internal domains.

v Look up any hostnames on the Internet.

v Exchange mail with internal and external people.

Hosts on the Internet will be able to:

v Look up any hostnames in the site1 and site2.example.com zones.

v Exchange mail with anyone in the site1 and site2.example.com zones.

Here is an example configuration for the setup we just described above. Note that
this is only configuration information; for information on how to configure your zone
files, see “Step 5. Create the domain data files (master name server only)” on
page 433.

Internal DNS server config:

acl internals { 172.16.72.0/24; 192.168.1.0/24; };

acl externals { bastion-ips-go-here; };

options {
...
...
forward only;
forwarders { // forward to external servers
bastion-ips-go-here;
};
allow-transfer { none; }; // sample allow-transfer (no one)
allow-query { internals; externals; }; // restrict query access
allow-recursion { internals; }; // restrict recursion
...
...

};

zone "site1.example.com" {
type master;
file "m/site1.example.com";
forwarders { }; // do normal iterative

// resolution (do not forward)
allow-query { internals; externals; };
allow-transfer { internals; };

};

zone "site2.example.com" {
type slave;

472 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

file "s/site2.example.com";
masters { 172.16.72.3; };
forwarders { };
allow-query { internals; externals; };
allow-transfer { internals; };

};

zone "site1.internal" {
type master;
file "m/site1.internal";
forwarders { };
allow-query { internals; };
allow-transfer { internals; }

};

zone "site2.internal" {
type slave;
file "s/site2.internal";
masters { 172.16.72.3; };
forwarders { };
allow-query { internals };
allow-transfer { internals; }

};

External (bastion host) DNS server config:
acl internals { 172.16.72.0/24; 192.168.1.0/24; };

acl externals { bastion-ips-go-here; };

options {
...
...
allow-transfer { none; }; // sample allow-transfer (no one)
allow-query { internals; externals; }; // restrict query access
allow-recursion { internals; externals; }; // restrict recursion
...
...

};

zone "site1.example.com" {
type master;
file "m/site1.foo.com";
allow-query { any; };
allow-transfer { internals; externals; };

};

zone "site2.example.com" {
type slave;
file "s/site2.foo.com";
masters { another_bastion_host_maybe; };
allow-query { any; };
allow-transfer { internals; externals; }

};

In the resolv.conf (or equivalent) on the bastion host(s):
search ...
nameserver 172.16.72.2
nameserver 172.16.72.3
nameserver 172.16.72.4

Implementing split DNS with views
The view statement is a powerful new feature of BIND 9 that lets a name server
answer a DNS query differently depending upon who is asking. It is particularly
useful for implementing split DNS setups without having to run multiple servers.

Chapter 10. Domain Name System (DNS) 473

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

Each view statement defines a view of the DNS namespace that will be seen by a
subset of clients. A client matches a view if its source IP address matches the
address_match_list of the view’s match-clients clause and its destination IP address
matches the address_match_list of the view’s match-destinations clause. If not
specified, both match-clients and match-destinations default to matching all
addresses. A view can also be specified as match-recursive-only, which means that
only recursive requests from matching clients will match that view. The order of the
view statements is significant; A client request will be resolved in the context of the
first view that it matches.

Zones defined within a view statement will only be accessible to clients that match
the view. By defining a zone of the same name in multiple views, different zone
data can be given to different clients (for example, internal and external clients in a
split DNS setup.

Many of the options given in the options statement can also be used within a view
statement, and then apply only when resolving queries with that view. When no
view-specific value is given, the value in the options statement is used as a default.
Also, zone options can have default values specified in the view statement. These
view-specific defaults take precedence over those in the options statement.

Views are class specific. If no class is given, class IN is assumed. Note that all
non-IN views must contain a hint zone, since only the IN class has compiled-in
default hints.

If there are no view statements in the configuration file, a default view that matches
any client is automatically created in class IN, and any zone statements specified
on the top level of the configuration file are considered to be part of this default
view. If any explicit view statements are present, all zone statements must occur
inside view statements.

Following is an example of a typical split DNS setup implemented using view
statements:
view "internal" {

// This should match our internal networks.
match-clients { 10.0.0.0/8; };

// Provide recursive service to internal clients only.
recursion yes;

// Provide a complete view of the example.com zone
// including addresses of internal hosts.

zone "example.com" {
type master;
file "example-internal.db";

};
};
view "external" {

match-clients { any; };
// Refuse recursive service to external clients.

recursion no;
// Provide a restricted view of the example.com zone
// containing only publicly accessible hosts.

zone "example.com" {
type master;
file "example-external.db";

};
};

474 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

TSIG
This is a short guide to setting up Transaction SIGnatures (TSIG) based transaction
security in BIND. It describes changes to the configuration file as well as what
changes are required for different features, including the process of creating
transaction keys and using transaction signatures with BIND.

BIND primarily supports TSIG for server to server communication. This includes
zone transfer, notify, and recursive query messages. Resolvers on other platforms
which are based on newer versions of BIND 8 have limited support for TSIG.

TSIG might be most useful for dynamic update. A master server for a dynamic zone
should use access control to control updates, but IP-based access control is
insufficient. Key-based access control is far superior. The nsupdate program
supports TSIG via the -k and -y command line options.

Generate shared keys for each pair of hosts
A shared secret is generated to be shared between host1 and host2. An arbitrary
key name is chosen: ″host1-host2.″. The key name must be the same on both
hosts.

Automatic generation: The following command will generate a 128–bit (16–byte)
HMAC-MD5 key as described above. Longer keys are better, but shorter keys are
easier to read. Note that the maximum key length is 512 bits; keys longer than that
will be digested with MD5 to produce a 128 bit key.
dnssec-keygen -a hmac-md5 -b 128 -n HOST host1-host2.

The key is in the file Khost1-host2.+157+00000.private. Nothing directly uses this
file, but the base-64 encoded string following ″Key:″ can be extracted from the file
and used as a shared secret:
Key: La/E5CjG9O+os1jq0a2jdA==

The string ″La/E5CjG9O+os1jq0a2jdA==″ can be used as the shared secret.

Manual generation: The shared secret is simply a random sequence of bits,
encoded in base-64. Most EBCDIC strings are valid base-64 strings (assuming the
length is a multiple of 4 and only valid characters are used), so the shared secret
can be manually generated. Also, a known string can be run through mmencode on
another platform (such as Linux), or through a similar program, to generate base-64
encoded data.

Copying the shared secret to both machines
This is beyond the scope of DNS. A secure transport mechanism should be used.
This could be secure FTP, ssh, telephone, etc.

Informing the servers of the key’s existence
Imagine host1 and host2 are both servers. The following is added to each server’s
named.conf file:
key host1-host2. {

algorithm hmac-md5;
secret "La/E5CjG9O+os1jq0a2jdA==";

};

The algorithm, hmac-md5, is the only one supported by BIND. The secret is the one
generated above. Since this is a secret, it is recommended that either named.conf
be non-world readable, or the key directive be added to a non-world readable file
that is included by named.conf.

Chapter 10. Domain Name System (DNS) 475

|
|

At this point, the key is recognized. This means that if the server receives a
message signed by this key, it can verify the signature. If the signature succeeds,
the response is signed by the same key.

Instructing the server to use the key
Since keys are shared between two hosts only, the server must be told when keys
are to be used. The following is added to the named.conf file for host1, if the IP
address of host2 is 10.1.2.3:

server 10.1.2.3 {
keys { host1-host2. ;};

};

Multiple keys may be present, but only the first is used. This directive does not
contain any secrets, so it may be in a world-readable file.

If host1 sends a message that is a request to that address, the message will be
signed with the specified key. host1 will expect any responses to signed messages
to be signed with the same key. A similar statement must be present in host2’s
configuration file (with host1’s address) for host2 to sign request messages to
host1.

TSIG key based access control
BIND allows IP addresses and ranges to be specified in ACL definitions, and in
access control directives such as allow-query, allow-transfer, and allow-update. This
has been extended to allow TSIG keys also. The above key would be denoted key
host1-host2. An example of an allow-update directive would be:

allow-update { key host1-host2. ;};

This allows dynamic updates to succeed only if the request was signed by a key
named ″host1-host2.″.

Errors
The processing of TSIG signed messages can result in several errors. If a signed
message is sent to a non-TSIG aware server, a FORMERR will be returned, since
the server will not understand the record. This is a result of misconfiguration, since
the server must be explicitly configured to send a TSIG signed message to a
specific server.

If a TSIG aware server receives a message signed by an unknown key, the
response will be unsigned with the TSIG extended error code set to BADKEY. If a
TSIG aware server receives a message with a signature that does not validate, the
response will be unsigned with the TSIG extended error code set to BADSIG. If a
TSIG aware server receives a message with a time outside of the allowed range,
the response will be signed with the TSIG extended error code set to BADTIME,
and the time values will be adjusted so that the response can be successfully
verified. In any of these cases, the message’s rcode is set to NOTAUTH.

DNSSEC
Cryptographic authentication of DNS information is possible through the DNS
Security (DNSSEC) extensions, defined in RFC 2535. This section describes the
creation and use of DNSSEC signed zones.

The set of dnssec- tools rely on a /dev/random device for the entropy it needs to
generate cryptographically strong keys. If RSA keys are used, only dnssec-keygen
requires random data. z/OS UNIX does not include such a device, but the tools

476 z/OS V1R4.0 CS: IP Configuration Guide

|
|

provide alternate methods of providing them with random data. The user can
specify a file containing random data or can provide random data via the keyboard.
To specify a file, use the -r random data file option on the tool command line. The
dnssec- tools use the timing between keystrokes as the source of entropy. As such,
TN3270 terminal emulation is not the ideal interface. Setting up a VT100 terminal
session is a better solution. Refer to the “Configuring the z/OS UNIX Telnet server
(otelnetd)” on page 374 for more information on setting up otelnetd.

To set up a DNSSEC secure zone, there are a series of steps which must be
followed. z/OS ships with several tools that are used in this process, which are
explained in more detail below. In all cases, the -h option prints a full list of
parameters. Note that the keyset and signedkey files created by some DNSSEC
tools must be put in the name server working directory before another DNSSEC
tool is used for signing a master zone file.

There must also be communication with the administrators of the parent and/or
child zone to transmit keys and signatures. A zone’s security status must be
indicated by the parent zone for a DNSSEC capable resolver to trust its data.

For other servers to trust data in this zone, they must be statically configured with
either this zone’s zone key or the zone key of another zone above this one in the
DNS tree, using the trusted-keys statement in the configuration file.

Generating keys
The dnssec-keygen program is used to generate keys.

A secure zone must contain one or more zone keys. The zone keys will sign all
other records in the zone, as well as the zone keys of any secure delegated zones.
Zone keys must have the same name as the zone, a name type of ZONE, and
must be usable for authentication. On z/OS, you should use the RSA algorithm for
DNSSEC if the zone you will sign with the key will be a dynamic zone (that is, one
maintained with nsupdate). You can also use the DSA algorithm, provided you have
the ’random-device’ option coded in the named.conf file.

The following command will generate a 768–bit RSA key for the child.example
zone:
dnssec-keygen -a RSA -b 768 -n ZONE child.example

Two output files will be produced: Kchild.example.+001+12345.key and
Kchild.example.+001+12345.private (where 12345 is an example of a key tag). The
key file names contain the key name (child.example.), algorithm (3 is DSA, 1 is
RSA, etc.), and the key tag (12345 in this case). The private key (in the .private file)
is used to generate signatures, and the public key (in the .key file) is used for
signature verification.

To generate another key with the same properties (but with a different key tag),
repeat the above command.

The public keys should be inserted into the zone file with $INCLUDE statements,
including the .key files.

Creating a key set
The dnssec-makekeyset program is used to create a key set from one or more
keys.

Chapter 10. Domain Name System (DNS) 477

|
|
|
|
|
|

|
|
|

|

|

Once the zone keys have been generated, a key set must be built for transmission
to the administrator of the parent zone, so that the parent zone can sign the keys
with its own zone key and correctly indicate the security status of this zone. When
building a key set, the list of keys to be included and the TTL of the set must be
specified, and the desired signature validity period of the parent’s signature may
also be specified.

The list of keys to be inserted into the key set may also include non-zone keys
present at the top of the zone. dnssec-makekeyset may also be used at other
names in the zone.

The following command generates a key set containing the above key and another
key similarly generated, with a TTL of 3600 and a signature validity period of 10
days starting from now.
dnssec-makekeyset -t 3600 -e +8640 Kchild.example.+001+12345
Kchild.example.+001+23456

One output file is produced: keyset-child.example. This file should be transmitted to
the parent to be signed. It includes the keys, as well as signatures over the key set
generated by the zone keys themselves, which are used to prove ownership of the
private keys and encode the desired validity period.

Signing the child’s key set
The dnssec-signkey program is used to sign one child’s key set.

If the child.example zone has any delegations which are secure, for example,
grand.child.example, the child.example administrator should receive key set files for
each secure subzone. These keys must be signed by this zone’s zone keys.

The following command signs the child’s key set with the zone keys:
dnssec-signkey keyset-grand.child.example. Kchild.example.+001+12345
Kchild.example.+001+23456

One output file is produced: signedkey-grand.child.example.. This file should be
both transmitted back to the child and retained. It includes all keys (the child’s keys)
from the key set file and signatures generated by this zone’s zone keys.

Signing the zone
The dnssec-signzone program is used to sign a zone.

Any signedkey files corresponding to secure subzones should be present, as well
as a signedkey file for this zone generated by the parent (if there is one). The zone
signer will generate NXT and SIG records for the zone, as well as incorporate the
zone key signature from the parent and indicate the security status at all delegation
points.

The following command signs the zone, assuming it is in a file called
zone.child.example. By default, all zone keys which have an available private key
are used to generate signatures.
dnssec-signzone -o child.example zone.child.example

One output file is produced: zone.child.example.signed. This file should be
referenced by named.conf as the input file for the zone.

478 z/OS V1R4.0 CS: IP Configuration Guide

|

|

|

Configuring servers
Data is not verified on load in BIND 9, so zone keys for authoritative zones do not
need to be specified in the configuration file. The public key for any security root
must be present in the configuration file’s trusted-keys statement.

IPv6 support in BIND 9
BIND 9 fully supports all currently defined forms of IPv6 name to address and
address to name lookups.

For forward lookups, BIND 9 supports both A6 and AAAA records. The use of AAAA
records is recommended, as A6 records might be moved to experimental status by
RFC. In fact, the stub resolvers currently shipped with most operating systems
support only AAAA lookups, because following A6 chains is much harder than doing
A or AAAA lookups.

For IPv6 reverse lookups, BIND 9 supports the standard nibble label format, as well
as the experimental bitstring format. Both formats are used under the ip6.arpa
domain, although some resolvers and applications use the nibble format under the
deprecated ip6.int domain.

Address lookups using AAAA records
The AAAA record is a parallel to the IPv4 A record. It specifies the entire address in
a single record. For example:

$ORIGIN example.com.
host 3600 IN AAAA 3ffe:8050:201:1860:42::1

Address lookups using A6 records
A6 records are supported, but might be moved to experimental status by RFC. The
use of AAAA records is recommended.

The A6 record is more flexible than the AAAA record, and is therefore more
complicated. The A6 record can be used to form a chain of A6 records, each
specifying part of the IPv6 address. It can also be used to specify the entire record
as well. For example, this record supplies the same data as the AAAA record in the
previous example:

$ORIGIN example.com.
host 3600 IN A6 0 3ffe:8050:201:1860:42::1

A6 chains: A6 records are designed to allow network renumbering. This works
when an A6 record only specifies the part of the address space the domain owner
controls. For example, a host may be at a company named ″company.″ It has two
ISPs which provide IPv6 address space for it. These two ISPs fully specify the IPv6
prefix they supply.

In the company’s address space:

$ORIGIN example.com.
host 3600 IN A6 64 0:0:0:0:42::1 company.example1.net.
host 3600 IN A6 64 0:0:0:0:42::1 company.example2.net.

ISP1 will use:

$ORIGIN example1.net.
company 3600 IN A6 0 3ffe:8050:201:1860::

Chapter 10. Domain Name System (DNS) 479

|
|
|

|
|
|
|

|
|

ISP2 will use:

$ORIGIN example2.net.
company 3600 IN A6 0 1234:5678:90ab:fffa::

When host.example.com is looked up, the resolver (in the caching name server) will
find two partial A6 records, and will use the additional name to find the remainder of
the data.

Note: A6 chain resolution occurs when one name server requests an A6 record
from another name server, with a query for a host name found in a previous
A6 record. The name server can also perform A6 chain resolution on behalf
of a resolver that cannot perform this function, including the z/OS resolver.
To enable this function, the name server must be configured with the
’allow-v6–synthesis’ option. Resolvers that cannot send A6 type queries and
can only send AAAA type queries (like the z/OS resolver) are then able to
follow A6 chains using a name server configured with ’allow-v6–synthesis’.

A6 records for DNS servers: When an A6 record specifies the address of a
name server, it should use the full address rather than specifying a partial address.
For example:
$ORIGIN example.com.
@ 14400 IN NS ns0

14400 IN NS ns1
ns0 14400 IN A6 0 3ffe:8050:201:1860:42::1
ns1 14400 IN A 192.168.42.1

It is recommended that IPv4-mapped IPv6 addresses not be used. If a host has an
IPv4 address, use an A record, not an A6 record with an address like
::ffff:192.168.42.1.

Synthetic IPv6 responses
Most resolvers support IPv6 DNS lookups as defined in RFC 1886, using AAAA
records for forward lookups and nibble labels in the ip6.int domain for reverse
lookups, but do not support RFC 2874-style lookups (using A6 records and binary
labels in the ip6.arpa domain). BIND 9 provides a way to automatically convert RFC
1886-style lookups into RFC 2874-style lookups and return the results as synthetic
AAAA and PTR records.

This feature is disabled by default and can be enabled on a per-client basis by
adding an allow-v6-synthesis { address_match_list }; clause to the options or view
statement. When it is enabled, recursive AAAA queries cause the server to first try
an A6 lookup, and if that fails, an AAAA lookup. No matter which one succeeds, the
results are returned as a set of synthetic AAAA records. Similarly, recursive PTR
queries in ip6.int will cause a lookup in ip6.arpa using binary labels, and if that fails,
another lookup in ip6.int. The results are returned as a synthetic PTR record in
ip6.int. To enable allow-v6-synthesis for all clients, use the ’any’ built-in ACL.

The synthetic records have a TTL of zero. DNSSEC validation of synthetic
responses is not currently supported; therefore responses containing synthetic RRs
will not have the AD flag set.

Address to name lookups using nibble format
When looking up an address in nibble format, the address components are simply
reversed, just as in IPv4, and ip6.arpa. is appended to the resulting name. For
example, the following would provide reverse name lookup for a host with address
3ffe:8050:201:1860:42::1.

480 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

$ORIGIN 0.6.8.1.1.0.2.0.0.5.0.8.e.f.f.3.ip6.arpa.
1.0.0.0.0.0.0.0.0.0.0.0.2.4.0.0 14400 IN PTR
host.example.com.

Address to name lookups using bitstring format
Bitstring labels can start and end on any bit boundary, rather than on a multiple of 4
bits as in the nibble format.

To replicate the previous example using bitstrings:
$ORIGIN \[x3ffe805002011860/64].ip6.arpa.
\[x0042000000000001/64] 14400 IN PTR
host.example.com.

Using DNAME for delegation of IPv6 reverse addresses
DNAME is supported, but is considered experimental.

In IPv6, the same host may have many addresses from many network providers.
Since the trailing portion of the address usually remains constant, DNAME can help
reduce the number of zone files used for reverse mapping that need to be
maintained.

For example, consider a host which has two providers (example.net and
example2.net) and therefore two IPv6 addresses. Since the host chooses its own
64 bit host address portion, the provider address is the only part that changes:
$ORIGIN example.com.
host A6 64 ::1234:5678:1212:5675
cust1.example.net.

A6 64 ::1234:5678:1212:5675
subnet5.example2.net.
$ORIGIN example.net.
cust1 A6 48 0:0:0:dddd::
ipv6net.example.net.
ipv6net A6 0 aa:bb:cccc::
$ORIGIN example2.net.
subnet5 A6 48 0:0:0:1::
ipv6net2.example2.net.
ipv6net2 A6 0 6666:5555:4::

This sets up forward lookups. To handle the reverse lookups, the provider
example.net would have:

$ORIGIN \[x00aa00bbcccc/48].ip6.arpa.
\[xdddd/16] DNAME ipv6-rev.example.com.

and example2.net would have:

$ORIGIN \[x666655550004/48].ip6.arpa.
\[x0001/16] DNAME ipv6-rev.example.com.

example.com needs only one zone file to handle both of these reverse mappings:

$ORIGIN ipv6-rev.example.com.
\[x1234567812125675/64] PTR host.example.com.

Chapter 10. Domain Name System (DNS) 481

|

|

Advanced BIND 4.9.3–Name server topics

Connection optimization in a sysplex domain
This section describes connection optimization, a technique that uses DNS for
balancing IP connections and workload in a sysplex domain. It also dynamically
manages the active and available list of IP addresses for resources in a sysplex
domain.

The name server can perform Connection Optimization (DNS/WLM) only when
running in BIND 4.9.3 mode. Those wishing to do sysplex load balancing while
running the name server in BIND 9 mode are encouraged to use the Sysplex
Distributor function as an alternative.

You may run a BIND 9 and a BIND 4.9.3 name server simultaneously; however, the
host’s interfaces must be divided among the two. That is, clients wishing to be
served by a BIND 4.9.3 name server must send queries to the BIND 4.9.3
addresses and clients wishing to be served by a BIND 9 name server must send
queries to the BIND 9 addresses. If you wish to run BIND 4.9.3 and BIND 9 name
servers simultaneously while using DNS/WLM (Connection Optimization) with the
BIND 4.9.3 name server, you can still make all addresses on the host available to
the BIND 4.9.3 name server for Connection Optimization. You do not have to limit
that set of addresses to the set of addresses that the BIND 4.9.3 name server is
listening on. The mutually exclusive set of addresses that the two name servers are
listening on is independent of the addresses that the name servers may return to
clients. Refer to z/OS Communications Server: IP Migration for more information.

In BIND 9 mode, primitive load balancing without Sysplex Distributor can be
achieved in DNS using multiple A records for one name, if true sysplex load
balancing is not desired through the Sysplex Distributor. In this case, the addresses
from the multiple A records will be handed out in a round-robin fashion.

Overview
Connection optimization uses DNS for distributing connections among hosts or
server applications within a sysplex domain. A sysplex is a set of MVS systems
communicating and cooperating with each other through multisystem hardware and
software components.

In DNS terms, a sysplex is a subdomain that is added to the DNS name space.
Name servers running within the sysplex perform name resolution. Resolvers query
these name servers directly or indirectly through the name server authoritative for
the resources in the sysplex domain.

Connection optimization extends the concept of a ″DNS host name″ to clusters, or
groups of server applications or hosts. Server applications within the same group
are considered to provide equivalent service. Connection optimization utilizes
round-robin logic and load-based ordering to determine which addresses to return
for a given cluster.

Connection optimization increases overall efficiency by favoring connections to
systems with the most available resources and by avoiding unavailable sysplex
resources. Addresses of the most available server applications or hosts are
returned more frequently than the addresses of loaded server applications or hosts.

482 z/OS V1R4.0 CS: IP Configuration Guide

A connection-optimized sysplex domain is also scalable—that is, it can add servers
and interface addresses dynamically to provide more service capacity. Client
applications have dynamic access to the addresses of those servers, with no DNS
restart or administration required.

Registration: To ensure maximum availability, server applications register with
Workload Manager (WLM), which quantifies the availability of server resources
within a sysplex. WLM must be configured in goal mode on all hosts within the
sysplex. See “Step 7: Configure WLM in goal mode” on page 495 for a description
of this procedure.

TCP/IP stacks also register with WLM. Additionally, they provide the active IP
addresses. For a description of how IP addresses are associated with a sysplex
domain name, see “Associating IP addresses with the sysplex domain name” on
page 485. For a discussion of TCP/IP configuration issues, see “Configuring
TCP/IP” on page 491.

When registering, server applications provide the following information:

v Group name. This is the name of a cluster of equivalent server applications in a
sysplex. It is also the name within the sysplex domain that client applications use
to access the server applications. To connect to any server application in a
group, a client application uses the combination
group_name.sysplex_domain_name.

Note: The group name TCPIP, the group name for the sysplex domain (for
example, mvsplex), and the DNS names of the resource records in your
sysplex cluster zone file are reserved and cannot be used by server
applications.

v Server name. This is the name of the server application instance. The server
name must be unique among all servers that share the same group name. A
server application instance can belong to more than one group.

v Host name. This is the host name of the TCP/IP stack on which the server
application runs.

The sysplex domain name should be registered with the domain name server under
a special address, 127.0.0.128, which is used by the ioctl() SIOCGSPLXFQDN. For
details, see “Configuring a master (primary) name server” on page 427.

Name resolution: In connection optimization, a name server performs resolution
for a name representing a cluster of hosts or server applications. Figure 58 on
page 484 depicts a sysplex domain called mvsplex.mycorp.com. The sysplex domain
contains only the resources participating in the sysplex. Client applications append
the domain name, mycorp.com, to all requests for name resolution.

Chapter 10. Domain Name System (DNS) 483

|
|
|
|

Each host system runs TCP/IP. Hosts mvsb and mvsc are also running the z/OS
UNIX sysplex name servers (DNS). mvsb is running the master name server for the
sysplex subdomain, and mvsc is running the slave.

Each host is running one or more myserver server applications, and mvsa and mvsb
are also running tnsysplex server applications. The group names (tnsysplex and
myserver), the tnsysplex server names (mvsa and mvsb), and the myserver server
names (for example, server1) are known to the name server through WLM
registration by the respective application.

Note: tnsysplex represents a cluster of TN3270 server applications. Every
instance of TN3270 running on a particular host registers using the same
server name.

Four types of requests are shown in Figure 58. Client Application 1 requests the
services of any host on the system by providing only the name of the sysplex
subdomain, mvsplex, to DNS for resolution. Client Application 2 requests the
services of any tnsysplex server instance running in the sysplex. Client Application
3 requests a particular server instance in the myserver group, and Client Application
4 requests connection to a particular host.

In Figure 58, only Client Applications 1 and 2 are candidates for connection
optimization. Client Application 1 can connect to either mvsa, mvsb, or mvsc. Client
Application 2 can connect to either mvsa or mvsb (but not mvsc). Client Applications 3
and 4, which can connect only to mvsa, are ineligible for connection optimization.
They do, however, benefit from the round-robin selection process DNS uses to
balance across available network interfaces.

TCP/IP
WLM
tnsysplex
mvsa

myserver
server1

mvsplex

client 1 client 2 client 3

client 4

mvsa mvsb mvsc

TCP/IP
WLM
DNS
tnsysplex
mvsb

myserver
server2

tnsysplex.
mvsplex

TCP/IP
WLM
DNS

myserver
server3
server4

server1.
myserver.
mvsplex

mvsa.
mvsplex

Network

mvsplex.mycorp.com

Figure 58. Name resolution to a sysplex

484 z/OS V1R4.0 CS: IP Configuration Guide

Note: When using connection balancing via MVS clients (such as FTP), to avoid
caching of IP addresses, during name resolution set the following
environment variable:
export _EDC_IP_CACHE_ENTRIES=0

Generated names vs. statically defined names: All name servers use statically
defined names. These are the names in the forward domain data file. As the DNS
administrator for a name server using connection optimization, statically define the
names of the hosts in the sysplex and the NS and SOA resource records in the
forward domain data file. For a description of sysplex forward domain data files, see
“Sysplex data files” on page 493.

Note: The host names in the data files must match the host names specified in the
stack’s TCPIP.DATA data set and should be 20 characters or less to ensure
server uniqueness.

A name server using connection optimization also uses generated names. These
are added dynamically to the domain name space as TCP/IP stacks and server
applications in the sysplex register with WLM. The name server uses three types of
generated names. In Figure 58 on page 484, the following generated names are
used:

v The group name that is registered by the server applications (tnsysplex and
myserver)

v The server name concatenated with the group name of each server application
that registers with WLM in the sysplex (for example, server1.myserver)

v An alias for the sysplex domain name, mvsplex

The generated names become resources (or host names) within the sysplex
domain, creating fully qualified domain names:

v Fully qualified group names (these are the connection balanced names):

– tnsysplex.mvsplex.mycorp.com

– myserver.mvsplex.mycorp.com

v Fully qualified server names:

– mvsa.tnsysplex.mvsplex.mycorp.com

– server1.myserver.mvsplex.mycorp.com

v Fully qualified alias name for the sysplex name mvsplex.mycorp.com:

– mvsplex.mvsplex.mycorp.com

Associating IP addresses with the sysplex domain name: The sysplex domain
name mvsplex.mycorp.com is associated with the intersection of the set of statically
defined addresses associated with the stacks that are registered with WLM and the
set of addresses associated with the adapters that are active on those stacks. The
TCP/IP stack must be registered with WLM for this to occur. Figure 59 on page 486
depicts this intersection.

Chapter 10. Domain Name System (DNS) 485

The hosts, mvsa, mvsb, and mvsc in the figure have the following addresses in the
HOME statement in the PROFILE.TCPIP data set. Only certain adapters are active.
mvsa mvsb mvsc
9.1.1.1 (adapter active) 9.1.1.4 (adapter active) 9.1.1.8
9.1.1.2 (adapter active) 9.1.1.5 (adapter active) 9.1.1.9 (adapter active)
9.1.1.3 (adapter active) 9.1.1.6 (adapter active) 9.1.1.10

9.1.1.7 (adapter active)

The forward domain data file for the sysplex contains the following statically defined
addresses:
mvsa IN A 9.1.1.1

IN A 9.1.1.2
IN A 9.1.1.3

mvsb IN A 9.1.1.4
IN A 9.1.1.5

mvsc IN A 9.1.1.8
IN A 9.1.1.9
IN A 9.1.1.10

Using the intersection of two sets lets the domain administrator selectively exclude
certain IP addresses from use, such as 9.1.1.6 and 9.1.1.7 on mvsb, while
distributing only active addresses to client applications. For instance, 9.1.1.8 would
never be used since it is not active.

The process of associating IP addresses with server applications is similar to that
for hosts. When a server application registers with WLM, the dynamically generated
group name (for example, myserver) is added to the sysplex domain. If the stack on
which the server application is running is registered with WLM, then the addresses
associated with the group name are the intersection of the statically defined
addresses for that stack and those addresses that are associated with adapters that

9.1.1.8 9.1.1.6

9.1.1.7

9.1.1.1

9.1.1.2

9.1.1.3

9.1.1.4

9.1.1.5

9.1.1.9

9.1.1.10

started addresses
on registered stacksstatically defined

addresses

Figure 59. Address association with mvsplex.mycorp.com

486 z/OS V1R4.0 CS: IP Configuration Guide

are active. When the server application is replicated on other hosts in the sysplex,
the addresses associated with the group name are the union of all intersection sets.

Detailed example: The following example describes in detail how IP addresses
become associated with a server application myserver running in the sysplex
mvsplex.mycorp.com. When reading the following section, refer to Figure 60.

The example is described in terms of a process, beginning initially with no
registered servers applications or stacks. The statically defined addresses
associated with the mvs hosts and coded in the forward domain data file are the
statically defined addresses listed earlier. As server applications and stacks register,
the IP addresses associated with myserver.mvsplex.mycorp.com change. Figure 60
shows the conclusion of this process.

Assume initially that a server application which registers with the group name
myserver is running on mvsc, but that the stack on mvsc is not currently registered
with WLM. The addresses associated with the name myserver.mvsplex.mycorp.com
are 9.1.1.8, 9.1.1.9, and 9.1.1.10.

Next, assume that the stack on mvsc registers with WLM. The addresses associated
with the name myserver.mvsplex.mycorp.com are reduced to the intersection of the
statically defined addresses for the stack and those addresses that are associated
with adapters that are active. The only address associated with group name
myserver.mvsplex.mycorp.com is thus 9.1.1.9.

Now another instance of an equivalent server application registers with WLM on
mvsb, but the stack on mvsb is not registered with WLM. All the statically defined
addresses associated with mvsb are added to the set of addresses currently

started addresses
on registered stacks

statically defined
addresses

9.1.1.69.1.1.8
mvsc

9.1.1.10
9.1.1.7

9.1.1.1
mvsa

mvsb

9.1.1.2

9.1.1.3

9.1.1.4

9.1.1.5

9.1.1.9

Figure 60. Address association with myserver

Chapter 10. Domain Name System (DNS) 487

associated with the group name myserver.mvsplex.mycorp.com (9.1.1.4, 9.1.1.5,
and 9.1.1.9). If the addresses on mvsb are active, the set of addresses associated
with the group name does not change.

Similarly, if another instance of an equivalent server application registers with WLM
on mvsa and if the addresses on mvsa are active, the set of addresses associated
with the server application myserver.mvsplex.mycorp.com are those shown in
Figure 60 on page 487 (and Figure 59 on page 486).

Note: The adapters associated with addresses 9.1.1.6 and 9.1.1.7 are not
associated with the dynamically generated group name because they are not
statically defined in the forward domain data file.

Connecting to a particular server instance: The server name with which the server
application registers is unique among all other server instances that share the same
group name. Client applications can use the server name to bypass connection
optimization. For example, client applications can bypass connection optimization if
they are in the middle of a transaction with a server application, and the
client/server session fails before the transaction completes. If the client application
software has the ability to recognize this situation, the client can reconnect to the
same server instance and complete the transaction.

The group name is prefaced with the server name, separated by a dot
(server_name.group_name). If the group name is myserver and if the application
instance on mvsc registered with WLM as myserver3, then client applications can
connect to that particular instance using the name
myserver3.myserver.mvsplex.mycorp.com. The address associated with this name
(9.1.1.9) is a subset of the addresses currently associated with the group name
myserver.mvsplex.mycorp.com that exist on stack mvsc.

Usage considerations in a connection optimized sysplex: Connection
optimization extends the concept of a DNS host name to include a name that
generically represents (1) all hosts in the sysplex (provided their stacks register with
WLM) and (2) names that represent groups of equivalent server applications spread
across the sysplex (provided those server applications register with WLM). The
maximum benefit from connection optimization is realized when all stacks in the
sysplex register with WLM and all TCP/IP server applications register with WLM, if
they are capable of doing so.

To take advantage of connection optimization even when registration is not
available, consider the following scenarios.

TCP/IP server application does not register: In some cases, you might want to use
connection optimization for a particular TCP/IP server application, but it does not
register with WLM. If the stacks that these applications are running on register with
WLM, users can still use connection optimization with server applications by
entering the sysplex domain name. A typical invocation might be the following:
tn3270 mvsplex

where tn3270 is the name of the invoked application and mvsplex is the sysplex
domain name.

In this scenario, system administrators must ensure that equivalent instances of the
server application are running on each registered stack. Otherwise, connection
optimization might result in connecting the client application to a host that is not

488 z/OS V1R4.0 CS: IP Configuration Guide

running the server application. (mvsc in Figure 58 on page 484, for example, is not
running the TN3270 server.) Depending on the client software, connection timeouts
and connection retries might result.

One or more (or all) stacks do not register with WLM: In some cases, you might
want to use connection optimization for a particular TCP/IP server application, but
one or more (or all) stacks do not register with WLM because they do not support
WLM registration or they are not configured to do so. Consider also that the server
application does not register with WLM. For the stacks that have not registered,
only the statically defined addresses will be used.

In this scenario, a certain degree of connection optimization can occur between
hosts whose stacks register with WLM if users enter the sysplex domain name (for
example, mvsplex in Figure 58 on page 484.) In addition, system administrators
must ensure that equivalent instances of the server application are running on each
registered stack. Connections will not be made to hosts whose stacks do not
register.

Similarly, suppose that the application programmer develops a server application
called ourApp that registers with the group name of myserver. Suppose also that
one or more (or all) of the stacks on which the server application runs are not
registered with WLM. A typical invocation might be the following:
ourApp myserver

Since one or more (or all) of the stacks are not registered with WLM, it is possible
that an unusable IP address could be returned to the client because a stack has not
reported the IP addresses that are active. In this case, only statically defined
addresses are used for stacks that are not registered. If an unusable IP address is
returned to the client, the connection times out, and depending on the client
software, the client application might or might not retry the same or different
address returned by the DNS query.

Considerations for connection balancing with multiple instances of TCP/IP on a
single host system: Results of connection balancing in a multiple TCP/IP
environment are not predictable. Servers such as TN3270 that bind to a single
instance of TCP/IP should work as expected as long as they provide the correct
host name in the WLM registration. Servers such as FTP which do not bind to a
single instance of TCP/IP will have less predictable results. The host name provided
on the registration will link each server with a set of IP addresses for a single stack.

Multiple servers on the same port: When running multiple servers on the same
port on the same TCP/IP instance (using SHAREPORT), only one of the servers
should register with WLM.

Caching issues: Proper distribution of server application addresses within a
cluster requires DNS queries to be answered by the name server within the
sysplex. For this reason, name servers that are located outside the sysplex cannot
be configured as master or slave servers for the sysplex domain.

Name servers or resolvers outside the sysplex can prevent client application
queries from reaching the sysplex name servers on subsequent requests if they use
cached information. This is undesirable for connection optimization since the name
servers and resolvers would not have up-to-date information about capacity and
availability of the resources in the sysplex.

Chapter 10. Domain Name System (DNS) 489

To disable other name servers from caching information about sysplex domain
resources, a time-to-live (ttl) value of 0 is returned by default. Note that some
resolver and name server implementations do not support a ttl value of 0 or
anything less than an internally defined minimum (for example, 300 seconds).

Depending on the DNS and network configuration, the number of DNS queries on
the network for the sysplex resources might increase. At the expense of reduced
availability and load distribution information, administrators can choose a different
default ttl for the sysplex resources by using the -l option when starting the sysplex
name server.

Configuring a sysplex domain for connection optimization
Follow the steps below to configure name servers in a sysplex domain:

1. Identify server applications.

2. Configure server applications for WLM registration.

3. Choose sysplex name and identify name servers in the sysplex.

4. Update parent domain name server.

5. Configure the sysplex name servers.

6. Configure client applications.

7. Configure WLM in goal mode.

Each of these steps is explained below.

Step 1: Identify server applications: Identify the server applications to run in the
sysplex. Refer to the product documentation for each application to determine if it
supports registration with WLM for connection optimization. It is possible to modify
the application to register with WLM. See “Registering your own applications” on
page 495.

Candidate applications must have the following attributes:

v Client applications must use DNS for name resolution.

v Server applications must run in a single sysplex.

v Server applications within a specified group provide equivalent functions to their
clients. That is, the client application receives the same services from any of the
registered server applications.

v To be considered equivalent, all servers registering in a group must be listening
on the same port.

v Client applications must use portmapper or a well-known port number to access
the server application.

Note: Data Facility Storage Management Subsystem (DFSMS) restrictions do not
currently allow sharing of HFS files in write mode.

Maximum benefits are attained when server applications have the following
attributes:

v Registration with WLM. This feature allows WLM to track the availability of the
registering server application and to allow clusters of servers on specified
systems within the sysplex. Client application use of the sysplex domain name
assumes that the server application is available on all hosts within the sysplex
and the stacks running on the sysplex hosts are configured to register with WLM.
Even if a server application does not register with WLM, it might still be able to
take advantage of connection optimization under certain circumstances. See
“Usage considerations in a connection optimized sysplex” on page 488.

490 z/OS V1R4.0 CS: IP Configuration Guide

v Workloads. The server application has system or network workloads sufficient
enough to warrant load distribution. Determination of what is sufficient is
subjective, but the value of balancing the incoming connections should outweigh
the cost of the extra DNS queries on the network. See “Caching issues” on
page 489 for more information.

v Session Length. In most cases, server applications selected to use the
connection optimization model should have long sessions. Because reduced
caching in the network name servers causes additional network traffic, server
applications with many short sessions might not be appropriate candidates.

Step 2: Configure server applications for WLM registration: After identifying
server applications you want to run in the sysplex, you configure them for WLM
registration. Typical configuration involves specification of the group name by which
the application will be known. (Do not use ″TCPIP″ or the sysplex domain name as
a group name.) See “Registering your own applications” on page 495 for information
about how to register the applications you write. The following sections describe
how to configure the z/OS CS TCP/IP stack and the applications that are able to
register with WLM.

Configuring TN3270: To configure TN3270 servers for registration with WLM, use
the WLMCLUSTERNAME and ENDWLMCLUSTERNAME statements to enter a
unique sysplex server group name (or names) in the TELNETPARMS section of the
PROFILE.TCPIP data set. For a complete description of these statements, refer to
z/OS Communications Server: IP Configuration Reference.

Unique TN3270 server group names can be used to separate or direct client
application requests to only those host systems supporting the target application.
For example, a TN3270 server group name of CICS3270 could be used on host
systems actually running the target CICS application that the TN3270 clients
access.

If necessary, modify the server group names using the VARY TCPIP,,OBEYFILE
command. (The VARY TCPIP,,OBEYFILE command allows changes to the system
operation and network configuration without stopping and restarting the TCP/IP
address space.) If using VARY TCPIP,,OBEYFILE, however, specify all of the
TN3270 parameters between the TELNETPARMS and ENDTELNETPARMS
statements (not just additions and deletions). For more information on VARY
TCPIP,,OBEYFILE processing, refer to z/OS Communications Server: IP
Configuration Reference.

Configuring TCP/IP: To register TCP/IP with WLM at startup, add the IPCONFIG
SYSPLEXROUTING statement in the PROFILE.TCPIP configuration data set. To
register TCP/IP using VARY TCPIP,,OBEYFILE, add the IPCONFIG
SYSPLEXROUTING statement to the OBEYFILE data set. For a complete
description of this statement, refer to z/OS Communications Server: IP
Configuration Reference.

TCP/IP also registers addresses that are active for each stack. These addresses
are the active, configured addresses in the HOME list for which a START device has
been processed. WLM registration supports only 15 addresses per TCPIP instance.

To deregister TCP/IP, add IPCONFIG NOSYSPLEXROUTING to the OBEYFILE
data set. (Although it is possible to add this statement to the PROFILE.TCPIP data
set, typical de-registration occurs in the OBEYFILE data set.) When using VARY
TCPIP,,OBEYFILE processing with IPCONFIG NOSYSPLEXROUTING, add

Chapter 10. Domain Name System (DNS) 491

|
|

|

|
|

|
|

|
|
|
|

IPCONFIG SYSPLEXROUTING on a subsequent VARY TCPIP,,OBEYFILE
command to reregister. Note that de-registration occurs automatically when TCP/IP
terminates.

Note: Use the IPCONFIG SYSPLEXROUTING and IPCONFIG
NOSYSPLEXROUTING statements only when the host is running as part of
a sysplex.

Configuring the FTP server: Refer to z/OS Communications Server: IP
Configuration Reference for more information on WLMCLUSTERNAME statement.

Configuring CICS: See z/OS Communications Server: IP CICS Sockets Guide.

Step 3: Choose sysplex name and identify name servers: Identify a unique
name with which DNS client applications can access the sysplex. This name can be
the same as the configured sysplex name. Names must be 18 characters or less to
accommodate WLM restrictions. The sysplex name becomes part of the fully
qualified domain name. For example, a sysplex, mvsplex, in the domain mycorp.com
has a fully qualified name of mvsplex.mycorp.com. (This is the domain name you
specify in the primary directive that contains the cluster keyword in the named
boot file.)

After selecting a name for the sysplex, identify the master name servers. A sysplex
should have only one master name server, and it should have a slave name server
to provide redundancy. The slave name server must run in the same sysplex as the
master name server. Both the master and slave name servers configured for
connection optimization must run on hosts within the sysplex.

Step 4: Update parent domain name server: The parent domain name server is
the master name server authoritative for the domain that contains the sysplex
subdomain. The parent domain name server can be the same name server as the
sysplex name server.

Update the parent domain name server data files by entering the names and IP
addresses of the name servers for the sysplex. Use NS (Name Server) resource
records to enter the information.

For example, if the name of the domain in which the sysplex is located is
mycorp.com and the name of the sysplex is mvsplex and the master name servers
are running on hosts mvsb and mvsc in the sysplex, add the following records to the
forward domain data file of the master domain name server for mycorp.com:
mvsplex NS mvsb.mvsplex.mycorp.com.

NS mvsc.mvsplex.mycorp.com.
mvsb.mvsplex.mycorp.com. A 9.67.116.201

A 9.67.116.206
A 9.67.116.208

mvsc.mvsplex.mycorp.com. A 9.67.116.203
A 9.67.116.207
A 9.67.116.210

This tells the parent domain name server that mvsb and mvsc are master servers
for mvsplex. It does not tell the name server that mvsc is slave, only that it is an
additional master name server in the sysplex. The address (A) records are glue
records. They enable remote name servers to contact the name servers in the
sysplex.

492 z/OS V1R4.0 CS: IP Configuration Guide

|

In addition, it might be useful to add CNAME records for resources within the
sysplex subdomain to avoid a name change in the client application and to prevent
confusion for the end user. See “Step 6: Configure client applications” on page 494.

For example, if client applications use a default domain name of mycorp.com, then
requests for tnsysplex.mycorp.com can be delegated to the sysplex subdomain with
the following resource record:
tnsysplex CNAME tnsysplex.mvsplex.mycorp.com.

Step 5: Configure the sysplex name servers: When the TCP/IP stack is
registered with WLM, the list of IP addresses made available to client applications
includes the addresses that are common to those provided by TCP/IP and the list of
application servers in the forward domain data file of the sysplex name server. See
“Generated names vs. statically defined names” on page 485.

Note: The addresses returned to the client application depend upon several factors
including whether all or some stacks in the sysplex are registered with WLM,
the availability of the adapters assigned to the IP addresses, the names the
client application uses for connection, and whether the servers are registered
with WLM. See “Usage considerations in a connection optimized sysplex” on
page 488.

The steps for configuring sysplex name servers are similar to those for configuring
the name servers in an ordinary subdomain:

“Step 2. For BIND 4.9.3–DNS only: specify stack affinity (Multiple stack
environment)” on page 431.

“Step 3. Specify port ownership” on page 431.

“Step 4. Update the name server start procedure (Optional)” on page 432.

“Step 5. Create the domain data files (master name server only)” on page 433.
See examples below for more information.

“Step 6. Create the hints (root server) file” on page 439.

“Step 7. Create the loopback file” on page 441.

“Step 1a. Create the boot file for BIND 4.9.3–DNS” on page 428.

“Step 11. Start the name server” on page 448.

Sysplex data files: The data files must contain the ″A″ resource records for the
host names internal to the sysplex. The host names must match the host names
specified in the stack’s TCPIP.DATA data set. For a discussion of how IP addresses
are associated with a sysplex domain name, see “Associating IP addresses with the
sysplex domain name” on page 485.

Note: Consider using VIPA addresses for the MVS hosts. If VIPA addresses are
used, they are the only addresses needed to code in the forward domain
data file. When Dynamic VIPAs (DVIPAs) are used for VIPA Takeover, code
all of the DVIPAs in the sysplex under each host name in the forward
domain data file. This will circumvent manual intervention in the DNS data
files when a DVIPA is taken over or given back and will not cause any
unexpected results in DNS/WLM.

Following is an example of a forward domain data file for a sysplex name server.
mvsplex.mycorp.com. SOA mvsb.mvsplex.mycorp.com.

administrator@us.mycorp.com. (
1997061300 ; serial
10800 ; refresh after 3 hours

Chapter 10. Domain Name System (DNS) 493

1800 ; retry 1/2 hour after failed zone transfer
3600000 ; expire; length of time secondary keeps data unless refreshed
259200) ; default TTL for static resource records = 3 days

;
; Define nameservers

IN NS mvsb.mvsplex.mycorp.com.
IN NS mvsc.mvsplex.mycorp.com.

;
; Define localhost
;
localhost IN A 127.0.0.0
;
; Hostnames specified here must match hostnames
; specified in the stack’s TCPIP.DATA file.
mvsa IN A 9.1.1.1

IN A 9.1.1.2
IN A 9.1.1.3

TXT "Text record"
HINFO "3090" "OS/390R4"

mvsb IN A 9.1.1.4
IN A 9.1.1.5
IN A 9.1.1.6
IN A 9.1.1.7

mvsc IN A 9.1.1.8
IN A 9.1.1.9
IN A 9.1.1.10

Sysplex boot files: The boot file is the main configuration file for a name server. It
points the name server to the domain data files, the loopback file, and the hints
(root server) file. The contents and format of boot files for sysplex name servers are
identical to those for the boot files of ordinary master servers with the exception of
an additional keyword, cluster. This keyword is used only once in a boot file, at the
end of either the primary or secondary directive to identify the sysplex domain.

The following is a sample boot file for the master name server in a sysplex:
directory /etc/dnsdata
primary mvsplex.mycorp.com named.wlm.for cluster
primary 113.67.9.in-addr.arpa named.rev
primary 0.0.127.in-addr.arpa named.lbk
cache . named.ca

The file named.wlm.for identifies the forward domain data file for the master name
server in the sysplex.

The following is an example of a boot file for a slave name server in a sysplex:
directory /u/usr35/plex/secondary/zone1
secondary mvsplex.tcp.raleigh.ibm.com 9.67.116.200 mvsplex.bak cluster
secondary 116.67.9.in-addr.arpa 9.67.116.200 mvsplex.rev
primary 0.0.127.in-addr.arpa db.127.0.0
cache . named.ca

Step 6: Configure client applications: Since the sysplex domain is created as a
subdomain of an existing domain, resolvers should be reconfigured if it is expected
that the clients will use names in the sysplex domain. Otherwise, the client will be
forced to use fully qualified domain names to resolve sysplex domain names. For
example, if the resolver’s default domain was mycorp.com before adding the sysplex
domain, consider changing the resolver’s default domain to mvsplex.mycorp.com.
Also consider adding the sysplex domain to the resolver’s search list if the client’s
resolver supports it.

See “Name resolution” on page 483 for the various names a client can specify.

494 z/OS V1R4.0 CS: IP Configuration Guide

Step 7: Configure WLM in goal mode: All hosts in a sysplex must operate in
goal mode for proper load balancing (splitting). If hosts are not in goal mode, they
are treated with equal weight and round-robin selection is applied.

Configure WLM in goal mode on a host by issuing the following MVS command:
F WLM,MODE=GOAL

Alternatively, IPL in goal mode by omitting the IPS= keyword from your IEASYSxx
parmlib member and from your IEASYS00 parmlib member. See z/OS MVS
Programming: Workload Management Services.

Registering your own applications
Register a server application with WLM using a C interface or an assembler
interface. See “Step 1: Identify server applications” on page 490. The C function is
invoked as follows:
extern long IWMDNREG(char *group_name,

char *host_name,
char *server_name,
char *netid,
char *wlm_user_data,
long *diag_code);

A sample header file, iwmwdnsh.h, comes with the product. Refer to the program
directory for its location. The following definitions apply:

v group_name is the name client applications use. It can be up to 18 characters.

v host_name is the TCP/IP name of the host on which the server is running. See
z/OS C/C++ Programming Guide.

v server_name is a unique name that defines a particular instance of the server. It
can be up to eight characters.

v netid and wlm_user_data should be null pointers.

Return values and diag_code values are documented in z/OS MVS Programming:
Workload Management Services .

To register with a macro, use the IWMSRSRG macro. For a description of this
macro, see z/OS MVS Programming: Workload Management Services. When using
this macro, note the following:

v Location contains the group_name

Note: The group name TCPIP, the group name for the sysplex domain (for
example, mvsplex), and the DNS names of the resource records in your
sysplex cluster zone file are reserved and cannot be used by server
applications. If this rule is violated, you will receive message EZZ6649E:
WLM group group_name not created

v Network_ID can be blank.

v LUName contains the server_name.

v Host contains the TCP/IP host name.

You can deregister a server application from WLM using a C interface or an
assembler interface. Deregister whenever you do not want the server to receive
additional client application connections. The C function is invoked as follows:

Chapter 10. Domain Name System (DNS) 495

|
|
|
|

|

extern long IWMDNDRG(char *group_name,
char *host_name,
char *server_name,
char *netid,
long *diag_code);

To deregister with a macro, use the IWMSRDRS macro. For a description of this
macro, see z/OS MVS Programming: Workload Management Services.

For C interfaces for WLM registration and de-registration calls, see the sample
registration file, /usr/lpp/tcpip/samples/wlmreg.c.

Dynamic IP
DHCP on z/OS and OS/2 is only compatible with BIND 4.9.3. This section describes
the purpose of Dynamic IP and its benefits. Also included is an introduction to the
Dynamic IP components and an overview of design concepts.

DHCP on other platforms and Windows 2000 Active Directory can be compatible
with BIND 9.

Overview
To add a new workstation to an IP network, several parameters and a variety of
information is required to configure the TCP/IP software. Network components, such
as a domain name server, are also required. A new TCP/IP host would normally
require the following information:

v IP address

v IP subnet mask

v Default router address

v Local host name

v Domain name

v Name server address

Additional parameters, such as other server addresses, time zones, or
protocol-specific configurations, might also be necessary.

Keeping track of that information in a large TCP/IP network is not an easy task for
network administrators, especially if users or machines or both change their location
frequently. IP address lists and domain name server databases have to be updated
manually to keep track of any changes in the network.

From a user’s point of view, a system administrator would have to be called to
provide the necessary information to install a TCP/IP system. If the user moves to
another location, this information must not be taken; the user will have to be
assigned at least a new IP address if not a new host name as well. Thus, users
could potentially cause disorder in a TCP/IP network.

Even if workstations will be automatically installed using software distribution
techniques, the TCP/IP configuration parameters have to be pre-assigned per
distribution client.

The Bootstrap Protocol (BootP), as described in RFCs 951 and 1497, was
introduced to the TCP/IP community in 1985 to provide automatic assignment of
some TCP/IP configuration parameters to a new TCP/IP host. A table has to be
maintained at BootP servers to enter information specific to any client that has been
planned for installation. Typically, clients are identified by their LAN adapter’s

496 z/OS V1R4.0 CS: IP Configuration Guide

hardware address, which has to be known to the system administrator in charge of
a BootP server before preparing a new client entry in the database. Even though
some manufacturers put the adapter hardware address on a label on the backplane
of their LAN adapters, this is a tedious process if many hosts have to be installed in
a short period of time.

Objectives and customer benefits of dynamic IP: To lessen the problems of
having to manually update any centrally maintained information files and of having a
user manually configure a TCP/IP workstation, the Dynamic Host Configuration
Protocol (DHCP) has been designed and is described in RFCs 1533, 1534, 1541,
and 1542. A DHCP server need not be preconfigured with a workstation’s LAN
address to submit the necessary TCP/IP configuration to it.

With DHCP in place, the assignment of IP addresses is a lot easier, but one
problem persists—how would a domain name server learn about dynamically
assigned IP addresses and host names so it can update its database accordingly?
This can be solved by the Dynamic Domain Name Services (DDNS).

IBM is actively participating in the designs and implementations of DHCP and
DDNS, and it has coined the term Dynamic IP. To summarize, the objectives of
Dynamic IP and its benefits to TCP/IP system administrators and users are as
follows:

v Provides automatic IP network access and host configuration

v Simplifies IP network administration

v Leverages existing IP network products and infrastructure

v Employs only open standards

v Allows customers to administer site-specific host environments

v Enables customized, location-sensitive parameter setups

Note: For further information on the Dynamic Host Configuration Protocol (DHCP)
server, see “Configuring the DHCP server for z/OS” on page 501.

Dynamic IP components: Table 20 gives a brief description of the four types of
network components that comprise Dynamic IP.

Table 20. DHCP server configuration

System components Description

Dynamic IP Hosts Dynamic IP hosts contain DHCP client software and might contain Dynamic
DNS client software. Together, they discover and cooperate with their DHCP
and Dynamic DNS server counterparts in the network to automatically configure
the hosts for network participation.

DHCP Servers DHCP servers provide the addresses and configuration information to DHCP
and BootP clients on the network. DHCP servers contain information about the
network configuration and about host operational parameters, as specified by
the network administrator. DHCP server can also be configured to be the proxy
for the DDNS client and issue the commands to update the Dynamic DNS
server.

DDNS Servers Dynamic DNS servers are a superset of static DNS servers. The dynamic
enhancements enable client hosts to dynamically register their name and
address mappings in the DNS tables directly, rather than having an
administrator manually perform the updates.

Chapter 10. Domain Name System (DNS) 497

Table 20. DHCP server configuration (continued)

System components Description

BootP Relay Agents (or BootP
Helpers)

BootP relay agents can be used in IP router products to pass information
between DHCP clients and servers. BootP relays eliminate the need for having
a DHCP server on each subnet to service broadcast requests from DHCP
clients.

Administering dynamic domains
The DDNS server performs Dynamic DNS database updates in the appropriate
domain file as the updates occur. Therefore, do not edit domain files for dynamic
zones while the DDNS server is running. Furthermore, dynamic domains cannot
be dynamically reinitialized with new configuration information using the traditional
nssig -HUP command.

Also, note that when entering comments into a domain file for a dynamic zone, the
comments will be deleted when the first update to the domain is made. Domain file
comments are not maintained because they would degrade the performance of the
file update process.

Change the configuration information for a dynamic domain in two different ways:

v Manually, by editing the domain files only after shutting down the DDNS server

v Dynamically, by using nsupdate while the DDNS server is running

For information on how to manually enter configuration information into domain files,
refer to “Step 5. Create the domain data files (master name server only)” on
page 433.

When first setting up your BIND 4.9.3 dynamic domain, nsupdate -g was used to
create the zone key RSA key pair; nsupdate -g creates an entry in the
/etc/ddns.dat file. The public key, the second key in the /etc/ddns.dat file entry,
needs to be copied into the appropriate domain file. The zone private key stored in
/etc/ddns.dat is used by nsupdate when signing update requests for the
administrator of the zone. The server then examines the signature to identify update
requests from the zone administrator versus those from ordinary hosts. The zone
key gives the possessor the power to use nsupdate to create, modify, and delete
any host’s record in a dynamic domain.

Once the zone key information is generated and the DDNS server started, the
administrator can take the /etc/ddns.dat file with him and administer the zone
remotely using nsupdate.

Steps for Migrating an existing DNS configuration to BIND 4.9.3
dynamic IP
Before you begin: You need to decide if you want to:

v Leave existing resource records as they are and allow new ones to be created
and updated dynamically. This will allow existing systems to keep their host
names, but they will not be able to update their resource records dynamically
unless a system administrator deletes them.

v Delete all existing resource records and start with a dynamic domain from the
beginning.

Perform the following steps to migrate existing DNS server configuration files to
Dynamic IP:

498 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|

|
|
|
|

|
|

|
|

1. For a boot file, add the dynamic secured or dynamic presecured keywords to
the primary statements for the authoritative DNS server that is being upgraded.

2. Use the NSUPDATE -g command to create the encryption keys. Copy the public
key to the zone files.

3. Start the DDNS server.

4. Make a new entry in the DDNS.DAT file for each zone the DHCP server will
update, if you have a DHCP server configured for DDNS updates.

You have now migrated existing DNS server configuration files to Dynamic IP.

RSA encryption
Because the z/OS UNIX DDNS server and client products implement not only
dynamic DNS but also DNS security functions, below is a brief explanation of
cryptography. This section is courtesy of RSA Data Security, Inc., Redwood City,
California, and has been modified slightly here for z/OS CS.

Secret key cryptography: This method uses a secret key to encrypt a message.
The same secret key must be used again to decrypt the message. This means that
the key must be sent along with the message which exposes it to whoever might be
eavesdropping on the conversation. Secret keys are very fast in terms of
processing, and it is not easy to break them even though they are exposed through
the communication process.

Public key cryptography: This method uses a combination of a modulus and a
pair of exponents, called the public key and the private key. Exponents and
modulus must be used together to encrypt or decrypt a message, but only the
modulus and the public exponent are communicated since they are important to
everyone who wants to send or receive encrypted messages using this method.
The private exponent will never be publicly exposed. This ensures that no one else
can decrypt messages that have been intended for a specified recipient, nor can
anyone else disguise as that recipient to intercept a message.

Encryption and authentication: Encryption means that a message will be
scrambled before it can be sent over a communications link. The plain message
itself will never be sent to ensure privacy. Authentication is used to ensure that a
message has indeed originated from the source specified in the message, and that
the message has not been altered in transit. It additionally serves the purpose of
non-repudiation, which means that whoever has digitally signed a message cannot
claim later that he or she has not done so. In this case, the plain message itself will
be sent since there is no need for privacy. The message will also be used to
generate a digital signature by using one of the aforementioned cryptographic
methods, preferably public keys.

Hash functions: A hash function is a computation that takes a variable-size input
and returns a fixed-size string, which is called the hash value. If the hash function is
one-way, that means hard to invert, it is also called a message-digest function, and
the result is called a message digest. The idea is that a digest represents concisely
the longer message or document from which it was computed; one can think of a
message digest as a digital fingerprint of the larger document.

Chapter 10. Domain Name System (DNS) 499

|
|

|

|
|

|

|

|

|
|

|

|

The RSA encryption standard: This standard public key encryption method,
along with the MD5 hash function, is used with the IBM DDNS product in z/OS CS.
The principle of the RSA algorithm is as follows:

1. Take two large primes, p and q.

2. Find their product n = p * q; n is called the modulus.

3. Choose a number, e, less than n and relatively prime to (p-1) * (q-1).

4. Find its inverse, d, mod (p-1) * (q-1), which means that e * d = 1 mod (p-1) *
(q-1).

e and d are called the public and private exponents, respectively. The public key is
the pair (n,e); the private key is d. The factors p and q must be kept secret or
destroyed.

An example of RSA privacy (encryption) follows. Suppose Alice wants to send a
private message, m, to Bob. Alice creates the ciphertext c by exponentiating:
c = m^e mod n

where e and n are Bob’s public key. To decrypt, Bob also exponentiates:
m = c^d mod n

and recovers the original message, m; the relationship between e and d ensures
that Bob correctly recovers m. Since only Bob knows d, only Bob can decrypt.

An example of RSA authentication follows. Suppose Alice wants to send a signed
document, m, to Bob. Alice creates a digital signature s by exponentiating:
s = m^d mod n

where d and n belong to Alice’s key pair. She sends s and m to Bob. To verify the
signature, Bob exponentiates and checks that the message, m, is recovered:
m = s^e mod n

where e and n belong to Alice’s public key.

Thus encryption and authentication take place without any sharing of private keys:
each person uses only other people’s public keys and his or her own private key.
Anyone can send an encrypted message or verify a signed message, using only
public keys, but only someone in possession of the correct private key can decrypt
or sign a message.

To make encryption methods secure, a fairly large modulus should be chosen since
it becomes increasingly difficult to break a large number into factors to determine
the original primes. RSA uses a minimum length of 512 bits for the modulus, which
would convert to a number with approximately 155 digits.

Due to security concerns, public key systems that use a key length of more than
512 bits must not be exported from the US.

For encryption, in reality, RSA is combined with a secret-key crypto system, such as
DES, to encrypt a message by means of an RSA digital envelope. Data Encryption
Standard (DES) is one of the most widely used secret key algorithms and was
originally developed by IBM.

Suppose Alice wishes to send an encrypted message to Bob. She first encrypts the
message with DES, using a randomly chosen DES key. Then she looks up Bob’s
public key and uses it to encrypt the DES key. The DES-encrypted message and

500 z/OS V1R4.0 CS: IP Configuration Guide

the RSA-encrypted DES key together form the RSA digital envelope and are sent to
Bob. Upon receiving the digital envelope, Bob decrypts the DES key with his private
key, then uses the DES key to decrypt the message itself.

For authentication, in reality, RSA is combined with a hash function, such as MD5.

Suppose Alice wishes to send a signed message to Bob. She uses a hash function
on the message to create a message digest, which serves as a digital fingerprint of
the message. She then encrypts the message digest with her RSA private key; this
is the digital signature, which she sends to Bob along with the message itself. Bob,
upon receiving the message and signature, decrypts the signature with Alice’s
public key to recover the message digest. He then hashes the message with the
same hash function Alice used and compares the result to the message digest
decrypted from the signature. If they are exactly equal, the signature has been
successfully verified, and he can then be confident that the message did indeed
come from Alice. If, however, they are not equal, then the message either originated
elsewhere or was altered after it was signed, and he rejects the message.

For authentication, the roles of the public and private keys are converse to their
roles in encryption, where the public key is used to encrypt and the private key to
decrypt. In practice, the public exponent is usually much smaller than the private
exponent; this means that the verification of a signature is faster than the signing.
This is recommended because a message or document will only be signed by an
individual once, but the signature can be verified many times.

Configuring the DHCP server for z/OS
Dynamic Host Configuration Protocol (DHCP) allows clients to obtain IP network
configuration information, including IP addresses, from a central DHCP server. The
DHCP server controls whether the addresses it provides to clients are allocated
permanently or are leased for a specific period. When a client is allocated a leased
address, it must periodically request that the server revalidate the address and
renew the lease.

The process of address allocation, leasing, and lease renewal are all handled
dynamically by the DHCP client and server programs and are transparent to the
end user.

DHCP defines three IP address allocation policies:

Dynamic
A DHCP server assigns a temporary, leased IP address to a DHCP client.

Static A DHCP server administrator assigns a static, predefined address reserved
for a specific DHCP client.

Permanent
A DHCP server administrator assigns a permanent IP address to a DHCP
client. No process of lease renewal is required.

Note: If the network uses routers or gateways, ensure that they can be enabled as
DHCP relay agents. Enabling the routers or gateways for DHCP allows the
DHCP packets to be sent across the network to other LAN segments.

If there are no routers that can configure to be used as DHCP relay agents,
you could:

Chapter 10. Domain Name System (DNS) 501

v Use a UNIX system or RS/6000® system that has the necessary code to
be configured to receive limited DHCP broadcasts. Then, forward those
broadcast requests to the appropriate host server.

v Use a host server that is located on the same LAN segment as the IBM
Network Stations. This would eliminate any need for routers or
intermediate UNIX systems to pass on the broadcast requests of the IBM
Network Stations.

For dynamic address allocation, a DHCP client that does not have a permanent
lease must periodically request the renewal of its lease on its current IP address in
order to keep using it. The process of renewing leased IP addresses occurs
dynamically as part of the DHCP and is transparent to the user.

How does DHCP work?: DHCP allows clients to obtain IP network configuration
information, including IP addresses, from a central DHCP server. DHCP servers
control whether the addresses they provide to clients are allocated permanently or
are leased for a specific time period. When a client receives a leased address, it
must periodically request that the server revalidate the address and renew the
lease.

The DHCP client and server programs handle the processes of address allocation,
leasing, and lease renewal.

To further explain how DHCP works, look at some frequently asked questions:

v How is configuration information acquired?

v How are leases renewed?

v What happens when a client moves out of its subnet?

v How are changes implemented in the network?

Acquiring configuration information: DHCP allows DHCP clients to obtain an IP
address and other configuration information through a request process to a DHCP
server. DHCP clients use RFC-architected messages to accept and use the options
served them by the DHCP server. For example:

1. The client broadcasts a message (containing its client ID) announcing its
presence and requesting an IP address (DHCPDISCOVER message) and
desired options such as subnet mask, domain name server, domain name, and
static route.

2. Optionally, if routers on the network are configured to forward DHCP and
BOOTP messages (using BOOTP Relay), the broadcast message is forwarded
to DHCP servers on the attached networks.

3. Each DHCP server that receives the client’s DHCPDISCOVER message can
send a DHCPOFFER message to the client offering an IP address (a server that
does not want to serve a client can simply ignore the DHCPDISCOVER).

The server checks the configuration file to see if it should assign a static or
dynamic address to this client.

In the case of a dynamic address, the server selects an address from the
address pool, choosing the least recently used address. An address pool is a
range of IP addresses to be leased to clients. In the case of a static address,
the server uses a Client statement from the DHCP server configuration file to
assign options to the client. Upon making the offer, the IBM DHCP server
reserves the offered address.

4. The client receives the offer messages and selects the server it wants to use.

502 z/OS V1R4.0 CS: IP Configuration Guide

5. The client broadcasts a message indicating which server it selected and
requesting use of the IP address offered by that server (DHCPREQUEST
message).

6. If a server receives a DHCPREQUEST message indicating that the client has
accepted the server’s offer, the server marks the address as leased. If the
server receives a DHCPREQUEST message indicating that the client has
accepted an offer from a different server, the server returns the address it
offered to the client to the available pool. If no message is received within a
specified time, the server returns the address it offered to the client to the
available pool. The selected server sends an acknowledgment which contains
additional configuration information to the client (DHCPACK message).

7. The client determines whether the configuration information is valid. Upon
receipt of a DHCPACK message, the DHCP client sends an Address Resolution
Protocol (ARP) request to the supplied IP address to see if it is already in use.
If it receives a response to the ARP request, the client declines
(DHCPDECLINE message) the offer and initiates the process again. Otherwise,
the client accepts the configuration information.

8. Accepting a valid lease, the client enters a BINDING state with the DHCP
server, and proceeds to use the IP address and options.

To DHCP clients that request options, the DHCP server typically provides options
that include subnet mask, domain name server, domain name, static route,
class-identifier (which indicates a particular vendor), user class, and the name and
path of the load image.

However, a DHCP client can request its own, unique set of options. For example,
Windows NT 3.5.1 DHCP clients are required to request options. The default set of
client-requested DHCP options provided by IBM includes subnet mask, domain
name server, domain name, and static route. For option descriptions, see
“Specifying DHCP options” on page 520.

Renewing leases: The DHCP client keeps track of how much time is remaining on
the lease. At a specified time prior to the expiration of the lease, usually when half
of the lease time has passed, the client sends a renewal request, containing its
current IP address and configuration information, to the leasing server. If the server
responds with a lease offer, the DHCP client’s lease is renewed.

If the DHCP server explicitly refuses the request, the DHCP client might continue to
use the IP address until the lease time expires and then initiate the address request
process, including broadcasting the address request. If the server is unreachable,
the client might continue to use the assigned address until the lease expires.

Moving a client out of its subnet: One benefit of DHCP is the freedom it provides a
client host to move from one subnet to another without having to know ahead of
time what IP configuration information it needs on the new subnet. As long as the
subnets to which a host relocates have access to a DHCP server, a DHCP client
will automatically configure itself correctly to access those subnets.

For a DHCP client to reconfigure itself to access a new subnet, the client host must
be rebooted. When a host restarts on a new subnet, the DHCP client might try to
renew its old lease with the DHCP server which originally allocated the address.
The server refuses to renew the request since the address is not valid on the new
subnet. Receiving no server response or instructions from the DHCP server, the
client initiates the IP address request process to obtain a new IP address and
access the network.

Chapter 10. Domain Name System (DNS) 503

Implementing changes in the network: With DHCP, you can make changes at the
server, reinitialize the server, and distribute the changes to all the appropriate
clients. A DHCP client retains DHCP option values assigned by the DHCP server for
the duration of the lease. If you implement configuration changes at the server while
a client is already up and running, those changes are not processed by the DHCP
client until the client attempts to renew its lease or until it is restarted.

Setting up a DHCP network: The following sections contain information to help
you in setting up your DHCP system:

v To create a scoped DHCP network, see “Creating a scoped network”.

v To start the DHCP server, see “Starting the DHCP server” on page 505.

v For tips on maintaining a DHCP server, see “Maintaining the DHCP server” on
page 505.

The IBM DHCP server provides configuration information to clients based on
statements contained in the server’s configuration file and based on information
provided by the client. The server’s configuration file defines the policy for allocating
IP addresses and other configuration parameters. The file is a map that the server
uses to determine what information should be provided to the requesting client.

Before starting the DHCP server, create or modify the DHCP server configuration
file.

Once the DHCP server is running, you can also make dynamic changes to the
configuration by modifying the configuration file and using the DHCP Server
Maintenance program to reinitialize the DHCP server.

Creating a scoped network: You create a hierarchy of configuration parameters for
a DHCP network by specifying some configuration values that are served globally to
all clients, while other configuration values are served only to certain clients.
Serving different configuration information to clients is often based on network
location, equipment vendor, or user characteristics.

Depending on your configuration, you can specify subnets, classes, vendors, and
clients to provide configuration information to different groups of clients:

v When defined globally, client, vendor or class options are available to DHCP
clients regardless of their network location.

Parameters specified for a subnet, class, or client are considered local to the
subnet, class, or client. A client defined within a subnet inherits both the global
options and the options defined for that subnet. If a parameter is specified in
more than one level in the network hierarchy, the lowest level (which is the most
specific) is used.

v Use the Subnet statement to specify configuration parameters for one subnet for
a specific location in your network or enterprise.

v Use the Class statement to configure DHCP classes to provide unique
configuration information from the server to clients that identify themselves as
belonging to that class. For example, a group of clients can all use a shared
printer or load image.

v Use a Vendor statement to provide unique configuration information to clients
that identify themselves as using a specific vendor’s equipment or software.
Specially defined options can be served to these clients.

v Use a Client statement in the DHCP server configuration file to serve specified
options to a specific client or to exclude that client from service. You can also use
a Client statement to exclude IP addresses from service.

504 z/OS V1R4.0 CS: IP Configuration Guide

For more information on obtaining information for a DHCP client, see “Maintaining
the DHCP server”.

Handling errors in configuration files: Configuring the server incorrectly causes few,
if any, warning messages. The DHCP server normally runs even when it encounters
errors in the configuration file. The server might ignore the incorrect data and
optionally post a message to its log.

Starting the DHCP server:

Note: DHCPSD is installed in the /usr/lpp/tcpip/sbin directory.

To start the DHCP server, use a start procedure (found in the EZATDHDP member
of SEZAINST), or the following form of the dhcpsd command:

dhcpsd [-q|-v] [-f configFile]

-q Starts the server in quiet mode, which means that no banner is displayed when
the server starts.

-v Starts the server in verbose mode. Causes messages dealing with client
communication to print to screen.

-f configFile
Is the name of the DHCP server configuration file. By default, the server
searches for a file called dhcpsd.cfg in the directory specified by the ETC
environment variable.

When starting the DHCP server with a procedure (proc), the example start proc is
found in the DHCP member of the installation partitioned data set SEZAINST.

Maintaining the DHCP server:

Note: DADMIN is installed in the /usr/lpp/tcpip/sbin directory.

To maintain a running DHCP server, IBM provides the dadmin command to:

v Reinitialize a DHCP server by causing the server to reread its configuration file

v Delete a lease

v Control server tracing

v Display client information

v Display IP address information

v Display server statistics

Note: Verbose mode provides additional information for debugging purposes.
Verbose mode is allowed on any of the following dadmin command
instances. Verbose is shown as a parameter in those instances where
additional, more detailed information is of particular value.

Displaying dadmin command syntax: To display information about the command
syntax, enter:

dadmin -?

Reinitializing the running server: If you make changes to the configuration file, you
will need to reinitialize the running server to implement the changes. To reinitialize
the server, use the following form of the dadmin command:

Chapter 10. Domain Name System (DNS) 505

dadmin [[-h]host] -i [-v]

-h Specifies the host

host
The IP address or host name of the DHCP server. If no server is specified, the
local server is assumed.

-i Reinitializes the specified server.

-v Executes the command in verbose mode.

Displaying client information: To display information for a client ID, use the
following form of the dadmin command:

dadmin -cvalue [-v]

-c Requests information for one or more clients that match this client ID.

value
The client ID is a MAC address. For example, enter 004ac77150fc. Information
is returned for any matching hardware type.

-v Executes the command in verbose mode.

Displaying IP address information: To display information for one IP address, use
the following form of the dadmin command:

dadmin -qn.n.n.n [-v]

-q Requests the IP address information.

n.n.n.n
The IP address of the client.

-v Executes the command in verbose mode.

Information returned is an address record for the IP address:

v IP Address - IP address

v Status - Status of the IP Address

– N/A - Address is not available

– Free - Address is available

– Reserved - Address is available, but is reserved for a specific client

– Leased - Address is currently leased to a client

– Released - Address has been released by the client

– Expired - Address lease has expired

– Used - Address is not available because it is in use in the network

v Lease Time - Length of current lease

v Start Time - Time when address was first leased

v Last Leased - Time of most recent lease

v Proxy - DNS A record update done for the client when lease obtained.

v Client ID - ID for the client associated with this IP address

Querying an address pool: To display information for a pool of IP addresses, use
the following form of the dadmin command:

dadmin -pn.n.n.n [-v]

506 z/OS V1R4.0 CS: IP Configuration Guide

-p Requests the address pool information.

n.n.n.n
The IP address of the address pool.

-v Executes the command in verbose mode.

Information returned is an address record for each IP address in the pool:

v IP Address - IP address

v Status - Status of the IP Address

– N/A - Address is not available

– Free - Address is available

– Reserved - Address is available, but is reserved for a specific client

– Leased - Address is currently leased to a client

– Released - Address has been released by the client

– Expired - Address lease has expired

– Used - Address is not available because it is in use in the network

v Lease Time - Length of current lease

v Start Time - Time when address was first leased

v Last Leased - Time of most recent lease

v Proxy - DNS A record update done for the client when lease obtained.

v Client ID - ID for the client associated with this IP address

Querying all address pools: To display information for all IP addresses, use the
following form of the dadmin command:

dadmin -s [-v]

-s Requests the address information for all IP addresses.

-v Executes the command in verbose mode.

Returns address records (as described above) for all addresses in the DHCP
server’s address pools.

Controlling server tracing: To start and stop tracing on the DHCP server, use the
following form of the dadmin command:

dadmin -tvalue [-v]

-t Specifies server tracing.

value
The value is ON to start tracing or OFF to stop tracing.

-v Executes the command in verbose mode.

Displaying server statistics: To display statistics information about the pool of
addresses administered by the server, use the following form of the dadmin
command:

dadmin [[-h]host] -nvalue [-v]

-h Specifies the host

Chapter 10. Domain Name System (DNS) 507

host
The IP address of the DHCP server. If no host is specified, the local server is
assumed.

-n Requests statistics for the server specified as host.

value
The value is a decimal integer indicating the number of intervals from 0 to 100.
For example, a value of three returns a summary record that includes totals
information, the current interval record, and the 3 most recent history records. A
value of 0 returns a summary record of activity since the last summary.

-v Executes the command in verbose mode.

Statistics include:

v Discover packets processed

v Discover packets with no response

v Offers made

v Leases granted

v Negative acknowledgments (NAKs)

v Informs processed, including informs plus acknowledgments (ACKs)

v Renewals

v Releases

v BOOTP clients processed

v proxyARec updates attempted

v Unsupported packets

v Monitor requests processed

Deleting leases: If you find that an assigned lease is not being used and you want
to make the IP address available for allocation, you can delete the lease. You can
only delete one lease at a time. You will be prompted to confirm deletion of the
lease. To delete the lease, use the following form of the dadmin command:

dadmin [-f] [-v] [[-h]host] -d ip_address

-f Forces deletion of the lease without prompting.

-v Executes the command in verbose mode.

-h

host
Specifies the IP address of the DHCP server. If no server is specified, the local
server is assumed.

-d Deletes the lease for the specified IP address.

ip_address
The IP address for the lease to be deleted.

Configuring the DHCP server for the IBM Network Station® client: You can
configure the DHCP server to be used by an IBM Network Station. The DHCP
server sets up the subnet and specifies the next bootstrap server. The IBM Network
Station client can request information. The DHCP server should be configured to
provide options that include subnet mask, router, domain name, and boot file name.

508 z/OS V1R4.0 CS: IP Configuration Guide

Changing the DHCP configuration file
The name of the DHCP server configuration file is dhcpsd.cfg. The default location
for dhcpsd.cfg is the \etc directory. In the configuration file, you create a hierarchy
of configuration parameters for a DHCP network by specifying some configuration
values that are served globally to all clients and other configuration values that are
served only to certain clients. The information supplied to the clients is determined
by the statements you use and the position of the statements in the configuration
file.

Depending on your configuration, you can specify subnets, classes, vendors, and
clients to provide configuration information to different groups of clients:

v When defined globally, client, vendor or class options are available to DHCP
clients regardless of their network location.

Parameters specified for a subnet, class, or client are considered local to the
subnet, class, or client. A client defined within a subnet inherits both the global
options and the options defined for that subnet. If a parameter is specified in
more than one level in the network hierarchy, the lowest level (which is the most
specific) is used.

v Use the Subnet statement to specify configuration parameters for one subnet for
a specific location in your network or enterprise.

v Use the Class statement to configure DHCP classes to provide unique
configuration information from the server to clients that identify themselves as
belonging to that class. For example, a group of clients can all use a shared
printer or load image.

v Use a Vendor statement to provide unique configuration information to clients
that identify themselves as using a specific vendor’s equipment or software.
Specially-defined options can be served to these clients.

v Use a Client statement in the DHCP server configuration file to serve specified
options to a specific client or to exclude that client from service. You can also use
a Client statement to exclude IP addresses from service.

v A sample DHCP server configuration file is installed in the HFS as
/usr/lpp/tcpip/samples/dhcpsd.cfg.

Editing tips: When editing the DHCP server configuration file, keep in mind the
following:

v Comments must begin with a # character.

v Class and vendor names that include spaces must be surrounded by double
quotes (″).

v Statement parameters are dependent on their position. If you omit a required
parameter and enter a subsequent required parameter in a statement, the server
recognizes that a parameter is missing, writes an error message to a log file, and
continues to read the configuration file.

v A continuation character \ indicates that the information is continued on the next
line. When used within a comment, the character is treated as part of the
comment and is ignored as a continuation character.

v Braces are used to specify statements that are defined within other statements.

v If a parameter is specified in more than one place, the lowest level statement
(which is the most specific) is used:

– Statements specified outside braces are considered global and are used for
all addresses served by this server unless the statement is overridden at a
lower-defined level.

Chapter 10. Domain Name System (DNS) 509

– Parameters specified within braces under a statement such as a Subnet
statement are considered local and apply only to clients within the subnet.

– Definition of a parameter in a class takes precedence over definition of the
parameter in a subnet.

v Class statements are not allowed inside Client statements.

v Client statements are not allowed inside Option, Vendor, or Class statements.

v Subnet statements are not allowed inside Class or Client statements.

v Vendor statements are always defined at a global level.

v Keywords are not case-sensitive. The capitalization that is used in this
documentation is not required in the configuration file. However, use the
convention that keywords start with a lowercase letter and subsequent word
subparts start with a capital letter. For example, a keyword is proxyARec.

DHCP server statements:

ServerType statement: To specify whether the server will operate only as a
standard DHCP server, will perform both normal DHCP operations and PXE proxy
DHCP operations, or will act only as a redirection server (PXE proxy DHCP server),
use the following statement:

ServerType [DHCP | PXEDHCP | PXEPROXY]

The default value is DHCP, meaning the server will operate only as a standard DHCP
server and will not interpret any PXE client extensions. The server will, however,
still pass DHCP options and parameters to PXE clients.

PXEDHCP specifies that the server will perform both normal DHCP operations and
PXE proxy DHCP operations. PXEPROXY indicates that the server will act only as
a redirection server (PXE proxy DHCP server).

ImageServer statement: To specify the siaddr field of the reply packet for a server
acting as a PXE DHCP or PXE proxy only server, use the following statement:

ImageServer [ip address | hostname]

This statement separates the PXE siaddr field (the address of the BINL server) from
the DHCP siaddr field. If the server is acting as a PXE DHCP server, it will use the
ImageServer value to fill in the siaddr field of the reply packet. If the ImageServer
statement is not specified, the siaddr field is left null for the PXE packet. A null
value indicates that the BINL server resides on the same machine as the PXE
proxy server. ImageServer is a global statement.

Log statements: To enable logging by the server, use the following statements:

v Number of DHCP log files.

numLogFiles number_of_log_files

number_of_log_files is the maximum number of log files maintained.

v Size of DHCP log file.

logFileSize size_of_log_file

size_of_log_file is the size of the log file in kilobytes.

v Name of DHCP log file.

logFileName name_of_log_file

name_of_log_file is the name of the most recent log file.

510 z/OS V1R4.0 CS: IP Configuration Guide

v Type of log item.

logItem type_of_log_item

type_of_log_item is the type of the item to be logged. You should specify at least
one log item. type_of_log_item can be:
SYSERR
OBJERR
PROTERR
WARNING
EVENT
ACTION
INFO
ACNTING
TRACE

supportBootP statement: To specify whether the server responds to requests from
BOOTP clients, use the following statement:

supportBootP [YES | NO]

The default value is NO.

If this server previously supported BOOTP clients and has been reconfigured not to
support BOOTP clients, the address binding for any BOOTP clients that was
established before the reconfiguration is maintained until the BOOTP client sends
another request (when it is restarting). At that time, the server does not respond,
and the binding is removed.

Use this statement outside of braces.

supportUnlistedClients statement: To specify whether the server responds to
requests from DHCP clients other than those whose client IDs are specifically listed
in this configuration file, use the following statement:

supportUnlistedClients [YES | NO]

The default is YES. If you specify NO, the server responds only to requests from
DHCP clients that are listed (by client ID) in the configuration file.

For example:
client 6 10005aa4b9ab ANY
client 6 10a03ca5a7fb ANY

If the supportUnlistedClients statement is not specified or if you specify YES, the
server responds to requests from any DHCP client. Use this option to limit access
to addresses that are issued by this DHCP server. Listing the client IDs for all
acceptable clients might take a long time.

Use this statement outside of braces.

bootStrapServer statement: To specify whether the DHCP server specifies a
bootstrap server for BOOTP clients, use the following statement:

bootStrapServer address_of_bootstrap

address_of_bootstrap is the IP address of the bootstrap server for the client.

Chapter 10. Domain Name System (DNS) 511

This statement can appear at the global level, or within a Subnet, Class, or Client
statement.

Option 67, Boot File Name: For clients who need a boot or must load images to
initialize, use the DHCP Option 67 (Boot File Name) for the name of the boot file.
The client downloads the image from the BOOTP server. For additional information
about Option 67, see “Specifying DHCP options” on page 520.

Lease statements:

v To specify the default lease duration for the leases that are issued by the server,
use the following statement:

leaseTimeDefault amount_of_default_lease_time

amount_of_default_lease_time is a decimal integer, followed by a space and a
unit of time. The unit of time can be years, months, weeks, days, hours, minutes,
or seconds.

Default interval:
24 hours (1440 minutes)

Default unit:
minute

Minimum:
180 seconds

Maximum:
-1, which is infinity

You can use this statement at the global level. To override this statement for a
set of clients, use Option 51 (IP Address Lease Time) for a specific client, a class
of clients, a subnet, or at the global level.

v To specify the interval at which the lease condition of all addresses in the
address pool is examined, use:

leaseExpireInterval interval_of_lease_time

interval_of_lease_time is a decimal integer optionally followed by a space and a
unit of time, which can be years, months, weeks, days, hours, minutes, or
seconds. If you do not specify a unit of time, minutes are assumed. The value
that is specified should be less than the value for leaseTimeDefault to ensure
that expired leases are returned to the pool in a timely manner.

Default interval:
1 minute

Default unit:
minute

Minimum:
15 seconds

Maximum:
12 hours

v To specify the maximum amount of time the server holds an offered address in
reserve while waiting for a response from the client, use:

reservedTime amount_of_time_reserved

amount_of_time_reserved is a decimal integer optionally followed by a space and
a unit of time, which can be years, months, weeks, days, hours, minutes, or
seconds. If you do not specify a unit of time, minutes are assumed.

512 z/OS V1R4.0 CS: IP Configuration Guide

Default interval:
5 minutes

Default unit:
minute

Minimum:
30 seconds

Maximum:
-1, which is infinity

v To improve the performance of DHCP, limit the times the server accesses the
dhcps.ar and dhcps.cr DHCP database files by using the DHCP smart caching
feature. Use this feature to reduce the chance of not receiving a DHCP server
response to a client request.

Smart caching can help in cases where the dhcps.ar and dhcps.cr files are large.
Smart caching works with the leaseExpireInterval. The default interval is one
minute and the maximum interval is 12 hours. Smart caching uses this value as
the time interval to access and update dhcps.ar and dhcps.cr files. During this
time interval, the DHCP server keeps the new incoming data in memory. The
value setting is dependent on the system stability.

If the DHCP server ends before the leaseExpireInterval, the new data may be
lost. Smart caching is enabled at DHCP initialization if the file /etc/dhcp_sc exists
in the HFS. The file content is not important, only the existence of the file itself. If
the file is located, a DHCP log file message will state this fact and smart caching
will be activated.

pingTime statement: For each DHCP client request the DHCP server issues a ping
to determine if the IP address chosen for the client is already in use. The server
waits the specified time for a ping response before assuming that the IP address is
not in use.
pingTime n.n second

The value is a time amount. The default time is one second. The use of floating
point numbers for the time amount is allowed such as 0.1 seconds to set the ping
time to a tenth of a second. The maximum value is 30 seconds. If the amount is set
to 0 the DHCP server will not issue a ping.

Subnet statement: Use the Subnet statement to specify configuration parameters
for an address pool that is administered by a server. An address pool is a range of
IP addresses to be leased to clients. If you configure subnets, you can set the lease
time and other options for clients that use the address pool.

v Define a subnet.

To define a subnet, use the following statement:

subnet subnet_address [subnet_mask] subnet_range [(alias=subnet_name]

Note: The DHCP Server Configuration program uses the parameters to the right
of a left parenthesis. The DHCP server parses statements to the right of a
left parenthesis as comments.

subnet_address
The address of this subnet, specified in dotted-decimal notation (for example,
192.67.48.0).

subnet_mask
The mask for the subnet, specified in dotted decimal notation or in integer
format. A subnet mask divides the subnet address into a subnet portion and

Chapter 10. Domain Name System (DNS) 513

a host portion. If no value is entered for the subnet mask, the default is the
class mask appropriate for an A, B, or C class network.

– Class A network - 255.0.0.0

– Class B network - 255.255.0.0

– Class C network - 255.255.255.0

A subnet mask can be expressed either in dotted-decimal notation or as an
integer between 8 and 31. For example, you can enter a subnet mask as a
dotted decimal notation of 255.255.240.0 or an integer format of 20. In
subnet 192.67.48.0, a mask of 255.255.240.0 implies an address range from
192.67.48.001 to 192.67.63.254. The value 20 is the total number of 1’s in a
mask that is expressed in binary as 11111111.11111111.11110000.00000000.

Although not required, in most configurations the DHCP server should send
Option 1 (Subnet Mask) to DHCP clients. Client operation can be
unpredictable if the client does not receive subnet masks from the DHCP
server and assumes a subnet mask that is not appropriate for the subnet.

subnet_range
All addresses, specified in dotted-decimal notation, to be administered to this
subnet. The ranges should not overlap, for example, 192.67.48.1-
192.67.48.128.

Notes:

1. In the range of addresses, do not include the address of the subnet and
the address that is used for broadcast messages. For example, if the
subnet address is 192.67.96.0 and the subnet mask is 255.255.240.0, do
not include 192.67.96.0 and 192.67.111.255 in the range of addresses.

2. To exclude an IP address in a range of address, use the Client statement
(see step 517).

(alias=subnet_name
A symbolic name for ease in identifying a subnet.

v Define a subnet group.

To define a subnet group, use the following statement:

subnet subnet_address [subnet_mask] subnet_range [label:value[/priority]]

label:value[/priority]
Identifies subnets that are grouped together on the same wire. value[/priority]
is a string of 1 to 64 alphanumeric characters that identifies the subnet,
followed by the priority in which this subnet’s address pool is used. Do not
uses spaces when specifying the label. More than one subnet can have the
same identifier. priority is a positive integer, where 1 is a higher priority than
2. If you do not specify a priority, the highest priority is assigned. If two
subnets have identical priority, the subnets within a label are processed
based on the physical position in the configuration file.

For example, the following two subnets are on the same wire:
inOrder
subnet 192.67.49.0 255.255.240.0 192.67.49.1-192.67.49.100 label:WIRE1/2
subnet 192.67.48.0 255.255.240.0 192.67.48.1-192.67.48.50 label:WIRE1/1

v Serve IP addresses from multiple subnets.

To serve IP addresses from multiple subnets, use the inOrder or balance
statement. The inOrder or balance statement is defined at a global level.

inOrder subnet_labelslist
subnet_labelslist is a list of labels in which each label identifies a subnet

514 z/OS V1R4.0 CS: IP Configuration Guide

group. Each listed group is processed in order within that group. The subnet
address pool with the highest priority within that group is completely
exhausted before the subnet address pool with the next highest priority is
used.

balance: subnet_labelslist
subnet_labelslist is a list of labels in which each label identifies a subnet
group. The server provides the first IP address from the subnet that is first in
the priority list, and subsequent IP addresses from each lesser-priority
subnet, repeating the cycle until addresses are exhausted equally from all
subnets.

The following is an example using the inOrder statement. Requests for subnet
group WIRE1 exhaust addresses in subnet 192.67.48.0 (WIRE1/1) first, followed
by subnet 192.67.49.0 (WIRE1/2). WIRE1 and WIRE3 are not related. Requests
for subnet group WIRE3 exhaust addresses in subnet 192.67.50.0 (WIRE3/1)
first, followed by subnet 192.67.51.0 (WIRE3/2), and then 192.67.50.0
(WIRE3/3), which has the same subnet address as WIRE3/1 but specifies a
higher address range:
inOrder: WIRE3 WIRE1
subnet 192.67.49.0 255.255.240.0 192.67.49.1-192.67.49.100 label:WIRE1/2
subnet 192.67.48.0 255.255.240.0 192.67.48.1-192.67.48.50 label:WIRE1/1
subnet 192.67.51.0 255.255.240.0 192.67.51.1-192.67.51.50 label:WIRE3/2
subnet 192.67.50.0 255.255.240.0 192.67.50.1-192.67.50.50 label:WIRE3/1
subnet 192.67.50.0 255.255.240.0 192.67.50.51-192.67.50.100 label:WIRE3/3

The following balance statement uses all IP addresses equally in WIRE1/3 and
WIRE1/4:
balance: WIRE1
subnet 192.67.49.0 255.255.240.0 192.67.49.101-192.67.49.200 label:WIRE1/3
subnet 192.67.48.0 255.255.240.0 192.67.48.201-192.67.48.300 label:WIRE1/4

A sequence of inOrder or balance statements is cumulative. For example, the
statements:
inOrder: WIRE1
inOrder: WIRE3

have the cumulative effect of the single statement:
inOrder: WIRE1 WIRE3

Note: To disable multiple subnets, comment out either the balance or inOrder
processing statement or the priority.

Class statement: Use the Class statement to specify configuration parameters for
a user-defined group of clients that are administered by a server. You can use the
Class statement at the global or subnet level. When the Class statement is
specified within a Subnet statement, the server only serves clients in the class that
are located in the specified subnet and request the class.

For example, to create a class that is called ″accounting″ that allows member hosts
to use the LPR server (Option 9) at 192.67.123.2, do the following:

v At the DHCP server, define a class that is called ″accounting″ and set the LPR
server for that class to 192.67.123.2

v At the client, configure the client to identify itself as belonging to the class
″accounting″.

Chapter 10. Domain Name System (DNS) 515

When the client requests configuration information, the server sees that it belongs
to the accounting class and provides configuration information that instructs the
client to use the LPR server at 192.67.123.2. DHCP clients use Option 77 to
indicate their class to DHCP servers.

To define a class, use the following statement:

class class_name [class_range]

class_name
The user-defined label that identifies the class. The class name is an ASCII
string of up to 255 characters (for example, accounting). If the class name
contains spaces, it must be surrounded by double quotes.

class_range
A range of addresses. To specify a range of addresses, enter addresses in
dotted-decimal notation, beginning with the lower end of the range, followed by
a hyphen, then the upper end of the range, with no spaces between. For
example, enter 192.17.32.1-192.17.32.128.

At a global level, a class cannot have a range. A range is allowed only when a
class is defined within a subnet. The range can be a subset of the subnet
range.

A client that requests an IP address from a class that has used all the
addresses from its range is offered an IP address from the subnet range, if
available. The client is offered the options associated with the class that has
used all the addresses from its range.

To assign configuration parameters such as a lease time for all clients in a
class, follow the Class statement with Option statements that are surrounded by
braces. For more information about options, see“Specifying DHCP options” on
page 520.

Client statement: Use the Client statement to specify a unique set of options for a
client. You can assign either a static address and configuration parameters, or
configuration parameters. You can also use the Client statement to exclude an IP
address from a range of available IP addresses. You can use the Client statement
at the global, subnet, or class level.

v Define a client.

client hw_type clientID client_ipaddr (alias=client_name

hw_type
A number that represents the hardware type of the client computer, required
to decode the MAC address. For more information about hardware types,
see “Hardware types” on page 521.

clientID
Either the hexadecimal MAC address, a string such as a domain name, or a
name that is assigned to the client such as the host name. If you specify a
string, you are required to enclose it in double quotes and specify 0 for the
hardware type.

client_ipaddr
The DHCP client’s IP address in dotted-decimal notation. client_ipaddr must
contain an address if unlisted clients are not supported.

(alias=client_name
A symbolic name for ease in identifying the client. Enter alias=client_name

516 z/OS V1R4.0 CS: IP Configuration Guide

immediately after a left parenthesis. This symbolic name appears in the
display of the server configuration. If no name is entered, the MAC address
is used.

For example, for a client (10005aa4b9ab), to reserve the static address
192.22.3.149 and also specify a lease time (Option 51) or 12 hours (43200
seconds) and a subnet mask (Option 1), use the following statement:
client 6 10005aa4b9ab 192.22.3.149
{

option 51 43200
option 1 255.255.255.0

}

v Specify options and assign any IP address to a client.

To specify options for any IP address from the subnet, use the following client
statement:

client hw_type clientID ANY

ANY
Specifies that any IP address can be assigned to the specific client ID.

v Exclude a client ID.

To have the DHCP server exclude requests from a particular client ID, use the
following client statement:

client hw_type clientID NONE

NONE
Specifies no IP address and no options are served to the specified client ID.

For example:
client 6 10005aa4b9ab NONE

v Exclude an IP address.

To exclude one or more IP addresses from the pool of addresses available for
lease, use the following statements:
client 0 0 192.67.3.123
client 0 0 192.67.3.222

In this case, the hardware type and the client ID are 0. IP addresses
192.67.3.123 and 192.67.3.222 are excluded. You must specify a separate
statement for each address you want excluded.

v Exclude a range of IP addresses.

To exclude a range of IP addresses from the pool of addresses available for
lease, specify many client statements.

Each range of excluded addresses should contain no more than 10 addresses.
Each excluded address results in a separate client statement in the
configuration file. To exclude larger numbers of addresses, define subnets that do
not include the addresses you want excluded. For example, to exclude
addresses 50-75 in subnet 192.67.3.0, specify:
inOrder: WIRE1
subnet 192.67.3.0 255.255.240.0 192.67.3.1-192.67.3.49 label:WIRE1/1
subnet 192.67.3.0 255.255.240.0 192.67.3.76-192.67.3.100 label:WIRE1/2

Vendor statement: To provide vendor configuration information to the DHCP clients
in your network:

v Define a vendor and assign the appropriate configuration values. Unlike the
Class statement, you cannot control the scope of the Vendor statement by its

Chapter 10. Domain Name System (DNS) 517

placement in the file. Use the Vendor statement only at the global level. Vendor
statements within Subnet, Class, or Client statements are ignored. Options can
be redefined in the vendor class.

v The DHCP client identifies itself to the DHCP server as belonging to a vendor
class by sending Option 60 (Class Identifier) with a specific vendor name.

v The DHCP server recognizes that the client has a specific vendor and returns
encapsulated Option 43 (Vendor-specific Information), which contains
vendor-specific DHCP options and option values.

To define a vendor, use the following statement:

vendor vendor_name [hex value]

vendor_name
The user-defined label that identifies the vendor. The vendor name is an ASCII
string of up to 255 characters (for example, ″IBM″). If the vendor name contains
spaces, it must be surrounded by quotes (″).

[hex value]
value must be specified either as an ASCII string or as hexadecimal in the
hexadecimal ASCII string construct. For example:
hex "01 02 03"

For more information, see descriptions of Option 60 (Class-Identifier) in
“Specifying DHCP options” on page 520.

The vendor statement can also be specified in the DHCP server configuration file
as a vendor statement followed by a pair of braces containing the options particular
to this vendor. Within these braces, the usual option value encoding and decoding
rules do not apply.

Statements specifying server information:

v Querying in-use address.

Before the server allocates an IP address, it PINGs the address to make sure
that it is not already in use by a host on the network. The server places an in-use
address in a special pool and allocates a different address.

To specify the amount of time a DHCP server holds an in-use address in a
special pool before returning the address to the active pool available for
assignment, use the following statement:

usedIPAddressExpireInterval in_use_time_value

in_use_time_value is a decimal integer optionally followed by a space and a unit
of time, which can be years, months, weeks, days, hours, minutes, or seconds.
The default is 1000 seconds. If you do not specify a unit of time, minutes are
assumed.

Default interval:
1000 seconds

Default unit:
minute

Minimum:
30 seconds

Maximum:
-1, which is infinity

v Transform canonical addresses.

518 z/OS V1R4.0 CS: IP Configuration Guide

For 802.3 clients, use the canonical keyword to instruct the DHCP server to
transform MAC addresses to canonical (byte starts with least significant bit) form.
In most cases, you do not want the DHCP server to transform canonical
addresses. MAC addresses of 802.3 clients are normally in canonical format on
an 802.3 network. When 802.3 MAC addresses are transmitted across a
transparent bridge, the bridge reformats the bits that identify an 802.3 client MAC
address to a noncanonical (byte starts with most significant bit) form. When the
bridge returns the MAC address to an 802.3 network, the bridge again reformats
MAC addresses.

To cause the DHCP server to transform MAC addresses, use the following
statement:

canonical [YES | NO]

NO prevents the DHCP server from transforming MAC addresses. YES causes
the DHCP server to transform MAC addresses. NO is the default value.

v Specify statistics snapshots.

To specify the number of intervals that expire before the DHCP server takes a
snapshot of statistics, use the following statement:

statisticSnapshot number_of_intervals

The length of each interval is determined by the leaseExpireInterval keyword.
For example, a value of 3 collects statistics after a span of three intervals, where
each interval has a length specified by the leaseExpireInterval keyword. If no
value is specified, the server takes a snapshot of statistics at the end of every
lease expire interval.

Additional options: To assign additional configuration parameters, use the Option
statement. All clients inherit all globally-defined options. A client that is defined
within a Subnet statement inherits global options and options that are defined for
that address pool. To assign configuration parameters for all clients in a subnet,
follow the Subnet statement with Option statements that are surrounded by braces.

A sample DHCP server configuration files: The following is a sample DHCP
configuration file:
logFileName dhcpsd.log
logFileSize 100
numLogFiles 4
logItem SYSERR
logItem ACNTING
logItem OBJERR
logItem EVENT
logItem PROTERR
logItem WARNING
logItem INFO
logItem TRACE
logItem ACTION
supportBootP yes
supportUnlistedClients NO
bootStrapServer 192.168.1.4
option 211 "nfs"
option 212 "10.1.1.2
option 213 "/usr/lpp/nstation/standard/configs/
option 214 "nfs"
option 67 /usr/lpp/nstation/standard/kernel

leaseTimeDefault 12 HOURS

option 15 mycompany.com

Addresses 8.67.112.24 through 8.67.112.25 do not inherit
options defined for 8.67.112.26 through 8.67.112.30

Chapter 10. Domain Name System (DNS) 519

subnet 192.168.1.00 255.255.255.0 192.168.1.1-192.168.1.100
{
option 1 255.255.255.0
option 3 10.1.1.1

client 0 0 192.168.1.4
client 0 0 192.168.1.5
}

Specifying DHCP options: DHCP allows you to specify options, also known as
BOOTP vendor extensions, to provide additional configuration information to the
client. RFC 2132 defines the options that you can use. Each option is identified by
a numeric code.

Architected Options 0 though 127 and Option 255 are reserved for definition by the
RFC. The DHCP server and the DHCP client use options in this set. The
administrator can modify some architected options. Other options are for exclusive
use by the client and server. The administrator cannot or should not configure the
following options at the DHCP server:

v 52 (Option Overload)

v 53 (DHCP Message Type)

v 54 (Server Identifier)

v 55 (Parameter Request List)

v 56 (Message)

v 57 (Maximum DHCP Message Size)

v 60 (Class Identifier)

Options 128 through 254 represent options that can be defined by administrators to
pass information to the DHCP client to implement site-specific configuration
parameters. Additionally, IBM provides a set of IBM-specific options, such as Option
192 (TXT RR).

The format of user-defined options is:

option code value

code can be any option code 1 through 254. value must always be a string. At the
server, it can be an ASCII string or a hexadecimal string. At the client, however, it
always appears as a hexadecimal string that is passed to the processing program.

The server passes the specified value to the client. You must, however, create a
program or command file to process the value. For more information about data
formats for the DHCP options, refer to z/OS Communications Server: IP
Configuration Reference.

Option categories: The DHCP options are divided into the following categories:

v Base Options

v IP Layer Parameters per Host Options

v IP Layer Parameters per Interface Options

v Link Layer Parameters per Interface Options

v TCP Parameter Options

v Application and Service Parameter Options

v DHCP Extensions Options

520 z/OS V1R4.0 CS: IP Configuration Guide

v Load Balancing Options

v IBM-Specific Options

Hardware types: The following is a list of hardware types you can specify on the
Client statement:

Type Description

0 Unspecified. If you specify a symbolic name for the client ID, specify 0 for
the hardware type.

1 Ethernet (100MB)

6 IEEE 802 Networks (which include 802.5 token ring)

Configuring DHCP server as DDNS client proxy
The DDNS proxy A-record update feature supports clients that do one of the
following:

v Use DHCP option 81 to communicate their host name information to a DHCP
server.

v Send some or all of their host name information in DHCP option 12 and option
15.

v Have their host name information defined to the DHCP server by an
administrator.

The proxyARec update feature allows non-Dynamic IP clients (clients which have
DHCP client capability but not DDNS capability) to effectively participate in the
Dynamic IP system. This alternative is well-suited for network environments where
client hosts are not mobile or do not change administrative domains.

New keywords in the DHCP server configuration file instruct the DHCP server how
to interact with the DDNS server using A records on behalf of DHCP clients. The
new keywords are:

proxyARec
For more information on enabling DHCP server A record updates, see
“Enabling dynamic A record updates”.

updateDNSA
For more information on enabling A record updates, see “Specifying the
keyword for A record updates” on page 522.

updateDNSP
For more information on enabling PTR record updates, see “Specifying the
keyword for PTR record updates” on page 524.

Enabling dynamic A record updates: Once the DHCP server reads the
configuration file and is instructed how and when to perform a DDNS proxy A record
update, the following rules of precedence are used to derive the host name data to
be used:

1. As a first priority, option 81 is included in the DHCP client request and indicates
that an A record update should be performed at the DDNS server on behalf of
the client.

2. Either option 12 or option 15, or both, are included in a DHCP client request.

3. Either option 12 or option 15, or both, are defined in the DHCP server
configuration file.

Chapter 10. Domain Name System (DNS) 521

The data used in the DDNS update packet is derived using one or more of the
above means until a fully qualified host name data is established. For example, in
the case of Microsoft® Windows 3.11+ and Windows 95 clients, only option 12, the
Microsoft Windows client computer name, is included in DHCP lease requests. In
this case, the administrator can define an option 15, domain name, to use with the
host name provided by a client’s option 12 to obtain the host’s fully qualified name.

The proxy A-record update feature works with any client which is capable of
including host name info in option 81 and/or options 12 and 15. Otherwise, the
DHCP client host, as identified by its LAN adapter’s MAC address, and its host
name information can be specified entirely in the DHCP server’s configuration file.

Note: If you use DDNS proxy A record support for subnets which include some
hosts capable of updating their own DDNS A-records such as IBM OS/2
Warp Dynamic IP clients, you might want to disable those client’s own DDNS
update feature by commenting out updateDNSA and UpdateDNSTxt
keywords in the client’s DHCPCD.CFG configuration file. If you do not
disable the dynamic A record updates at the clients, the proxy A record
updates attempted at the DHCP server for those clients will fail because the
DHCP client, rather than the DHCP server, will own the client’s entry on the
DDNS database.

Specify the proxyARec keyword to enable the DHCP server to dynamically update
an A record mapping (host name-to-IP-address) on a DDNS server for clients
unwilling or unable to update their A records. The format of the proxyARec keyword
is:
proxyARec

The DHCP server performs updates of the client’s A record regardless of the client’s
client ID value.

The proxyARec keyword is required to be enabled globally or within the subnet,
class, or client level. The updateDNSA keyword must also be specified. If the
proxyARec keyword is not specified, clients will not have their A records updated.

Specify the proxyARec statement within braces to indicate the information applies
only to the subnet, class, or clients that meet the criteria of the preceding
conditional statement. To globally assign proxyARec, specify the keyword outside
any braces.

Specifying the keyword for A record updates: To specify how the server
updates A records for a non-IBM IP client, use keyword:
updateDNSA command_string

The following is a typical updateDNSA string issued by the DHCP server:
updateDNSA "nsupdate -f -h%s -s"d;a;*;a;a;%s;s;%s;3110400;q" -q"

This default string is normally adequate. Typical changes to the command string are
to modify the value of an expiration time (such as 3110400 seconds) beyond the A
record expiration. Assuming proxyARec is specified, this example instructs the
DDNS name server to delete all A records for this host name and add a record that
maps the host name to the specified IP address for the specified lease time.

The command string includes:

522 z/OS V1R4.0 CS: IP Configuration Guide

nsupdate
The name of the DDNS client program, which updates the DDNS database.

-f The request originates from a DHCP server.

-h Client host name (value is substituted by the DHCP server).

-s Indicates that the command should be run in command-line mode and all
subcommands are included within the quotation marks that follow. The following
command string is appropriate for most cases. The string contains:

d;a;*; Delete all A (host name-to-IP-address) records for this host.

a;a;%s;
Add an A record using an IP address (%s) provided by the server,
where %s indicates string substitution.

s;%s; Send a lease time (%s) (value provided by the server for the IP
address), where %s indicates string substitution.

3110400;
The effect of this value is to reserve the host name for an additional
time interval after the A record expiration. In this case, an interval of 36
days (3110400 seconds) is added to the A record expiration time. This
value works to preserve a user’s host name during times when the
name-to-address mapping might expire, such as holidays, vacation, or
other times of inactivity.

q Quit delimiter for the command string.

-q Nsupdate will process the request in quiet mode.

For more information on client control of A record updates for non-dynamic DHCP
clients, see client option 81 in Specifying DHCP Options.

Releasing a client A record: Use the releaseDNSA keyword at a global level as
a template which tells the DHCP server how to release a client record, when the
client requests release. The template is adequate for normal purposes, but can be
modified if necessary.

The keyword is:
releaseDNSA string

The following is an example of a releaseDNSA string issued:
releaseDNSA "nsupdate -f -h%s -s"d;a;%s;s;%s;0;q" -q"

The command string includes:

nsupdate
The name of the DDNS client program, which updates the DDNS database.

-f The request originates from a DHCP server.

-h%s
Client host name (value is substituted by the DHCP server).

-s Information in the command string releases the DHCP client’s A record at the
DDNS server. The command string is appropriate for most cases. The string
contains:

d;a;%s;
Delete the A (host name-to-IP-address) record for this host.

Chapter 10. Domain Name System (DNS) 523

s;%s; Send a lease time (%s) (value provided by the server for the IP
address).

0; An additional time interval added to the normal expiration of the host
name beyond the expiration of the A resource record. In this case, the
value is 0 because the A resource record is deleted.

q Quit delimiter for the command string.

-q Nsupdate will process the request in quiet mode.

Specifying the keyword for PTR record updates: DHCP servers own the PTR
records and can update DDNS servers with a PTR record (resource records that
map an IP address to a host name) for each address allocated to a host that
identifies itself with DHCP options 12 (host name) and 15 (domain name), or with
option 81, Client DHCP-DNS.

To enable DHCP server PTR record updates, use:
updateDNSP command_string

The following is a typical updateDNSP string issued by the DHCP server:
updateDNSP "nsupdate -f -r%s -s"d;ptr;*;a;ptr;%s;s;%s;0;q" -q"

This default string is normally adequate. Typical changes to the command string are
to modify the name expiration extension time such as 0. This example instructs the
DDNS name server to delete all PTR records for this address and add a record that
maps the IP address to the new host name for the specified lease time. The
updateDNSP command is issued when the DHCP client is assigned an address.

The command string includes:

nsupdate
The name of the DDNS client program, which updates the DDNS database.

-f The request originates from a DHCP server.

-r%s
The IP address which is to be mapped to the new host name.

-s The command should be run in command-line mode and all subcommands are
included within the quotation marks that follow. The command string is
appropriate for most cases. The string contains:

d;ptr;*;
Delete all PTR (IP-address-to-host name) records for this IP address.

a;ptr;%s;
Add a PTR record which maps the IP address to the host name (%s)
provided by the server.

s;%s; Send a lease time (%s) (value provided by the server).

0 The effect of this value is to reserve the IP address entry this many
seconds beyond when the IPaddress-to-host name mapping expires. In
this case, no additional time is added.

q Quit delimiter for the command string.

-q Nsupdate will process the request in quiet mode.

Note: The updateDNSP keyword is equivalent to the updateDNS keyword in earlier
releases. The updateDNS keyword continues to be supported.

524 z/OS V1R4.0 CS: IP Configuration Guide

Releasing a client PTR record: Use the releaseDNSP keyword at a global level
as a template which tells the DHCP server how to release the client PTR record,
when the client requests release. The template is adequate for normal purposes,
but can be modified if necessary. For example, this DHCP server keyword enables
immediate release of a PTR record when a mobile client’s lease is terminated.

The DHCP server command is:
releaseDNSP string

The following is an example of a releaseDNSP string:
releaseDNSP "nsupdate -f -r%s -s"d;ptr;%s;s;%s;0;q" -q"

The command string includes:

nsupdate
The name of the DDNS client program, which updates the DDNS database.

-f The request originates from a DHCP server.

-r%s
The IP address substituted by the DHCP server.

-s Information in this command string releases the DHCP client’s PTR
(IP-address-to-host-name mapping) record at the DDNS server. The command
string is appropriate for most cases. The string contains:

d;ptr;%s;
Delete the PTR record for this address.

s;%s; Send a lease time (%s) (value provided by the server for the IP
address).

0 An additional time interval added to the normal expiration of the PTR
resource record beyond the expiration of the PTR resource record. In
this case, the value is 0 because the record is deleted.

q Quit delimiter for the command string.

-q Nsupdate will process the request in quiet mode.

Defining DHCP proxy authority
Defining DDNS support also includes ensuring the DHCP domain is recognized at
the DDNS server and setting up the necessary security for making updates to the
DDNS server. To enable A record and PTR record dynamic update support in your
DHCP server:

v Ensure that the administrator of the DDNS server configures dynamic reverse
domains (*.in-addr.arpa) for all addresses for which the DHCP server will be
making dynamic PTR updates.

v Create key file entries in the DDNS.DAT file for each dynamic reverse domain to
be updated. If you use DDNS in your network, you must also create a
DDNS.DAT file, which contains the security keys used to process IP address and
host name updates with a DDNS server.

Defining DDNS key files for the PTR record: The DDNS.DAT file contains the
security key pairs to be used for processing IP address-to-host name and host
name-to-IP-address updates for the specified addresses which are sent to the
corresponding primary DDNS server. The file must contain at least one entry per
primary DDNS server.

Chapter 10. Domain Name System (DNS) 525

Run the nsupdate command on the server to create key entries to the /etc/ddns.dat
file for DHCP supported clients. The format of the nsupdate command for creating
security key pairs for updating PTR records in the DDNS.DAT file is:
nsupdate -f -hinverse_ip_address -g -pprimary_ddns_server

The command string includes:

-f The request originates from a DHCP server.

-h The inverse IP addresses for which keys are generated.

inverse_ip_address
The format of the inverse_ip_address is the IP address in reverse with
in-addr.arpa appended. For example, 9.67.149.111 as an inverse_ip_address
entry is 111.149.67.9.in-addr.arpa. You can use a wildcard to expand the scope
of the entry. For example, if you want this entry to apply to all hosts whose IP
address begins with 9.67, you could specify *.67.9.in-addr.arpa. If you want this
entry to apply to all hosts, you could specify *.in-addr.arpa.

-g A key pair should be created for this entry.

-p The primary DDNS server.

primary_ddns_server
The host name or IP address of the primary DDNS server for the specified
addresses.

For example:
nsupdate -f -g -h *.33.37.9.in-addr.arpa -p ns-updates.company.com

The wildcard (*) allows aggregate entries such as *.33.37.9.in-addr.arpa to
represent all addresses beginning with the three octets 9.37.33.

The format of the entry in the DDNS.DAT file for a DHCP server is:
inverse_ip_address primary_ddns_server private_key public_key

The inverse_ip_address and primary_ddns_server are explained above.

The private_key and public_key are used to provide fail-save authentication for
updates submitted by this DHCP server. As stored in the DDNS.DAT file, the private
key is encrypted.

Defining DDNS key files for the A record: The format of the nsupdate command
for creating security key pairs for updating A records in the DDNS.DAT file is:
nsupdate -f -g -hfully_qualified_host_name -pprimary_ddns_server

The command string includes:

-f The request originates from a DHCP server.

-h The host names for which keys are generated.

fully_qualified_host_name
The format of the fully_qualified_host_name is the host name followed by the
fully qualified domain name or a wildcard to allow aggregate entries.

-g A key pair should be created for this entry.

-p The primary DDNS server.

526 z/OS V1R4.0 CS: IP Configuration Guide

primary_ddns_server
The host name or IP address of the primary DDNS server for the specified
addresses.

For example:
nsupdate -f -g -h *.city.company.com -p ns-updates.company.com

You can specify a specific host, such as myhost, or use a wildcard to allow
aggregate entries such as *.city.company.com to represent all hosts in the zone.

Configuring the BINL server
The BINL server (binlsd) is similar to the DHCP server and is started and
configured similarly. Port 4011 must be reserved for the BINL server. To reserve port
4011 for binlsd, add the following line to the PORT statement of the TCPIP profile:
4011 UDP BINLSD

Also, if the system is running in a multiple stack (common INET) environment, the
INADDRANYPORT range cannot include 4011.

Following are the command line options that can be used with binlsd:

Option Description

-? Display the help message.

-b Display the program banner.

-q Execute in quiet mode.

-v Execute in verbose mode.

-f Override default configuration file location.

The BINL configuration file, dhcpsd.cfg by default, is searched for first in the current
working directory. If not found in the current working directory, the /etc directory is
searched. Following is a sample BINL configuration file shipped as
/usr/lpp/tcpip/samples/binlsd:
##
#
binlsd.cfg -- BINL (Image Server) Configuration File
#
This file contains the directives that can be specified by the
server’s administrator to configure the server and enforce
policies. This file is only a sample. The finished file must be
placed in the directory specified by the ETC environment variable.
#
Do not put any long line without spaces in this file.
#
A line starting with a ’#’ character is a comment and is ignored.
A ’#’ on a line which is not part of a quoted string indicates
that anything to the right of this character is a comment and should
be ignored.
#
A continuation character of ’\’ is supported. It must be
the last non-whitespace character on the line prior to any comments.
#
The directives are specified in the form of
<keyword><value1>...<valueN>.
#
Here is a partial list of keywords whose value can be specified
in this file:
#
Keyword Effect
------------- --
sa Specifies the system architecture.
nit Specifies the network interface type.

Chapter 10. Domain Name System (DNS) 527

lsa1nic Specifies the lsa1 nic type.
tftp Specifies the address of the tftpd server.
bpname Specifies the install filename given to clients.
numLogFiles The number of log files desired.
logFileSize The size of log files in kilobytes.
logFileName The name of the most recent log file.
logItem An item to be logged.
servername The LCM server name for LSA-1 clients. Not used for LSA-2 clients.
serverdomainname The LCM domain name for LSA-1 clients. Not used for LSA-2 clients.
#
client Definition of a set of options for a specific client
or a definition of a client not to be serviced.
#
pxevendor Configuration delimiter to indicate pxe options to follow.
#
pxeoption A pxe configuration option value to pass to clients.
#
The scope of a keyword is limited by a pair of curly brackets ({, })
within which the keyword is located. If a keyword is located outside
of any pair of curly brackets, its scope is applicable to all the
clients served by this server. The curly brackets must appear alone on
a line.
#
Log files. This set of parameters specifies the log files that will be
maintained by this server. Each parameter is identified by a keyword
and followed by its value.
#
Keyword Value Definition
-------- ------------ --
numLogFiles 0 to 99 number of log files. If 0 is specified,
no log file will be maintained and no log
message is displayed anywhere. When a log
file reaches maximum size, a new log file
is created, until the maximum number of
log files have been created. Only the most
recent n log files are kept/
#
logFileSize in K bytes maximum size of a log file. When the size
of the most recent log file reaches this
value, it is renamed and a new log file is
created.
#
logFileName file path name of the most recent log file. Less
recent log files have the number 1 to
n-1 appended to their names; the larger
the number, the less recent the file.
#
logItem An item that will be logged.
SYSERR System error, at the interface to the platform.
OBJERR Object error, in between objects in the process.
PROTERR Protocol error, between client and server.
WARNING Warning, worth of attention from the user.
EVENT Event occurred to the process.
ACTION Action taken by the process.
INFO Information that might be useful.
ACNTING Accounting information on clients served.
TRACE Code flow, for debugging.
#
#

servername <servername>
If present this name is sent to LSA-1 clients in the r
offer packet. If this option in not present the server
will send its name to the client as the LCM server.
serverdomainname <domainname> <workgroup|domain>
Specifies the domain name of the LCM server that is sent
to LSA-1 clients in the offer packet.
#
<domainname> the name of the domain
#
The last parameter can be the string "workgroup" to
indicate that <domainname> is a workgroup or the
string "domain" to indicate that <domainname>

is a domain.

client <id_type><id_value><exclude|value>

528 z/OS V1R4.0 CS: IP Configuration Guide

Definition of a client record.
#
<id_type> is one of the hardware types defined
in RFC 1340 (e.g. 1 for 10 megabit Ethernet,
6 for 802.5 Token Ring.) The type may be
0, in which case the hardware type is not
specified and the
id_value may be a string of any format.
#
<id_value> is a character string if the type
is 0. Typically, this would be a domain name.
For a non-zero <id_type>, the <id_value> is
a hexadecimal string representing
the hardware address of the client.
#
The last parameter can be blank to indicate that
the client matching <id_type> and <id_value>
should get the specific parameters defined in
its scope.
#
The last parameter can be the string "exclude" to
indicate that the client matching
<id_type> and <id_value> should
not be serviced by this server.
#
The client statement may be immediately followed
by a pair of curly brackets, in which the options
particular to this client can be specified.
#
Note: All clients inherit all globally defined options.
#
#
#
Pxeoption. This keyword identifies an option statement. The options assigned
are defined in the "Wired for Management Baseline Version 1.1" specification
authored by the Intel Corporation.
#
An option is specified by the "pxeoption" keyword followed by the option code
of this option and its data field, in a single line. One or more options
may be specified.
#
The scope within which an option applies is delimited by a pair of curly
brackets ({, }) surrounding the option statement.
#
If two or more options with the same option code are specified, the
one with the most specific scope is used. This allows, for example,
an option specified at the sa and nit scope to override that same option
specified at the global scope. If two or more options
with the same option code are specified within the same scope,
the first one read by the server will be the one used, (subject to
its being overridden by the same option in a more specific scope).
#
All options specified will be sent to the client encapsulated in DHCP option 43.
#

Sa. This parameter specifies the system architecture. At the global level sa is
considered to be "unspecified" and any sa which is received will match if a more
specific sa is NOT explicitly configured. A specific sa may be configured and
values for boot path name, TFTP server, and options maybe scoped under this
specific specification.
#
NIT. This parameter specifies the network interface type. Works in a similar manner
as the system architecture (Sa.) It can be configured to more specifically qualify
a SA (e.g sa 0 nit 1) or if configured alone will be considered to more specifically
qualify the unspecified SA.
#
LSA1NIC. This parameter specifies the network interface type for LSA-1 clients.
Works in a similar manner as the system architecture (Sa.) and network interface
type (NIT.) Specific lsa-1 nic types to provide values for boot path name and
TFTP server. No additional options are sent to the LSA-1 client.
#
#
TFTP. This parameter specifies the address of the tftp server that contains
the install image.
#
Keyword Value Definition

Chapter 10. Domain Name System (DNS) 529

----------- ----------------------- --------------------------
tftp [ipaddress|hostname] If "ipaddress" actual address of image server.
#
If "hostname" dns lookup is done to resolve
ipaddress of image server.
#
#
bpname. The fully qualified pathname of the install image file.
#
Keyword Value
----------- -------------------
bpname [filename]
#
#
##

The remaining portion of this file is an sample configuration file.
Comments are added to assist in understanding the configuration file.
Further information and detail is found in the online user documentation.

Setup of the log file information. This includes the size and name of the
logfile along with number of logfiles maintained and type of information that
will be logged.
numLogFiles 10
logFileSize 1000
logFileName binlsd.log
logItem SYSERR
logItem OBJERR
logItem PROTERR
logItem WARNING
logItem EVENT
logItem ACTION
logItem INFO
logItem ACNTING
logItem TRACE

default TFTP server
tftp 9.33.44.55

Fully qualified boot Image pathname
bpname c:\tftp\lccm\lccm.1

Global Options
pxevendor
{
pxeoption 2 555
pxeoption 3 544
pxeoption 4 5
pxeoption 5 5

}
#Excluded client list
client 1 080aab4567 exclude
client 1 000abc45d7 exclude
client 6 080aab4899 exclude

sa 0 nit 1
{
tftp 9.180.71.79
bpname c:\tftp\lccm\lccm.1

#Options specific to this sa and nit values
pxevendor
{
pxeoption 1 224.1.1.1
pxeoption 2 1758
pxeoption 3 1759
pxeoption 4 1
pxeoption 5 2

}
}

nit 2
{
tftp 9.180.71.79
bpname c:\tftp\lccm\lccm.1

530 z/OS V1R4.0 CS: IP Configuration Guide

#Client excluded from service if it falls into this category.
client 6 08aa343bf3 exclude

Special configuration for client following into this nit2 type
client 1 12345abcd34
{
tftp 9.37.56.2
bpname D:\intel\nit2\nt40s

}
}

lsa1nic 53
{
tftp 9.180.71.79
bpname d:\lcm\system\images\53.X

Special configuration for client following into this nic type
client 1 12345abcd34
{
tftp 9.37.56.2
bpname D:\intel\nic2\nt40s

}

Deny this client LSA1 service
client 6 08005aab6abc4 exclude

}

#
end of binlsd.cfg
#

Configuring a DDNS server (BIND 4.9.3 only)
There is no explicit configuration utility for the DDNS server as there is for the
DHCP server. You can either create new DDNS server configuration files, or you
can migrate an existing DNS configuration to dynamic DNS server configuration
files.

There are three ways to use the DDNS server:

v Static DDNS server

v Dynamic secured DDNS server

v Dynamic presecured DDNS server

When used as a static DDNS server, there is nothing you have to do but use your
existing DNS configuration files with the DDNS server. It will then work exactly the
same way as the previous DNS server.

When used in dynamic secured mode, the DDNS server will allow clients to update
their resource records dynamically using encryption keys that have been created by
the clients themselves.

When used in dynamic presecured mode, the DDNS server will only allow those
clients to update their records to which an encryption key has been provided that
has been generated by the administrator.

Creating a new DDNS server configuration: The files required for a minimum
configuration are:

v The nameserver boot file contains the path and file names for any other
configuration files. The default for this file is /etc/named.boot. It will be examined
by the DDNS server at startup.

Chapter 10. Domain Name System (DNS) 531

v The nameserver domain file contains information about the zones for which this
server will be authoritative, and all mappings from names to IP addresses
(ordinary or forward name resolution). The file name is defined in the nameserver
boot file.

v The nameserver reverse file contains information about the mappings from IP
addresses to names (inverse or reverse name resolution). The file name is
defined in the nameserver boot file.

Use the following steps to create DDNS server configuration files from scratch:

1. Create the DDNS configuration files.

A nameserver boot file might look as follows:
;
; boot file for name server configuration.
;
directory /test/dns/zones/
;
; type domain source file or host
;
primary test.itsc.raleigh.ibm.com test.data dynamic secured
;
primary 200.200.200.in-addr.arpa db.200.200.200 dynamic secured
;

On the primary statements, you can specify if you want to use the DDNS server
in dynamic secured or in dynamic presecured mode by using either the dynamic
secured or the dynamic presecured keywords. A nameserver domain file might
look as follows:
;
;********************************
;* Start of Authority Records *
;********************************
;
@ IN SOA ns-updates.test.itsc.raleigh.ibm.com.

ns-updates.test.itsc.raleigh.ibm.com. (
95111601 ; Serial number for this data (yymmdd##)
86400 ; Refresh value for secondary name servers
300 ; Retry value for secondary name servers
86400 ; Expire value for secondary name servers
3600 ; Minimum TTL value
300) ; dynamic update increment time

IN NS ns-updates.test.itsc.raleigh.ibm.com.
;
localhost IN A 127.0.0.1
;
ns-updates IN A 200.200.200.2
martin IN CNAME ns-updates
;
BPClient IN A 200.200.200.14
;

A nameserver reverse file might look as follows:
;
;********************************
;* Start of Authority Records *
;********************************
;
200.200.200.in-addr.arpa IN SOA ns-updates.test.itsc.raleigh.ibm.com.

ns-updates.test.itsc.raleigh.ibm.com. (
95111601 ; Serial number for this data (yymmdd##)
86400 ; Refresh value for secondary name servers
300 ; Retry value for secondary name servers
86400 ; Expire value for secondary name servers

532 z/OS V1R4.0 CS: IP Configuration Guide

3600 ; Minimum TTL value
300) ; dynamic update increment time

200.200.200.in-addr.arpa. IN NS ns-updates.test.itsc.raleigh.ibm.com.
;
;
; Addresses for the canonical names
;
2 IN PTR martin.test.itsc.raleigh.ibm.com.
14 IN PTR BPClient.test.itsc.raleigh.ibm.com.
;

2. After you have created the files, use the NSUPDATE -g command to create the
encryption key pairs for the zone resource records in the domain and reverse
files.

After the administrator has copied the public key into the files, they might look
as follows:

v Domain Name file:
;
;********************************
;* Start of Authority Records *
;********************************
;
@ IN KEY 80 0 1 AQPOzUYWvAUyZhYxogDcrtxOZOH33V31Tmrs1Db1WYiyI4Y

7Mmoz6Vm3XY/QTMHOyeHcVAMKmuba+rW4/+IkMeP3
@ IN SOA ns-updates.test.itsc.raleigh.ibm.com.

ns-updates.test.itsc.raleigh.ibm.com. (
95111601 ; Serial number for this data (yymmdd##)
86400 ; Refresh value for secondary name servers
300 ; Retry value for secondary name servers
86400 ; Expire value for secondary name servers
3600 ; Minimum TTL value
300) ; dynamic update increment time

IN NS ns-updates.test.itsc.raleigh.ibm.com.
;
localhost IN A 127.0.0.1
;
ns-updates IN A 200.200.200.2
martin IN CNAME ns-updates
;
BPClient IN A 200.200.200.14
;

v Reverse Name file:
;
;********************************
;* Start of Authority Records *
;********************************
;
200.200.200.in-addr.arpa IN KEY 80 0 1 AQPR+3ObXCgcjmBfKSnN4fD6v

VH/AUIwincGNeD1MAuz2BTQSQ
/bJkXLA3nxfV+HxKfxWptkRck
wzxEk1DD3DSB

200.200.200.in-addr.arpa IN SOA ns-updates.test.itsc.raleigh.ibm.com.
ns-updates.test.itsc.raleigh.ibm.com. (

95111601 ; Serial number for this data (yymmdd##)
86400 ; Refresh value for secondary name servers
300 ; Retry value for secondary name servers
86400 ; Expire value for secondary name servers
3600 ; Minimum TTL value
300) ; dynamic update increment time

200.200.200.in-addr.arpa. IN NS ns-updates.test.itsc.raleigh.ibm.com.
;
;
; Addresses for the canonical names

Chapter 10. Domain Name System (DNS) 533

;
2 IN PTR martin.test.itsc.raleigh.ibm.com.
14 IN PTR BPClient.test.itsc.raleigh.ibm.com.
;

The NSUPDATE -g command will also create the DDNS.DAT file that contains
the private encryption keys to sign any updates to the zone resource records in
the domain and reverse files. This is shown in the following example:
test.itsc.raleigh.ibm.com ns-updates.test.itsc.raleigh.ibm.com
Pb7bySIfzXcW...

200.200.200.in-addr.arpa ns-updates.test.itsc.raleigh.ibm.com
KlexSRMP/q/k...

3. Start the DDNS server.

4. If you have a DHCP server configured for DDNS updates, you need to add an
entry into the DDNS.DAT file using NSUPDATE -g that represents a wildcard
entry for the zones that DHCP will update (*.test.itsc.raleigh.ibm.com).

Note: KEY and SIG resource records, as well as encryption keys, always use a
single line. The examples were indented for illustration purposes only.

Configuring for presecured mode operation: IBM Open Edition’s Dynamic DNS
server supports two modes of securing updates to a dynamic DNS zone. In the
default mode, called dynamic secured, any host that complies with the DDNS
protocol can create resource records in a zone declared as dynamic. After created,
these records can only be updated by the administrator or by the host that created
them.

In presecured mode, only hosts that have been preauthorized by a DDNS
administrator may create resources in a particular dynamic zone. After created,
these records can only be updated by the administrator or by the host that has
been preauthorized.

Functionally, the difference in these modes is whether or not the DDNS server will
allow the creation of a KEY RR or whether it must already have a KEY RR defined
for a resource in the zone. In the case of presecured mode, the KEY RR must be
already defined in the zone before an update is accepted. Specifically, the
administrator must enter the KEY RR data in the domain file for each client that will
be making updates.

To configure a particular DNS dynamic zone for presecured mode operation, you
must:

1. Specify dynamic presecured on the primary zone statement in the DDNS
server boot file and create the corresponding domain file.

2. Run the nsupdate -g command to create an /etc/ddns.dat with the zone key
information. Create a zone KEY RR.

3. Start the DDNS server by entering named at a z/OS UNIX command prompt.

4. For each client host:

a. Use nsupdate with the -g parameter, which will generate a key for the host
and save it in /etc/ddns.dat.

b. Use nsupdate with the -a parameter to dynamically register and save a
host’s KEY RR in the DDNS server domain file.

c. Manually extract the /etc/ddns.dat file key entry for the host into a separate
DDNS.DAT file and distribute it to the end user for installation into their /etc
subdirectory.

534 z/OS V1R4.0 CS: IP Configuration Guide

The following example is a scenario demonstrating an administrator using
nsupdate to preregister an end user in a dynamic presecured domain.
Administrator input is highlighted in bold:
#nsupdate -g -h newuser.dynozone.sandbox -p netadmin.dynozone.sandbox
--- NSUPDATE Utility ---

Key Gen succeeded ...

#nsupdate -a -h newuser.dynozone.sandbox -p netadmin.dynozone.sandbox
--- NSUPDATE Utility ---

Enter Action (Add,Delete,Exists,New,TTL,Send,Quit)
> a
..rrtype (A,PTR,CNAME,MX,KEY,HINFO): key
DDNSUpdate_KEY (Add Flags 0000 Protocol 0 Algid 1

Keylen 64 Key[0-15]: AQO/3Ah6986cXDhR ... succeeded

Enter Action (Add,Delete,Exists,New,TTL,Send,Quit)
> s
..sig Expiration (secs from now, ENTER for 3600):
..sig KEY pad (ENTER for default of 3110400):
DDNSSignUpdate ...succeeded
DDNSFinalizeUpdate ...succeeded
DDNSSendUpdate ...succeeded

Enter Action (Add,Delete,Exists,New,TTL,Send,Quit)
> q

#

DNS-related RFCs
The following RFCs contain basic information about the DNS:

974 Mail Routing and the Domain System, C. Partridge

1033 Domain Administrators Operations Guide, M. Lottor

1034 Domain Names—Concepts and Facilities, P.V. Mockapetris

1035 Domain Names—Implementation and Specification, P.V. Mockapetris

Proposed standards
2181 Clarifications to the DNS Specification, R. Bush Elz

2308 Negative Caching of DNS Queries, M. Andrews

1995 Incremental Zone Transfer in DNS, M. Ohta

1996 A Mechanism for Prompt Notification of Zone Changes, P. Vixie

2136 Dynamic Updates in the Domain Name System, P. Vixie, S. Thomson, Y.
Rekhter, and J. Bound

2845 Secret Key Transaction Authentication for DNS (TSIG), P. Vixie, O.
Gudmundsson, D. Eastlake, 3rd, and B. Wellington

Proposed standards still under development
1886 DNS Extensions to support IP version 6, S. Thomson and C. Huitema

2065 Domain Name System Security Extensions, D. Eastlake, 3rd and C.
Kaufman

Chapter 10. Domain Name System (DNS) 535

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

2137 Secure Domain Name System Dynamic Update, D. Eastlake, 3rd

Other important RFCs about DNS implementation
1535 A Security Problem and Proposed Correction With Widely Deployed DNS

Software, E. Gavron

1536 Common DNS Implementation Errors and SUggested Fixes, A. Kumar, J.
Postel, C. Neuman, P. Danzig, and S. Miller

1982 Serial Number Arithmetic, R. Elz and R. Bush

Resource record types
1183 New DNS RR Definitions, C.F. Everhart, L. A. Mamakos, R. Ullmann, and P.

Mockapetris

1706 DNS NSAP Resource Records, B. Manning and R. Colella

2168 Resolution of Uniform Resource Identifiers using the Domain Name System,
R. Daniel and M. Mealling

1876 A Means for Expressing Location Information in the Domain Name System,
C. Davis, P. Vixie, T., and I. Dickinson

2052 A DNS RR for Specifying the Location of Services, A. Gulbrandsen and P.
Vixie

2163 Using the Internet DNS to Distribute MIXER Conformant Global Address
Mapping, A. Allocchio

2230 Key Exchange Delegation Record for the DNS, R. Atkinson

DNS and the Internet
1101 DNS Encoding of Network Names and Other Types, P. V. Mockapetris

1123 Requirements for Internet Hosts - Application and Support Braden

1591 Domain Name System Structure and Delegation, J. Postel

2317 Classless IN-ADDR.ARPA Delegation, H. Eidnes, G. de Groot, and P. Vixie

DNS operations
1537 Common DNS Data File Configuration Errors, P. Beertema

1912 Common DNS Operational and Configuration Errors D. Barr

2010 Operational Criteria for Root Name Servers, B. Manning and P. Vixie

2219 Use of DNS Aliases for Network Services, M. Hamilton and R. Wright

Other DNS-related RFCs
1464 Using the Domain Name System To Store Arbitrary String Attributes, R.

Rosenbaum

1713 Tools for DNS Debugging A. Romao

1794 DNS Support for Load Balancing, T. Brisco

2240 A Legal Basis for Domain Name Allocation, O. Vaughan

2345 Domain Names and Company Name Retrieval, J. Klensin, T. Wolf, and G.
Oglesby

536 z/OS V1R4.0 CS: IP Configuration Guide

2352 A Convention For Using Legal Names as Domain Names, O. Vaughan

Chapter 10. Domain Name System (DNS) 537

538 z/OS V1R4.0 CS: IP Configuration Guide

Chapter 11. Policy-Based Networking

The role of policy
Businesses typically define goals for network behavior in human terms, for example
using Service Level Agreements (SLAs) or defining the behavior of Intrusion
Detection Services (IDS). Network implementations provide a wide variety of
controls for priority treatment of traffic, bandwidth management, and control of
network behavior. The link between the high level business goals and network
implementations is defined as Policy Based Networking. The implementation of
SLAs, IDSs and other network controls on network hosts and routers is provided by
policies. Policies are an administrative means to define controls for a network, in
order to achieve the Quality of Service (QoS) levels promised by SLAs, or to
implement IDS or resource balancing decisions. To be effective, especially for QoS,
consistent mechanisms need to be used throughout the network to classify and
differentiate traffic, and to provide a consistent implementation of policy decisions.
To achieve this, policies are usually defined in a central policy repository, accessed
by all hosts and routers that need to make policy decisions (Policy Decision Point or
PDP), or implement such decisions (Policy Enforcement Point or PEP).

It is important to be able to monitor the performance of policies as implemented by
the network. This leads to the need to define service level management information
kept by the PDP and PEP, which can then be analyzed for a variety of network
services, from traffic trend analysis to network capacity planning and dynamic QoS
level tuning.

Together, service differentiation, policies, and service level performance monitoring
form an integral part of the SLA function that is becoming more and more important
to network administrators as a means of controlling network traffic flows.

Policy components overview

Policy Agent
Network administrators can use the z/OS CS Policy Agent to define policies for their
users. Superuser authority is required.

The policies supported by the Policy Agent can be used for any of the following
purposes:

v Quality of Service (Refer toChapter 12, “Quality of Service (QoS)” on page 565)

v Intrusion Detection Services (Refer to Chapter 13, “Intrusion Detection Services
(IDS)” on page 595)

The common Policy Agent functions are further described in this chapter.

The Policy Agent supports QoS functions other than reading and installing policies,
such as Sysplex Distributor policy performance monitoring, and mapping Type of
Service (ToS) byte values to outbound interface and virtual LAN (VLAN) user
priorities. The QoS specific Policy Agent functions are further described in “QoS
specific Policy Agent functions” on page 567.

The Policy Agent runs in the z/OS environment and reads policy definitions from a
local configuration file and/or a central repository that uses the Lightweight Directory

© Copyright IBM Corp. 2000, 2002 539

|
|

Access Protocol (LDAP). The Policy Agent also installs policies in one or more z/OS
CS stacks. It can be used to replace existing policies or update them as necessary.

Notes:

1. Policies are supported by the stack as an end host system only. When the stack
is routing packets, policies are not accessed or applied.

2. Policies defined on an LDAP server use the configuration files and mechanisms
provided by the LDAP server product. The definition of the elements of policies
is known as the schema. z/OS CS provides the schema definition for policies
that may be defined on an LDAP server in a set of sample files. The sample
files are provided in both LDAP protocol version 2 and version 3 format (see
“Policy sample files” on page 541 for the names of these samples). These
sample files must be installed on the LDAP server as the schema definition.
Policy Agent uses the z/OS SecureWay Security Server LDAP Client library to
communicate with an LDAP server. Refer to z/OS Security Server LDAP Server
Administration and Use for more information about LDAP and z/OS Security
Server LDAP Client Programming for more information about the z/OS CS
LDAP Client support.

3. A copy of the policy schema definition files that define the policy schema for
LDAP protocol version 2 are also available in the Appendix of the z/OS
Communications Server: IP Configuration Reference. Different files are used to
define the schema in LDAP protocol version 3 syntax, but are not shown
because the protocol version 2 syntax is easier to read and also because the
schema definitions are essentially the same.

RSVP Agent
The z/OS CS RSVP Agent provides Integrated Services functions, such as
communicating with RSVP agents on other hosts or routers and reserving
resources on certain types of outbound interfaces. The RSVP Agent queries the
Policy Agent for policies that relate to RSVP processing.

SNMP SLA subagent
The z/OS CS SLA subagent allows network administrators to retrieve data and
determine if the current set of SLA policy definitions are performing as needed or if
adjustments need to be made. The SLA subagent supports the Service Level
Agreement Performance Monitor (SLAPM) MIB. Refer to RFC 2758 for more
information about the SLAPM MIB.

Intrusion Detection Services
Intrusion Detection Services (IDS) support is available to detect and report on
network intrusion events. The Traffic Regulation Management (TRM) support
provided in V2R10 has been extended and incorporated into the IDS support. IDS
policy regulates the types of events to report and provides the definition of several
types of events. IDS policy may be defined for scans, attacks and traffic regulation
for both TCP and UDP ports.

Notes:

1. IDS policies may only be defined on an LDAP server.

2. Policy Scope TR policies found in a Policy Agent configuration file are
compatibly transformed into IDS TR TCP policies by Policy Agent.

3. pasearch will display the transformed policy.

540 z/OS V1R4.0 CS: IP Configuration Guide

Policy sample files
A set of sample files is shipped with z/OS CS that provides several functions. The
first sample file provides an example of policy definitions in a Policy Agent
configuration file.

/usr/lpp/tcpip/samples/pagent.conf
This file contains overall policy definition rules, syntax and semantics for
defining policies in a configuration file, and examples of such policy
definitions.

The following set of sample files provides an example of policy definitions in LDAP.
For more information on using these sample files, see “Using the sample LDAP
objects” on page 556.

/usr/lpp/tcpip/samples/pagent.ldif
This file contains the top level directory structure for the set of sample QoS
and IDS policies.

/usr/lpp/tcpip/samples/pagent_starter_QOS.ldif
This file contains the starter set sample of LDAP definitions of QoS objects.
This file requires the directory structure defined in sample file pagent.ldif.

/usr/lpp/tcpip/samples/pagent_starter_IDS.ldif
This file contains the starter set sample of LDAP definitions of IDS objects.
This file requires the directory structure defined in sample file pagent.ldif.

/usr/lpp/tcpip/samples/pagent_advanced_QOS.ldif
This file contains the advanced set sample of LDAP definitions of QoS
objects. This file requires the objects defined in the QoS starter set sample
file pagent_starter_QOS.ldif and the directory structure defined in sample
file pagent.ldif.

LDAP with SSLLocal
Policies

NonQoS
aware
appl.

QoS
aware
appl.

RSVP
Agent

Policy
Agent

Traffic
Regulation
Mgmt Daemon

SNMP
SLA
Subagent

SNMP
Agent

LDAP
Server
Policies

TCP/UDP
and IP

1 2 3 4

Active
Service
Policy

Monitor and enforce TCP
data rates and connection limits

Collect and maintain
SLA performance
metrics for monitoring
and analysis.

IP Packet

Traffic enforcer

Active Queue
Management

Set DS bits

Data
Traffic

Data
Traffic

RSVP
flows

QoS/IDS/SD
Policies

IDS
Events and
stats

Obtain MIB
Values

Interfaces

RAPI

Sysplex
Dist.

IDS

FRCA

Figure 61. Policy components in z/OS CS

Chapter 11. Policy-Based Networking 541

|
|

/usr/lpp/tcpip/samples/pagent_advanced_IDS.ldif
This file contains the advanced set sample of LDAP definitions of IDS
objects. This file requires the objects defined in the IDS starter set sample
file pagent_starter_IDS.ldif and the directory structure defined in sample file
pagent.ldif.

The next set of samples is the definition of the schemas in LDAP protocol version 2
format. They must be installed in the LDAPv2 server’s configuration as included
files. Refer to “Installing the schema definition on the LDAP server” on page 555 for
more information.

/usr/lpp/tcpip/samples/pagent_oc.conf
This file contains the schema object class definitions.

/usr/lpp/tcpip/samples/pagent_at.conf
This file contains the schema attribute definitions.

The next set of samples is the definition of the schemas in LDAP protocol version 3
format. They must be installed on the LDAPv3 server in the proper order as an
object in the server’s database, rather than as configuration information. This
process is known as schema publication. Refer to RFCs 1804 and 2251. The files
need to be specified on ldapmodify commands to modify the cn:schema entry in the
server’s database, in the order as specified in the list below. Refer to “Installing the
schema definition on the LDAP server” on page 555 for more information.

/usr/lpp/tcpip/samples/pagent_schema.ldif
This file contains the schema version 2 core and QoS schema object class
and attribute definitions.

/usr/lpp/tcpip/samples/pagent_v3schema.ldif
This file contains the schema version 3 additions to the schema version 2
core and QoS schemas.

/usr/lpp/tcpip/samples/pagent_schema_updates.ldif
This file contains changes to the schema version 2 core and QoS schema
definitions in support of schema version 3.

/usr/lpp/tcpip/samples/pagent_idsschema.ldif
This file contains the schema version 3 IDS schema definitions.

The last set of samples contain the text of draft documents used to develop the
Version 3 schema.

/usr/lpp/tcpip/samples/pagent_pcim.txt
This file contains the draft version of the proposed Policy Core Information
Model (PCIM) used as the basis for the support in this release. PCIM is
described by RFC 3060 but this file is an earlier draft level.

/usr/lpp/tcpip/samples/pagent_core.txt
This file contains the draft version of the proposed Policy Core LDAP
Schema Internet Draft used in z/OS V1R2 and later releases.

Note: This file is provided as-is and there are some differences between
the draft and the implementation. The intent of this file is to provide
background information on the level of the supported schema.

/usr/lpp/tcpip/samples/pagent_cond.txt
This file contains the draft version of the proposed Policy Conditions
Internet Draft used in z/OS V1R2 and later releases.

542 z/OS V1R4.0 CS: IP Configuration Guide

|

|

Note: This file is provided as-is and there are some differences between
the draft and the implementation. The intent of this file is to provide
background information on the level of the supported schema.

Note: This documentation refers to Versions 1, 2 and 3 when defining policies.
Version 1 refers to policy definitions used prior to OS/390 V2R10. Version 2
refers to policy definitions used for OS/390 V2R10. Version 3 refers to policy
definitions used for z/OS V1R2 and later releases. Version 1 provides only a
subset of the functionality of later versions. When defining policies, refer to
z/OS Communications Server: IP Configuration Reference for more
information about V1, V2 and V3 statements.

Policy object model overview
Policies consist of several related objects. The main object is the policy rule. A
policy rule object refers to one or more policy condition, policy action, or policy time
period condition objects, and also contains information on how these objects are to
be used. Policy time period objects are used to determine when a given policy rule
is active. Active policy objects are related in a way that is analogous to an ’IF’
statement in a program. For example:
IF condition THEN action

In other words, when the set of conditions referred to by a policy rule are TRUE,
then the policy actions associated with the policy rule are executed.

Policy rules can refer to one or more policy conditions. A policy rule with a single
policy condition is known as a simple rule, while one with more conditions is known
as a complex rule. Complex policy rules can have their conditions evaluated
according to one of two different methods. The first is Disjunctive Normal Form
(DNF), which means an ORed set of ANDed conditions. The second is Conjunctive
Normal Form (CNF), which means an ANDed set of ORed conditions. In order to
accomplish these evaluations, individual policy conditions are assigned an arbitrary
group number, and also an indication of whether or not the condition is negated.
For example, consider the following set of conditions for a policy rule:

Policy Time
Period

Condition

Policy Time
Period

Condition

Policy
Condition

Policy Action

Policy Rule

Figure 62. Basic policy objects

Chapter 11. Policy-Based Networking 543

|

C1: Group Number = 1, Condition Negated = FALSE
C2: Group Number = 1, Condition Negated = TRUE
C3: Group Number = 1, Condition Negated = FALSE
C4: Group Number = 2, Condition Negated = FALSE
C5: Group Number = 2, Condition Negated = FALSE

If the conditions are to be evaluated using DNF, then the overall condition for the
policy rule is:
(C1 AND (NOT C2) AND C3) OR (C4 AND C5)

On the other hand, if CNF is used to evaluate the conditions, then the overall
condition for the policy rule is:
(C1 OR (NOT C2) OR C3) AND (C4 OR C5)

Policy actions specify actions to take when the set of conditions for a policy rule
evaluate to TRUE. Although the policy model allows multiple actions for a policy
rule, in practical terms a single action is all that usually makes sense for the types
of policies supported by the Policy Agent.

Policy conditions and actions can either be specific to a single rule, or be reusable
among several policy rules. To allow either type of conditions and actions, and to
specify related information such as condition group number and negation indicator,
several other policy objects are required. First are policy condition association and
policy action association objects. These objects contain condition and action related
attributes, respectively, and may directly contain policy conditions and actions
(rule-specific).

Policy
Condition C1

Policy
Condition C4

Policy
Condition C3

(NOT) Policy
Condition C2

(NOT) Policy
Condition C5

Policy Rule

Figure 63. Complex policy conditions

544 z/OS V1R4.0 CS: IP Configuration Guide

The policy association objects alternatively may refer to conditions and actions
(reusable). Policy condition instance and policy action instance objects are used to
represent reusable policy conditions and actions, respectively.

Primarily for administrative grouping of policy rules, the policy group object is used.
Policy groups can refer either to policy rules or to policy groups. This allows related
policy rules to be grouped together, and also allows policy groups to be grouped to
any needed level of nesting.

Policy
Condition

Association 1
+ Policy

Condition C1

Policy
Condition

Association 1
+ Policy

Condition C1

Policy
Condition

Association 2
+ Policy

Condition C2

Policy
Condition

Association 2
+ Policy

Condition C2

Policy
Action

Association 1
+ Policy

Action A1

Policy
Action

Association 1
+ Policy

Action A1

Policy Rule
1

Policy Rule
2

Figure 64. Rule-specific conditions and actions

Policy
Condition

Association 1

Policy
Condition

Association 1

Policy
Action

Association 1

Policy
Action

Association 1

Policy
Condition

Instance C1

Policy
Condition

Instance C2

Policy
Action

Instance A1

Policy
Condition

Association 2

Policy
Condition

Association 2

Policy Rule
1

Policy Rule
1

Figure 65. Reusable conditions and actions

Chapter 11. Policy-Based Networking 545

What kind of policy do you want?
The Policy Agent supports the following types of policies:

v Quality of Service (QoS) policies

– Differentiated Services (DS) policies

– Integrated Services (RSVP) policies

– Sysplex Distributor (SD) policies

v Intrusion Detection Services (IDS) policies

– Scan policies

– Attack policies

– Traffic Regulation policies

QoS and IDS policies are defined using different policy schemas. They use a
common rule, but have separate conditions and actions. QoS and IDS cannot be
mixed in a given policy object. Both QoS and IDS rules may contain time related
information that indicates when the policy rule should be considered active or
inactive. Active policy rules are installed in the TCP/IP stack, so they can be applied
as traffic filters. Inactive policy rules exist only in the Policy Agent.

The Policy Agent supports all of the above policy types, installing them into one or
more TCP/IP stacks as configured.

QoS policy
Policy conditions consist of a variety of selection criteria that act as traffic filters.
Traffic can be filtered based on source and destination IP addresses, source and
destination ports, protocol, inbound and outbound interfaces, application name,

Policy Group
2

Policy Rule
1

Policy Rule
2

Policy Rule
4

Policy Rule
3

Policy Rule
5

Policy Group
3

Policy Group
1

Figure 66. Policy groups

546 z/OS V1R4.0 CS: IP Configuration Guide

application specific data or application priority. Only packets that match the filter
criteria are selected to receive the accompanying action. Policy rules can refer to
several policy actions, but only one policy action is executed per policy scope. A
given policy action may be referred to by several policy rules.

The type of policy defined is in general controlled by the policy scope value defined
for the policy action. SD policies are an exception. SD policies are a subset of DS
policies, so use the DS scope.

Although RSVP policies are installed into the TCP/IP stack, they are only used for
collecting policy statistics. For policy use and limit enforcement, these policies are
requested from the Policy Agent by the RSVP Agent, to apply to RSVP reservation
requests from RSVP applications.

IDS policy
Policy conditions primarily determine the portion of IDS function that is being
configured. A given IDS policy rule refers to a single IDS policy action. A given IDS
policy action may be referred to by several policy rules of the same IDS type. Refer
to Chapter 13, “Intrusion Detection Services (IDS)” on page 595 for more details.

Where do you want to define your policies?
Policies can be defined in the Policy Agent Configuration file, in the LDAP server, or
both. Policies from both sources are combined into a single list. Note that this
requires unique policy object names. For policies defined on the LDAP server, the
Distinguished Name (DN) must be unique, but the user-friendly name does not
have to be unique (although it is recommended). The Policy Agent appends a
unique suffix if required to make LDAP user-friendly names unique within the scope
of policies defined on the LDAP server. When policies from a configuration file are
combined with LDAP defined policies, the LDAP user-friendly names must be
unique with respect to the names defined in the configuration file. Any policy objects
with duplicate names at this point are discarded by the Policy Agent. The following
table shows some of the advantages and disadvantages of both.

Type Advantages Disadvantages

Configuration File v Policies are easy to define
and change.

v Definitions are local - no
connection needed.

v Very little overhead when
policies do not change.

v Full power of policy
definitions not available
(for example can only
define simple rules).

v Each host must maintain
its own policy definitions.

v IDS policy is not available.

Chapter 11. Policy-Based Networking 547

Type Advantages Disadvantages

LDAP Server v Central policy definitions
for many hosts.

v Policy definitions can be
shared and reused
between different platforms
and hosts.

v Full power of policy
definitions available (for
example can define
complex rules).

v Allow robust hierarchical
policy definition (Sysplex,
LPAR, TCP/IP image).

v IDS policy is only available
in LDAP.

v Policy definitions are more
complex.

v LDAP server must be
queried at each refresh
interval to check for new
or changed policies.

LDAP server
Lightweight Directory Access Protocol (LDAP) is a fast-growing technology for
accessing common directory information. LDAP has been embraced and
implemented in most network-oriented middleware. As an open, vendor-neutral
standard, LDAP provides an extendable architecture for centralized storage and
management of information that needs to be available for today’s distributed
systems and services.

After a fast start, it can be assumed that LDAP has become the de facto access
method for directory information, much the same as the Domain Name System
(DNS) is used for IP address lookup on almost any system on an intranet and on
the Internet.

Note: If the z/OS LDAP server is used, a DB2 backend is required.

Overview of the object classes
Policies defined on an LDAP server are comprised of one or more objects, each
with a defined object class, and a unique name. Object names are in the form of
LDAP Distinguished Names (DNs), which are text strings composed of individual
parts known as Relative Distinguished Names (RDNs). The structure of the naming
defines a hierarchical tree, in a manner similar to directories in a hierarchical file
system. For example, consider the following set of objects:
Object 1, DN: o=IBM, c=US
Object 2, DN: cn=group_1, o=IBM, c=US
Object 3, DN: cn=group_5, o=IBM, c=US
Object 4, DN: cn=group_1_sub_A, cn=group_1, o=IBM, c=US

This set of objects can be viewed as a tree, with Object 1 as the root. Objects 2
and 3 are branches under the root, with Object 4 a branch under Object 2. The
names used are attributes of the objects they define. For example, Object 2, whose
name starts with ″cn=group_1″ contains a cn attribute with the value group_1. Refer
to z/OS Security Server LDAP Server Administration and Use for more information
on LDAP naming.

Object class names define the type of each LDAP object. The top object class is
predefined and is the root of all other object classes.

548 z/OS V1R4.0 CS: IP Configuration Guide

There are three types of object classes.

Abstract object classes
Used to define broad concepts, such as policy and to define basic attributes
that apply to all subclasses.

Structural object classes
Basic building blocks, and are the only type of object class that can be
instantiated as real objects on an LDAP server.

Auxiliary object classes
Used to define attributes that are shared among different structural object
classes, or are used to extend the basic set of objects.

Attributes from auxiliary classes are attached to structural objects by including them
in the structural objects, and also by including the auxiliary object class as one of
the values of the objectClass attribute in the structural object.

The following object classes are recognized by the Policy Agent. The indentation
defines subclasses. For example, ibm-policyGroup is a subclass of ibm-policy, and
therefore inherits all of the attributes defined for ibm-policy.

Chapter 11. Policy-Based Networking 549

Note: The classes identified in italics in the diagram above are for schema version
2 and are mutually exclusive with the schema version 3 classes with similar
names.

top

ibm-policy (abstract)

ibm-policyGroup (structural)

ibm-policyRule (structural)

ibm-policyRuleConditionAssociation (structural)

ibm-policyRuleActionAssociation (structural)

ibm-policyInstance (structural)

ibm-policyConditionInstance (structural)

ibm-policyActionInstance (structural)

ibm-policyElementAuxClass (auxiliary)

ibm-policyConditionAuxClass (auxiliary)

ibm-policyTimePeriodConditionAuxClass (auxiliary)

ibm-networkingPolicyConditionAuxClass (auxiliary)

ibm-routeConditionAuxClass (auxiliary)

ibm-hostConditionAuxClass (auxiliary)

ibm-applicationConditionAuxClass (auxiliary)

ibm-idsConditionAuxClass (auxiliary)

ibm-idsAttackConditionAuxClass (auxiliary)

ibm-idsIPAttackConditionAuxClass (auxiliary)

ibm-idsTrafficRegulationConditionAuxClass (auxiliary)

ibm-idsScanConditionAuxClass (auxiliary)

ibm-idsScanEventConditionAuxClass (auxiliary)

ibm-idsTransportConditionAuxClass (auxiliary)

ibm-idsHostConditionAuxClass (auxiliary)

ibm-policyActionAuxClass (auxiliary)

ibm-serviceCategoriesAuxClass (auxiliary)

ibm-idsActionAuxClass (auxiliary)

ibm-idsNotificationAuxClass (auxiliary)

ibm-idsAttackActionsAuxClass (auxiliary)

ibm-idsTrafficRegulationActionAuxClass (auxiliary)

ibm-idsTRtcpActionAuxClass (auxiliary)

ibm-idsTRudpActionAuxClass (auxiliary)

ibm-idsScanActionAuxClass (auxiliary)

ibm-idsScanSensitivityActionAuxClass (auxiliary)

ibm-idsScanExclusionActionAuxClass (auxiliary)

ibm-policyRepository (structural)

ibm-policySubtreesPtrAuxClass (auxiliary)

ibm-policyGroupContainmentAuxClass (auxiliary)

ibm-policyRuleContainmentAuxClass (auxiliary)

ibm-policyCondition (structural)

ibm-policyTimePeriodCondition (structural)

ibm-networkingPolicyCondition (structural)

ibm-policyAction (structural)

ibm-serviceCategories (structural)

ibm-policyGroupLoadDistibutionAuxClass (auxiliary)

SetSubnetPrioTosMask

Figure 67. LDAP schema object class hierarchy

550 z/OS V1R4.0 CS: IP Configuration Guide

Object class name Purpose of object

Top Used to anchor the LDAP hierarchical
tree root.

ibm-policy Used as the root for all policy objects.

ibm-policyGroup Defines a policy group object.

ibm-policyRule Defines a policy rule object.

ibm-policyRuleConditionAssociation Defines an association between a
policy rule object and a policy
condition.

ibm-policyRuleActionAssociation Defines an association between a
policy rule object and a policy action.

ibm-PolicyInstance Defines an instance of a reusable
policy object.

ibm-PolicyConditionInstance Defines an instance of a reusable
policy condition object.

ibm-PolicyActionInstance Defines an instance of a reusable
policy action object.

ibm-PolicyElementAuxClass Defines an auxiliary class that can be
used to tag non-policy objects as
though they were policy objects.

ibm-policyCondition Defines a policy condition object.
(schema version 2 — supported for
migration)

ibm-policyTimePeriodCondition Defines an auxiliary class to represent
time periods during which a policy rule
is considered to be active.(schema
version 2 — supported for migration)

ibm-networkingpolicyCondition Defines a subclass of
ibm-PolicyCondition used to define
networking policy conditions.(schema
version 2 — supported for migration)

ibm-policyAction Defines a policy action object.(schema
version 2 — supported for migration)

ibm-serviceCategories Defines an auxiliary class to represent
a set of QoS attributes for a policy
action.(schema version 2 — supported
for migration)

ibm-policyConditionAuxClass Defines an auxiliary class for generic
policy conditions.

ibm-policyTimePeriodConditionAuxClass Defines an auxiliary class to represent
time periods during which a policy rule
is considered to be active.

ibm-networkingPolicyConditionAuxClass Defines an auxiliary class used to
define networking policy conditions.

ibm-routeConditionAuxClass Defines an auxiliary class to represent
QoS routing conditions for a policy rule.

ibm-hostConditionAuxClass Defines an auxiliary class to represent
QoS host (end-point) conditions for a
policy rule.

Chapter 11. Policy-Based Networking 551

|

Object class name Purpose of object

ibm-applicationConditionAuxClass Defines an auxiliary class to represent
QoS application and transport
conditions for a policy rule.

ibm-idsConditionAuxClass Defines an auxiliary class to represent
generic IDS conditions.

ibm-idsAttackConditionAuxClass Defines an auxiliary class to represent
IDS attack conditions.

ibm-idsIPAttackConditionAuxClass Defines an auxiliary class to represent
IDS IP attack conditions.

ibm-idsTrafficRegulationConditionAuxClass Defines an auxiliary class to represent
IDS Traffic Regulation conditions.

ibm-idsScanConditionAuxClass Defines an auxiliary class to represent
IDS global scan conditions.

ibm-idsScanEventConditionAuxClass Defines an auxiliary class to represent
IDS scan event conditions.

ibm-idsTransportConditionAuxClass Defines an auxiliary class to represent
IDS transport conditions.

ibm-idsHostConditionAuxClass Defines an auxiliary class to represent
IDS host conditions.

ibm-policyActionAuxClass Defines an auxiliary class for generic
policy actions.

ibm-serviceCategoriesAuxClass Defines an auxiliary class to represent
a set of QoS attributes for a policy
action.

ibm-idsActionAuxClass Defines an auxiliary class to represent
generic IDS actions.

ibm-idsNotificationAuxClass Defines an auxiliary class to represent
notification options for IDS actions.

ibm-idsAttackActionsAuxClass Defines an auxiliary class to represent
attack attributes for IDS actions.

ibm-idsTrafficRegulationActionAuxClass Defines an auxiliary class to represent
generic Traffic Regulation attributes for
IDS actions.

ibm-idsTRtcpActionAuxClass Defines an auxiliary class to represent
Traffic Regulation TCP attributes for
IDS actions.

ibm-idsTRudpActionAuxClass Defines an auxiliary class to represent
Traffic Regulation UDP attributes for
IDS actions.

ibm-idsScanActionAuxClass Defines an auxiliary class to represent
global scan attributes for IDS actions.

ibm-idsScanSensitivityActionAuxClass Defines an auxiliary class to represent
scan sensitivity attributes for IDS
actions.

ibm-idsScanExclusionActionAuxClass Defines an auxiliary class to define
scan exclusion lists for IDS actions.

ibm-policyRepository Defines a repository for generic
reusable policy objects.

552 z/OS V1R4.0 CS: IP Configuration Guide

Object class name Purpose of object

ibm-policySubtreesPtrAuxClass Defines an auxiliary class to represent
pointers to subtrees in the LDAP
directory tree to be retrieved by the
Policy Agent. This allows entire
subtrees to be retrieved at once,
improving retrieval performance in
some situations.

ibm-policyGroupContainmentAuxClass Defines an auxiliary class for binding a
policy group object to another policy
group.

ibm-policyRuleContainmentAuxClass Defines an auxiliary class for binding a
policy rule object to another policy
group.

ibm-policyGroupLoadDistributionAuxClass Defines an auxiliary class to represent
load distribution attributes for policy
groups. The load distribution attributes
are applied to all policy rules that are
pointed to by groups to which this
auxiliary class has been attached.

SetSubnetPrioTosMask Defines a mapping of outbound IP
packet Type of Service (ToS) byte
values to QDIO device priorities and
Virtual LAN (VLAN) user priorities.

Policy objects are used to accomplish the following objectives:

v Group related objects together. Policy groups can contain related policy rules,
and can also contain other policy groups. This allows objects to be grouped in
various administrative ways. If the resulting objects will be retrieved by any Policy
Agent prior to z/OS CS V1R2, then the object should not include the values
ibm-policyGroupContainmentAuxClass, ibm-policyRuleContainmentAuxClass or
ibm-policyGroupLoadDistributionAuxClass for the objectClass attribute.

v Specify conditions for a policy rule. The conditions are used to filter traffic
packets, and can specify attributes such as source and destination port,
application name, protocol, and so on. Policy rules can be either simple or
complex, depending on the nature of the specified conditions. When a single
condition is specified, the rule is a simple rule. This single condition can be
composed of any of the condition attributes, but only one instance of each. For
example, only a single destination port range can be specified in a simple rule.
Complex rules specify more than one condition. The specified conditions are
organized into one or more levels, and each level is composed of one or more
conditions. Each condition can be composed of one instance of any of the
condition attributes. The conditions can thus be thought of as a two-dimensional
array. Any individual condition can be negated. Two types of processing are
applied to the conditions, depending on the specified condition list type:

– Disjunctive Normal Form (DNF). DNF conditions are logically ANDed at each
level, and ORed between levels.

– Conjunctive Normal Form (CNF). CNF conditions are logically ORed at each
level, and ANDed between levels.

For example, suppose five conditions are specified, two at one level and three at
another:
Level 1: C1, NOT C2
Level 2: C3, C4, C5

Chapter 11. Policy-Based Networking 553

If DNF is specified, the conditions are evaluated as:
(C1 AND NOT C2) OR (C3 AND C4 AND C5)

CNF evaluation of the same conditions is:
(C1 OR NOT C2) AND (C3 OR C4 OR C5)

This allows a wide variety of conditional logic to be defined for policy rules.

v Specify time periods during which policy rules are active. Active policy rules are
those that are installed in a TCP/IP stack by the Policy Agent. A wide variety of
attributes are available to specify time periods, and up to 25 time periods can be
specified for any policy rule. The policy rule is active if any of the specified time
intervals include the current time.

v Specify actions to take on behalf of traffic that maps to active policy rules, based
on the evaluation of its conditions. QoS Actions contain a scope attribute that
indicates the type of policy being defined, namely Differentiated Services, RSVP,
or both Differentiated Services and RSVP. Up to four actions can be specified for
each rule, but only one action per scope can be active at a time. IDS actions
contain an action type that indicates the type of policy being defined, namely
Attack, TR, Scan Global, or Scan Event. Only one IDS action can be specified
for each rule. QoS and IDS actions (or conditions) can’t be mixed within a single
policy rule.

Considerations for defining LDAP objects
LDAP objects can refer to other objects, using the DN of the referenced object. For
example, a policy rule can be separated from its conditions and time periods, with
those objects being referenced by the rule object.

Each LDAP object is composed of a number of attributes. Some of the attributes
are generic LDAP attributes that apply to all LDAP objects. Other attributes are
used only for Version 1 policy definitions. All other Version 2 and later policy
attributes must begin with a unique prefix:
ibm-

When defining complex policy rules (those with more than one condition or action),
two mutually exclusive methods can be used to associate the conditions or actions
with the rule:

v The ibm-policyConditionListDN and ibm-policyActionListDN attributes can be
omitted from the rule. In this case, the condition and action association objects
MUST be created as subordinate objects to the policy rule, in other words, under
the rule in the directory subtree. This is known as Directory Information Tree
(DIT)-containment.

v The ibm-policyConditionListDN and ibm-policyActionListDN attributes can be
specified in the rule. In this case, the condition and action association objects
SHOULD be created as subordinate objects to the policy rule, in other words,
under the rule in the directory subtree. However, this is not a requirement, only a
recommendation. The objects can actually exist anywhere in the DIT.

Policy Agent retrieval of LDAP objects
The design of the LDAP object tree should be carefully thought out. The Policy
Agent uses a variety of mechanisms to search for and retrieve objects from an
LDAP server:

v An initial search is done for a subtree of objects based on the SearchBaseDN
parameter on the ReadFromDirectory statement.

554 z/OS V1R4.0 CS: IP Configuration Guide

v If any objects retrieved by this initial search contain subtree pointer references
(using the ibm-policySubtreesAuxContainedSet attribute) then a search is done
for all such subtrees. This is a recursive search: additional objects retrieved
might also contain subtree pointer references.

v The above searches use a filter to only retrieve certain object classes. For LDAP
protocol version 3, the default is to only scan for the ibm-policy object class. This
is an abstract object class from which all other policy object classes are derived.
Most LDAPv3 servers implement abstract and auxiliary classes such that this
search will properly retrieve policy, and only policy, object classes. However,
some LDAPv3 servers do not honor abstract/auxiliary object classes as a search
filter. For these servers, specify LDAP_AbstractPolicy NO on the
ReadFromDirectory statement. This causes the searches to use a filter that
retrieves ALL object classes. This same filter to retrieve all object classes is used
for LDAPv2 servers.

v All of the above searches may be scoped, or filtered, using keywords specified
on the ReadFromDirectory statement parameters SearchPolicyKeyword,
SearchPolicyGroupKeyword, or SearchPolicyRuleKeyword. The LDAP server only
returns objects with any matching keywords.

v Some objects retrieved using the above searches may contain DN pointer
references to additional objects. These objects are individually retrieved. If the
object to be retrieved is a policy rule, then a subtree search is performed, using
the keywords specified on the ReadFromDirectory statement. All other objects
are retrieved as single objects, using the DN pointers (no keywords are used on
the search).

v All policy rule objects retrieved using the above searches are further filtered
using the PolicyRole parameter on the ReadFromDirectory statement. Any rules
that do not match policy roles specified on the ReadFromDirectory statement are
discarded.

Therefore, it is possible to design an LDAP tree such that a minimal set of objects
is initially retrieved, followed by many additional individual LDAP retrievals. If the
total set of objects is large, there is a performance impact to retrieving objects in
this manner. If possible, try to design the tree and the ReadFromDirectory
parameters to retrieve the largest set of objects initially, to achieve the best
performance, or to use subtree pointer references to retrieve larger sets of objects
in one operation.

Installing the schema definition on the LDAP server
The files that define the schema supported by the Policy Agent are shipped as a set
of sample files. You need to modify the configuration of the LDAP server to include
these schema definition files. How this is accomplished depends on the protocol
supported by the server.

For LDAP protocol version 2, include the pagent_oc.conf and pagent_at.conf files
(located in the /usr/lpp/tcpip/samples directory) in the server’s configuration file. For
example:
include /usr/lpp/tcpip/samples/pagent_at.conf
include /usr/lpp/tcpip/samples/pagent_oc.conf

For LDAP protocol version 3, the schema definition is shipped in ldif format and
installed on the LDAP server as a modification to the generic schema entry, known
as a subschema. The existing schema entry must be modified to include the
supported schema as a subschema, by using the ldapmodify command. There are

Chapter 11. Policy-Based Networking 555

several schema definition files that must be installed in the proper order, as
specified in the list below. All of these files are located in the /usr/lpp/tcpip/samples
directory):

v pagent_schema.ldif

v pagent_v3schema.ldif

v pagent_schema_updates.ldif

v pagent_idsschema.ldif

Note: This process is supported for the z/OS LDAP server.
Which files need to be installed depends on the current schema definition being
used by the LDAP server. For example, the server may already have the
pagent_schema.ldif file installed from a previous release. In this case you only need
to install the subsequent files in the list above. To install the complete set of
schema definitions, use a set of commands like the following example:
ldapmodify -h <server address> -p <server port> -D <administrator userid>
-w <password> -f /usr/lpp/tcpip/samples/pagent_schema.ldif

ldapmodify -h <server address> -p <server port> -D <administrator userid>
-w <password> -f /usr/lpp/tcpip/samples/pagent_v3schema.ldif

ldapmodify -h <server address> -p <server port> -D <administrator userid>
-w <password> -f /usr/lpp/tcpip/samples/pagent_schema_updates.ldif

ldapmodify -h <server address> -p <server port> -D <administrator userid>
-w <password> -f /usr/lpp/tcpip/samples/pagent_idsschema.ldif

Refer to the TDBM backend information in z/OS Security Server LDAP Server
Administration and Use for more details.

Using the sample LDAP objects
There are 5 sample files that provide examples of policy definitions in LDAP:

v pagent.ldif

v pagent_starter_IDS.ldif

v pagent_starter_QOS.ldif

v pagent_advanced_IDS.ldif

v pagent_advanced_QOS.ldif

For brief descriptions of these files, see “Policy sample files” on page 541. You can
either use some or all of these predefined policies in the starter and advanced sets,
or modify them as needed.

The recommended way to create customized policies is to copy the sample policies
you want to change to the custom portion of the pagent.ldif file (under the
appropriate cn=custom root, QoS or IDS), modify them as needed, and then point
to the custom set as the search base on the ReadFromDirectory statement.

For example, the pagent.ldif file has the following hierarchical structure [this shows
the relevant parts of the Distingushed Name (DN) for each object]:
o=IBM, c=US (root object)

cn=repository (root of all reusable policy conditions and actions)
ou=policy (root of all policy groups and rules)

cn=groups (root of sample groups)
cn=starter (root of simple starter set of policies)

cn=IDS (IDS starter set - actually defined in file pagent_starter_IDS.ldif)
cn=QoS (QOS starter set - actually defined in file pagent_starter_QOS.ldif)

556 z/OS V1R4.0 CS: IP Configuration Guide

|

|

|

|

|

|

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

cn=advanced (root of advanced set of policies)
cn=IDS (IDS advanced set - actually defined in file pagent_advanced_IDS.ldif)
cn=QoS (QOS advanced set - actually defined in file pagent_advanced_QOS.ldif)

cn=custom (root of customer-defined set of policies)
cn=IDS (root of customer-defined IDS policies (empty))
cn=QoS (root of customer-defined QOS policies (empty))

To obtain only the customized policies, specify the top custom policy group object
as the search base on the ReadFromDirectory statement as follows:
ReadFromDirectory {
...
SearchPolicyBaseDN dn:cn=custom, ou=policy, o=IBM, c=US
...
}

Note: If your LDAP server has a root structure other than ″o=IBM, c=US″, be sure
to change the root structure in all the files you want to use by replacing
every instance of ″o=IBM, c=US″ with the appropriate root used on your
LDAP server.

Policy Agent common functions

Configuring the Policy Agent

Step 1: General configuration
The Policy Agent is responsible for reading policies from a configuration file and/or
an LDAP server. Before defining policies, some basic operational characteristics of
the Policy Agent need to be configured. Follow these steps to configure these
items.

1. Define the TcpImage statements in the main Policy Agent configuration file.

The Policy Agent can be configured to install policies on one or more TCP/IP
stacks, or images. Each TCP/IP stack is configured using a TcpImage statement
in the main configuration file. A secondary configuration file can be defined for
any given stack, a set of stacks can share configuration information in the main
configuration file, or a combination of these techniques can be used.

To install different sets of policies to different stacks, configure each image with
a different secondary configuration file. In this case, each image can be
configured with a different policy refresh interval if desired. The refresh interval
used for the main configuration file will be the smallest of the values specified
for the different stacks.

Note: When the main configuration file is an MVS data set, it is reread at each
refresh interval (which is the smallest of the individual stack refresh
intervals), regardless of whether it has actually been changed or not.
Because Policy Agent restarts all stack-related processing when the main
configuration file is reread, this effectively makes the refresh interval for
all stacks the same as this smallest configured interval.

To install a common set of policies to a set of stacks, do not specify secondary
configuration files for each image. In this case, there is only one configuration
file (the main one) and the policy information contained in it is installed to all of
the configured stacks. Different refresh intervals can also be configured for each
image, but would probably be less useful in this case.

Chapter 11. Policy-Based Networking 557

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

In either case, it is possible that TCP/IP stacks configured to the Policy Agent
are not started or even defined. The Policy Agent will fail when trying to connect
to those stacks and log appropriate error messages.

The Policy Agent does not end when any (or all) stacks end. When the stacks
are restarted, active policies are automatically reinstalled.

When the Policy Agent is shutdown normally (KILL or STOP), then if the
TcpImage statement option PURGE was coded all policies will be purged from
this stack.

The TcpImage statement specifies a TCP/IP image and its associated
configuration file to be installed to that image. The following example installs the
policy control file /tmp/TCPCS.policy to the TCPCS TCP/IP image, after flushing
the existing policy control data:
TcpImage TCPCS /tmp/TCPCS.policy FLUSH

2. Define the appropriate logging level.

The LogLevel statement is used to define the amount of information to be
logged by the Policy Agent. The default is to log only event, error, console, and
warning messages. This might be appropriate for a stable policy configuration,
but more information might be required to understand policy processing or
debug problems when first setting up policies or when making significant
changes. Specify the LogLevel statement with the appropriate logging level in
the main configuration file.

Note: The maximum logging level (511) can produce a significant amount of
output, especially with large LDAP configurations. This is not a concern if
an HFS log file is used, because Policy Agent uses a set of log files with
a finite size in a round-robin configuration (the number and size of these
files is controllable with the PAGENT_LOG_FILE_CONTROL
environment variable). But when using the syslog daemon as the log file,
the amount of log output produced should be taken into consideration.

3. Define security product authorization for the Policy Agent.

Because the Policy Agent can affect system operation significantly, security
product authority (for example, RACF) is required to start the Policy Agent.
Refer to the EZARACF sample in SEZAINST for sample commands needed to
create the profile name and permit users to it.

4. If Policy Agent’s clients (pasearch) are NOT defined as a superuser, then
security product authority in the SERVAUTH CLASS for that client MUST be
defined to retrieve policies. These profiles can be defined by TCP/IP stack
(TcpImage) and policy type (ptype = QoS or IDS). Wildcarding of profile names
are allowed.
EZB.PAGENT.<sysname>.<TcpImage>.<ptype>

where:

v <sysname> - System name defined in sysplex

v <TcpImage> - Tcp name for policy information that is being requested

v ptype - Policy Type that is being requested

– QOS - Policy QoS

– IDS - Policy IDS

Note: Wildcarding is allowed on segments of the profile name.

558 z/OS V1R4.0 CS: IP Configuration Guide

Policy Agent will check all client’s requests to verify SERVAUTH class is active
and the profile exists for the TcpImages and policy types in the request. If a
client’s request is for ALL TcpImages and policy types defined then Policy Agent
will only return information for any information for which permission is granted.
For example, if the request is for ALL policy types, and both QoS and IDS policy
types are defined, but the user is only granted permission for the QoS policy
types, then only QoS policy information will be returned.

If SERVAUTH class is absent (not RACLIST) or profiles are absent for client’s
request (TcpImage, policy type) then permission is denied and data is NOT
returned.

If SERVAUTH class is active and profiles are present for client’s request
(TcpImage and policy type) and MVS user is defined for all profiles then
permission is granted and data is returned.

If SERVAUTH class is active and profiles are present for client’s request
(TcpImage and policy type) and MVS user (that is, Policy Agent client) is not
defined for all profiles then permission is refused and data is not returned.

Refer to the EZARACF sample in SEZAINST for sample commands needed to
create the profile name and permit users to it.

Step 2: Configure QoS policies in Policy Agent configuration
files
QoS policies may be defined in any referenced Policy Agent configuration file. See
“Defining policies in a Policy Agent configuration file” on page 570 for more
information.

Note: For compatibility, QoS Scope TR policies may also be defined in a Policy
Agent configuration file. However, they are transformed internally by Policy
Agent into IDS TR policies.

Step 3: Configure Policy Agent to use LDAP server via the
ReadFromDirectory statement
The ReadFromDirectory statement in the Policy Agent configuration file initializes
the Policy Agent as an LDAP client. The policies are downloaded from the LDAP
server, along with the policies specified in the Policy Agent configuration file.

When configuring the ReadFromDirectory statement, first specify the name (or IP
address) and port of the primary server and the same for the backup server (if one
is used).

Note: When using the z/OS LDAP server, the server listens on a separate port for
SSL connections. This means that you should specify the correct port
depending on whether or not SSL is used.

Next, configure other connection attributes. The Policy Agent (as an LDAP client)
must log in to the LDAP server. The userid and password for logging in must be
configured on the ReadFromDirectory statement.The userid is also known as
Distinguished Name for userid, and it is in the form of an LDAP DN. If the userid
and password are not specified, the Policy Agent uses anonymous login to connect
to the server.

Chapter 11. Policy-Based Networking 559

The LDAP server might be running either Version 2 or Version 3 of the LDAP
protocol, which must also be configured on the ReadFromDirectory statement. This
statement also configures the version of the schema to be retrieved from the server.

Finally, configure attributes to indicate how to search the LDAP server for policies.
Policy roles allow one or more roles, or role-combinations, to be assigned to policy
rules using the ibm-policyRoles attribute. These roles represent the intended usage
of the policy rules. For example, a role of ″East Coast WAN″ might be used to
represent policies for the wide area network on the US East coast for an enterprise.
Policy role values are not standardized; they are simply values used to assign roles
to policies. When an entity that requires policies (such as Policy Agent) requests
policies from an LDAP server, it can filter out policy rules that do not match the
roles that it plays. Although similar to policy keywords, which also allow search
scoping, policy roles are a bit more sophisticated. Specifically, role-combinations are
allowed, which take the form of a specification like ″roleA && roleB″, meaning both
roleA AND roleB. Since the ibm-policyRoles attribute is multi-valued, a form of
CNF/DNF logic can be used for policy roles: the roles in a role-combination are
ANDed, and the roles or role-combinations specified on different values of this
attribute are ORed.

For the Version 1 schema, a base DN to start the search, and a selector tag value
are configured. The selector tag is used to match against the SelectorTag attribute
in the policy objects. For Version 1, the Policy Agent also automatically includes the
stack name when searching for policies; this value is matched against the
TcpImageName attribute in the policy objects. For the Version 2 schema, a base
DN to start searching is also configured. This DN can specify a single LDAP object,
a policy group, or an LDAP subtree containing many objects. For filtering the
search, three keywords can be configured:

v SearchPolicyKeyword matches against the ibm-policyKeywords attribute in any
policy object.

v SearchPolicyGroupKeyword matches against the ibm-policyGroupKeywords
attribute in policy group objects.

v SearchPolicyRuleKeyword matches against the ibm-policyRuleKeywords attribute
in policy rule objects.

The following example does the following:

v Connects to the LDAP server at IP address 9.100.1.1, using the default port 389.

v Specifies a userid and password to log in to the server.

v Specifies LDAP protocol version 3.

v Specifies schema version 3.

v Starts searching at the DN ou=policy, o=IBM, c=US object/subtree.

v Only selects policy objects that contain either the ″POLICY″ or ″EASTERN″
keywords.

ReadFromDirectory
{
LDAP_Server 9.100.1.1
LDAP_DistinguishedName cn=root, o=IBM, c=US
LDAP_Password 4qr56jb
LDAP_ProtocolVersion 3
LDAP_SchemaVersion 3
SearchPolicyBaseDN ou=policy, o=IBM, c=US
SearchPolicyKeyword POLICY
SearchPolicyKeyword EASTERN
}

560 z/OS V1R4.0 CS: IP Configuration Guide

Step 4: Optionally add SSL to the Policy Agent connection to
LDAP
The Secure Sockets Layer (SSL) protocol begins with a handshake. During the
handshake, the client authenticates the server, the server optionally authenticates
the client, and the client and server agree on how to encrypt and decrypt
information.

Server Authentication: When using SSL to secure communications, the SSL
authentication mechanism known as server authentication is used. With server
authentication, the LDAP server must have a digital certificate which authenticates
the server to the Policy Agent client. The server supplies the client with the
certificate during the initial SSL handshake. If the client validates the server’s
certificate, then a secure communication channel is established between the LDAP
server and the Policy Agent client.

For server authentication to work, the LDAP server must have a private key and
associated server certificate in the server keyring file.

To conduct commercial business on the Internet, you might use a widely known
Certificate Authority (CA), such as VeriSign, to get a high assurance certificate. For
a relatively small private network within your own enterprise or group, you can issue
your own certificates, called self-signed certificates, for your own use.

Client Authentication: When using SSL Client Authentication, the client passes a
digital certificate to the server as part of the SSL handshake. To pass
authentication, the Certificate Authority (CA) that signed the client certificate must
be considered trusted by the server.

Self-signed Server Certificates: Normally, a server certificate should be obtained
from a known CA. However, for testing, an installation might use a self-signed
server certificate. Because the clients will not know about the issuer of the
self-signed server certificate, in most cases it is necessary to add the server’s
self-signed certificate to the client’s signer certificates.

The gskkyman utility is used to create public/private key pairs and certificate
requests, receive certificate requests into a key ring, and manage keys in a keyring.
The gskkyman utility is documented in z/OS System Secure Sockets Layer
Programming. The gskkyman utility is shipped with z/OS in System SSL, which is
part of the cryptographic services base element of z/OS.

The Policy Agent connection to LDAP can be secured using SSL by tailoring the
following parameters on the ReadFromDirectory statement listed below. This allows
for protection of policy retrieval from an LDAP server.

v LDAP_SSLKeyringFile

v LDAP_SSLKeyringPassword

v LDAP_SSLName

For more detail about these parameters, refer to z/OS Communications Server: IP
Configuration Reference. Additional information about the concepts of cryptography
and SSL can be found at the following Web sites:

v http://home.netscape.com/eng/ssl3/

v http://www.verisign.com/repository/crptintr.html

Chapter 11. Policy-Based Networking 561

|
|
|
|
|

http://home.netscape.com/eng/ssl3/
http://www.verisign.com/repository/crptintr.html

Starting and stopping the Policy Agent
You can start the Policy Agent from the z/OS shell or as a started task. If you use
the shell, the Policy Agent should be started in a background shell session, by
specifying a trailing & on the command line.

Although the /etc/pagent.conf is the default configuration file, a specific search order
is used when starting the Policy Agent. The following order is used:

1. File or data set specified with the -c startup option

2. File or data set specified with the PAGENT_CONFIG_FILE environment variable

3. /etc/pagent.conf

4. hlq.PAGENT.CONF

At initialization, the Policy Agent creates an HFS file called
/tmp/tcpname.Pagent.tmp. This occurs for every TCP/IP stack defined on a
TcpImage statement.

In this HFS file, tcpname is the name of a TCP/IP stack from a TcpImage
statement. During TCP/IP stack initialization, the TCP/IP stack will attempt to modify
a file by this name to notify the Policy Agent that the stack has been reactivated.
This causes the Policy Agent to automatically attempt to reinstall the existing
policies to this stack.

To ensure that only one Policy Agent is started, the Policy Agent uses the following
enqueue:

v Enqueue name is TCP_TCPI

v Resource name is TCPIP.PAGENT

When starting from the shell, note that the Policy Agent executable resides in
/usr/lpp/tcpip/sbin. There is also a link from /usr/sbin. Make sure your PATH
statement contains either /usr/sbin or /usr/lpp/tcpip/sbin.

For example, the following command starts Policy Agent with these characteristics:
pagent -c /u/user10/pldap.conf -l SYSLOGD &

v Policy Agent uses the configuration file /u/user10/pldap.conf

v Policy Agent logs output to the syslog daemon (SYSLOGD). Note that
″SYSLOGD″ must be specified in uppercase to obtain this behavior

Use the S PAGENT command on an MVS console or SDSF to start the Policy
Agent as a started task. A sample procedure is shipped in member EZAPAGSP in
SEZAINST.

You can stop the Policy Agent by:

v Using the operator command STOP

v Using the kill command in the z/OS shell

v Using the operator command CANCEL. Use the CANCEL command only as a
last resort if the STOP or kill commands do not completely stop the Policy Agent.

Note: When the Policy Agent is shutdown normally (KILL or STOP), then if the
TcpImage statement option PURGE was coded all policies will be purged
from this stack.

The following kill command with the TERM signal will enable Policy Agent to clean
up resources properly before terminating itself:

562 z/OS V1R4.0 CS: IP Configuration Guide

kill -s TERM pid

where pid is the Policy Agent process ID.

The Policy Agent process ID can be obtained using the following z/OS UNIX
command:
ps -A

It can also be obtained from the /tmp/pagent.pid file. The /tmp/pagent.pid file is a
temporary file created by the Policy Agent. It contains the process ID of the current
(or last) invocation of the Policy Agent.

Refreshing policies
The MODIFY command may be used to interactively cause the Policy Agent to
reread the configuration information and, if requested, download objects from the
LDAP server. In addition to this, the Policy Agent will also accept SIGHUP signals to
perform the refresh function. Refer to the z/OS Communications Server: IP System
Administrator’s Commands for more detailed information on the MODIFY command.

Verification
To verify that policies are correctly defined and functioning properly, consider the
following points:

v Are the policies defined correctly to the LDAP server?

v Are the policies defined correctly to the Policy Agent?

The following sections provide more details about these considerations.

Are the policies defined correctly to the LDAP server?
Refer to the documentation appropriate for the LDAP server which you are using.
LDAP servers usually allow you to install multiple files (LDIF), each containing
different objects in the LDAP hierarchy. Structural objects higher in the directory tree
must be installed before objects that are contained below them. Check for any error
messages as each LDIF is installed. Some LDAP servers interpret two consecutive
blank lines as end of file. Ensure that all of the objects in the LDIF have been
installed by the LDAP server.

Are the policies defined correctly to the Policy Agent?
When starting the Policy Agent, first check for any error messages issued to the
console. Message EZZ8434I indicates something is wrong with the Policy Agent
environment. Message EZZ8438I indicates a syntax or semantic error in the policy
definitions. Messages EZZ8439I and EZZ8440I indicate a problem with the LDAP
server configuration or the server itself. Refer to z/OS Communications Server: IP
Diagnosis for more information on these types of problems. Use the UNIX pasearch
command to display policy definitions. The output from this command indicates
whether or not policy rules are active, and shows the parsed results of the policy
definition attributes. One thing to note is that the Policy Agent is designed to ignore
unknown attributes, so misspelled attributes will result in default values being used.
The pasearch output can be used to verify that policies are correctly defined.

Chapter 11. Policy-Based Networking 563

564 z/OS V1R4.0 CS: IP Configuration Guide

Chapter 12. Quality of Service (QoS)

Applications and users of TCP/IP networks have different requirements for the
service they receive from those networks. A network that treats all traffic as best
effort does not meet the needs of such users. Service differentiation is a
mechanism to provide different service levels to different traffic types based on their
requirements and importance in an enterprise network. For example, it might be
critical to provide Enterprise Resource Planning (ERP) traffic better service during
peak hours than that of FTP or web traffic. The overall service provided to
applications or users, in terms of elements such as throughput and delay, is termed
Quality of Service (QoS). Network service providers that need to provide different
QoS levels express their business goals in Service Level Agreements (SLAs). There
are two types of service in TCP/IP networks that relate to QoS. The first is
Differentiated Services, which provides QoS to broad classes of traffic or users, for
example all outbound web traffic accessed by a particular subnet. The second is
Integrated Services, which provides end-to-end QoS to an application, by reserving
resources along a data path. For z/OS CS, Integrated Services is largely provided
by the RSVP Agent, which implements the Resource ReserVation Protocol.

Workload distribution also relates to QoS, in terms of the throughput and delay
characteristics of a given server in a sysplex. The ability to dynamically monitor
server performance and affect sysplex workload distribution is an important part of
the overall QoS of a sysplex. Also important is the ability to limit the set of target
systems considered for sysplex routing based on network selection criteria, such as
source subnet.

Differentiated Services (DS) policies
Policies for Differentiated Services are used to select and control DS traffic for
selected IP servers, such as FTP server traffic. The policy administrator selects the
IP traffic to be controlled by defining policy rules. These policy rules include several
attributes that can be specified to identify the traffic to be managed. These
attributes fall into 2 categories, general attributes and application specified
attributes. General attributes can be used to identify the IP traffic of most IP
applications using a variety of information, such as:

v The source and/or destination IP addresses or subnets

v The source and destination ports used by the application

v The IP protocol the application is using (TCP or UDP)

v The network interface selected for the outgoing traffic

v The jobname of the application

Application specified attributes allow policy administrators to identify outgoing
application IP traffic based on information that is provided and defined by an
application. For example, the IBM HTTP Server provides the TCP/IP stack with the
URI (Universal Resource Identifier) associated with any outgoing data being sent to
a client. This allows the policy administrator to define rules that identify traffic
related to specific URIs and policy actions with unique DS controls for this traffic.
For example, an installation can define a policy that specifies preferential treatment
of outgoing traffic related to the servicing of any URIs beginning with
/product/placeorder. For more information on defining policy rules for the IBM HTTP
Server based on URIs refer to z/OS HTTP Server Planning, Installing, and Using
and the z/OS Communications Server: IP Configuration Reference.

© Copyright IBM Corp. 2000, 2002 565

Any IP application using the TCP protocol can provide application specified
attributes using extensions to the sendmsg() socket API. For more information, refer
to the appendix in the z/OS Communications Server: IP Programmer’s Reference.
Application provided attributes can be specified in 2 forms:

v Application defined data: This allows applications to provide free-form text data
that can be used to classify the application’s outgoing traffic in terms that should
be familiar to the application’s administrator (for example, URIs are provided by
the IBM HTTP server).

v Application specified priority: This allows applications to associate an application
priority on the outgoing IP traffic. This application priority in itself does not
automatically cause the application’s traffic to get preferential treatment. In order
to make use of these application specified priorities the policy administrator
needs to define policy rules that map these priorities to policy actions that will
govern the outgoing traffic of each priority level.

Applications can pass both application defined data and application specified
priorities to the TCP/IP stack. When both are specified, the administrator is free to
use either or both criteria in their service policy rules. However, it is strongly
recommended that any policy rules defined using the application specified attributes
should also include at least one general attribute that uniquely identifies the
application instance. For example, when defining rules for the HTTP server using
URIs, you can help further identify the application by specifying the source port for
the server or the HTTP Server’s jobname. This will help insure that unauthorized
applications cannot exploit policy actions intended for the HTTP Server.

Several aspects of connection and throughput control can be specified with DS
policies, including the following:

v TCP connection limits

v Maximum and minimum TCP connection rates, TCP maximum delay

v Committed access bandwidth (mean rate and peak rate) control/enforcement,
also known as token bucket traffic shaping

v Type of Service (ToS) byte (also known as DS field - 6–bit value) setting, and
mapping to zSeries Queued Direct I/O (QDIO) device priorities and VLAN user
priorities.

The above DS service attributes are enforced by the TCP/IP stack in which the DS
policies are installed. For additional information on the enforcement of these
attributes, refer to z/OS Communications Server: IP Configuration Reference.

Token bucket traffic shaping is defined using the following parameters:

v DiffServInProfileRate is the average or mean rate that is desired to be
transmitted over time. For example, 256 kilobits per second.

v DiffServInProfileTokenBucket is the burst size. This is how much data is allowed
to be sent from the application to TCP/IP and still be allowed to be transmitted at
the mean rate above. It is suggested, if the application is not policing itself, that
this burst size be at least one second’s worth of data. Otherwise, if the
application is sending large amounts of data at one time to TCP/IP, TCP/IP will
slow that application down via congestion windows, and the mean rate may not
be achieved.

v DiffServInProfilePeakRate is the highest rate that is allowed to be transmitted for
a shorter interval of time. For example, though a customer may only want on
average 256 Kb of data per second, they may allow a peak of 512 Kb of data for
1/4 second. The peak rate is used to control the spacing of outbound packets on
the transmission line. By having a smaller peak rate, there will be longer spacing

566 z/OS V1R4.0 CS: IP Configuration Guide

between packets, and thus less burstiness of traffic and increased efficiency.
Higher peak rates result in shorter spacing and increased burstiness, which can
result in lower link utilization. However, some applications may require it, such as
real time or video data.

v DiffServInProfileMaxPacketSize is the amount of data that will be policed at the
peak cell rate. For example, if the peak rate is 512 Kb per second, and the
maximum packet size is 120 Kb, TCP/IP will only allow about 10 packets of size
1492 bytes to be transmitted every .23 seconds. Again, if an application is
sending large amounts of data at one time to TCP/IP, TCP/IP will enforce the
peak rate, and anytime more than 10 packets are sent within .25 seconds,
TCP/IP will begin to slow this TCP connection. The peak rate can be achieved
over a longer period of time if the maximum packet size is entered in larger
multiples of packets. However, this will cause greater burstiness as described
above. For example, if the maximum packet size is entered as 240 Kb, TCP/IP
will allow 20 packets in a .23 second range before enforcing slowdown.

Note that the peak rate cannot be enforced without mean rate policing. However,
you can enforce mean rate without peak rate. Also, setting of these parameters
depends on the type of applications and the network that carries it.

Integrated Services (RSVP) policies
RSVP policies are used to set limits on certain parameters requested by RSVP
applications. These applications interact with the RSVP Agent to establish resource
reservations along a network path, using the RSVP API (RAPI). The reservation
requests are in the form of an entity known as a Traffic Specification, or Tspec,
which consists of the following values:

v Token bucket mean rate (r)

v Token bucket depth (b)

v Peak rate (p)

v Minimum policed unit (m)

v Maximum packet size (M)

RSVP policies can be used to limit the values requested for (r) and (b), as well as
limiting the total number of RSVP reserved flows. The RSVP service attributes are
enforced by the RSVP agent which gets RSVP policies from the Policy Agent. For
additional information on the enforcement, refer to z/OS Communications Server: IP
Configuration Reference or RFC 1363.

Sysplex Distributor (SD) policies
Sysplex Distributor policies are used to specify a set of SD target nodes for a given
set of traffic. For example, all traffic destined to a given port or application from a
specified subnet can be assigned one group of SD target nodes, while traffic for the
same port or application from another subnet can be assigned to a different group
of target stacks. These policies be can used in conjunction with other Sysplex
Distributor controls to assist in load balancing. For more information, see “Policy
interactions” on page 262.

QoS specific Policy Agent functions
In addition to supporting the various types of policies, the Policy Agent performs
functions related to the Sysplex Distributor. The Policy Agent can be configured to
collect network QoS performance data relevant to SD on behalf of policies defined
for a target port or application, and assign a weight fraction to such policy traffic.

Chapter 12. Quality of Service (QoS) 567

This weight is then used by SD (in conjunction with weights assigned by the
Workload Manager) to assist in load balancing decisions. This function is performed
by the Policy Agent on SD target nodes within the sysplex.

The Policy Agent also supports load distribution by service level. Performance data
is kept for each Policy Action (service level) that a target’s DVIPA port or application
supports. A Policy Action weight fraction is generated. This weight, if available, is
then used instead of the default (non-service level) weight fraction in conjunction
with the Workload Manager weight to assist in load distribution decisions for traffic
assigned to this service level. If this Policy Action weight fraction is unavailable,
then the Sysplex Distributor will continue to use the default (non-service level)
weight fraction.

Another function supported by the Policy Agent is to map Type of Service (ToS)
byte values to outbound interface priority values for outbound traffic. The ToS byte
is also referred to as the Differentiated Services (DS) byte as an alternative
definition (refer to RFC 2474). Note that outbound interface priority values are only
meaningful for QDIO interfaces. A set of mappings can be defined to cover various
ToS byte values and map them to an appropriate interface priority. All outbound
packets over the associated interfaces with a given ToS byte value will then be
assigned the corresponding priority value. ToS byte values can also be mapped to
Virtual LAN (VLAN) user priorities for propagation over LANs directly connected
through OSA-Express.

Sysplex distributor policy performance monitoring configuration
Before activating the sysplex distributor policy performance monitoring function,
refer to “Policy interactions” on page 262 for information on workload balancing and
policy interactions with sysplex distributor.

The following example illustrates how to activate the policy performance monitoring
function for Sysplex Distributor.

Note: This function is activated on SD target stacks and is used to monitor the
performance of outbound traffic being serviced by the target stacks. The goal
is to detect TCP traffic that exceeds defined thresholds for dropped packets
and/or timeouts, and derive a QoS weight fraction for the target stack. This
weight fraction is then used to reduce the WLM weight assigned to the target
stacks, so that the SD distributing stack can take QoS performance into
account.

The following statements apply to the example in this section:

v The policy performance monitoring sampling interval is 60 seconds.

v Policy Agent assigns a loss ratio weight fraction of 25% when the TCP loss ratio
(dropped packets to total packets) starts to exceed 2%.

v This weight fraction is increased to 50% when the loss ratio starts to exceed 4%,
continuing in this manner up to the maximum loss ratio weight fraction of 95%.

v In a similar manner, a TCP timeout weight fraction of 50% is assigned when the
timeout ratio starts to exceed 5%, increasing up to a maximum timeout weight
fraction of 100%.

v The individual weight fractions are added together to form a single QoS weight
fraction for the target stack, up to a maximum weight fraction of 100%.

v The QoS weight fraction is used at the SD distributing stack to reduce the WLM
weight. For example, if the WLM weight is 40, a weight fraction of 50% results in
the weight being reduced to 20.

568 z/OS V1R4.0 CS: IP Configuration Guide

v The traffic to be monitored must be represented by at least one Differentiated
Services policy defined for the target application (in this example a policy is
defined for Telnet).

v An additional QoS service level fraction is calculated for a target’s DVIPA/Port if
there are any active connections to the target using that service level.

The fraction is calculated using the PolicyPerfMonitorForSDR parms and is further
modified after taking into account the following:

v The number of active connections to this target DVIPA/Port will be compared with
the maximum connections allowed for this Policy action.

– When the number of active connections reaches 70% of maximum
connections, then the QoS Policy action fraction will be set to MAX (50%,
current calculated value).

– When the number of active connections reaches 85% of maximum
connections, then the QoS Policy action fraction will be set to MAX (85%,
current calculated value).

– When the number of active connections reaches 95% of maximum
connections, then the QoS Policy action fraction will be set to 100%.

v The throughput rate for this timer interval will be calculated and compared to the
DiffServ mean rate of this Policy action. If the throughput rate is greater than
85% of the DiffServ mean rate, then the average throughput rate per connection
will be calculated. If the throughput rate per connection is less than the DiffServ
min rate, then the minimum throughput requirement/connection is not being met;
the QoS Policy action fraction will be set to 100%.

v Only one policy rule and policy action are defined here.

As a result, only Telnet QoS performance information is monitored by the Policy
Agent for Sysplex Distributor to route incoming Telnet connections to this target
node relative to other target nodes which presumably can also accept Telnet
requests.
PolicyPerfMonitorForSDR enable
{

samplinginterval 60
LossRatioAndWeightFr 20 25
TimeoutRatioAndWeightFr 50 50
LossMaxWeightFr 95
TimeoutMaxWeightFr 100

}

policyAction telnetGold
{
MinRate 500 # Provide minimum rate of 500 Kbps.
OutgoingTOS 10100000 # the TOS value of outgoing telnet packets.
}

policyRule targetelnet
{
ProtocolNumberRange 6
SourcePortRange 23
policyactionreference telnetGold
}

Type of Service (ToS) mapping configuration
There are two mappings provided by the SetSubnetPrioTosMask statement:

v ToS to device priority

Quality of Service (QoS) support in z/OS CS allows the ToS byte, also known as
the Differentiated Services (DS) field, to be set for outbound IP packets according

Chapter 12. Quality of Service (QoS) 569

to defined policies managed by the z/OS CS UNIX Policy Agent. When IP
packets are sent out over QDIO devices, the ToS/DS value is mapped to a QDIO
priority value. Device priority values are 1-4, where 1 is the highest priority.

v ToS to VLAN user priority

ToS/DS values can be mapped to user priorities for directly attached LANs using
OSA-Express in QDIO mode. VLAN user priority values are 0-7, where 7 is the
highest priority. This allows assigned user priorities to be propagated through
such networks, resulting in no loss of priority information for data being served by
z/OS.

Refer to the z/OS Communications Server: IP Configuration Reference for more
detail on these statements.

The following example shows a mapping of various ToS byte values to associated
interface priority values. Note that the mapping can be applied to individual
interfaces or all interfaces:

v The first example defines a mapping for a specific interface. Note that the
specified interface must be a valid interface specified in the HOME list. The
second example shows a different mapping for all other interfaces.

v The subnet mask defines the bits in the ToS byte that are significant. These
examples use the leftmost 3 bits.

v The first example shows a set of mappings defining the complete set of ToS byte
values and the device and VLAN user priorities to be assigned for each value.

v The second example shows a set of mappings defining the complete set of ToS
byte values and the device priority to be assigned for each value.

SetSubnetPrioTosMask
{

SubnetAddr 10.10.1.5
SubnetTosMask 11100000
PriorityTosMapping 1 11100000 7
PriorityTosMapping 1 11000000 7
PriorityTosMapping 2 10100000 6
PriorityTosMapping 2 10000000 5
PriorityTosMapping 2 01100000 5
PriorityTosMapping 3 01000000 3
PriorityTosMapping 4 00100000 2
PriorityTosMapping 4 00000000 0

}
SetSubnetPrioTosMask
{

SubnetTosMask 11100000
PriorityTosMapping 1 11100000
PriorityTosMapping 1 11000000
PriorityTosMapping 1 10100000
PriorityTosMapping 1 10000000
PriorityTosMapping 2 01100000
PriorityTosMapping 2 01000000
PriorityTosMapping 3 00100000
PriorityTosMapping 4 00000000

}

Defining policies in a Policy Agent configuration file
Configure the following statements in the configuration file to define policies:

v PolicyAction

v PolicyRule

570 z/OS V1R4.0 CS: IP Configuration Guide

Refer to z/OS Communications Server: IP Configuration Reference for more
information about these statements.

The following sections contain examples of these tasks.

Note: These examples are for illustrative purposes only. The policies deliberately
use a wide variety of attributes, and they do not necessarily represent
real-world usage. Some examples show continued and indented statements
that were modified to fit on the page and therefore are not an actual
representation of proper syntax.

Differentiated Services policy examples
The goal of this Differentiated Services policy is to map a subset of the traffic
outbound from an FTP server.

This policy is identified as a Differentiated Services policy by the PolicyScope
DataTraffic attribute on the PolicyAction statement, as well as the use of several
DS-only attributes.

The following statements apply to the example in this section:

v The policy rule selects traffic originated by ports in the range 20-21 (FTP
outbound data connection uses port 20) from the source address 200.50.23.11.

v The policy rule is active on weekdays between 6 a.m. and 10 p.m. local time,
between the dates 7/1/2000 and 7/1/2005..

v The policy action specifies that the ToS byte be set to ’10000000’ for traffic that
conforms to this policy.

v The action establishes a token bucket traffic conditioner with a mean rate of 256
kilobits per second, a peak rate of 512 kilobits per second, and a burst size of 64
kilobytes. Any traffic that exceeds these specifications will be sent as best effort,
with an accompanying ToS byte of ’00000000’.

PolicyRule diffServ
{

ProtocolNumberRange 6
SourceAddressRange 200.50.23.11
SourcePortRange 20-21
PolicyActionReference tokenbucket
PolicyRulePriority 10
ConditionTimeRange 20000701000000:20050630235959
DayOfMonthMask 1111111111111111111111111111111
DayOfWeekMask 0111110
TimeOfDayRange 06:00-22:00

}
PolicyAction tokenbucket
{

PolicyScope DataTraffic
OutgoingTOS 10000000
DiffServInProfileRate 256 # 256 Kbps
DiffServInProfileTokenBucket 512 # 512 Kbits
DiffServInProfilePeakRate 512 # 512 Kbps
DiffServInProfileMaxPacketSize 120 # 120 Kbits
DiffServOutProfileTransmittedTOSByte 00000000
DiffServExcessTrafficTreatment BestEffort

}

The goal of this policy is to ensure that outgoing data that match the specified
attributes will be assigned a QoS service level defined in action ″interactive1″.

The following statements apply to the example in this section:

Chapter 12. Quality of Service (QoS) 571

v This rule will only match traffic on TCP connections (protocol 6) with a source
port of 80 (i.e. HTTP server) and application defined data beginning with the
string ″/catalog″.

v Since we are dealing with HTTP traffic, this rule is basically indicating that all
outgoing traffic associated with a URI that begins with ″/catalog″ should be
managed using the DS characteristics specified in the ″interactive1″ policy action.

PolicyRule web-catalog # web catalog traffic
{

protocolNumberRange 6
SourcePortRange 80
ApplicationData /catalog
policyActionReference interactive1

}

PolicyAction interactive1
{

policyScope DataTraffic
outgoingTOS 10000000

}

RSVP policy example
The goal of this RSVP policy is to establish limits on resource reservations
requested by RSVP applications using the RSVP API (RAPI) interface. The policy is
identified as an RSVP policy by the PolicyScope attribute on the PolicyAction
statement, as well as the use of RSVP-only attributes.

The following statements apply to the example in this section:

v The policy rule selects traffic from source ports in the range 8000 to 8001, with a
protocol ID of 6 (TCP).

v The DataTraffic policy action specifies that the ToS byte be set to 01100000 for
differentiated services traffic that conforms to this policy. Essentially, any traffic
sent by the target application without an RSVP reservation in place will use this
policy action. Once an RSVP reservation is in place, the RSVP action gets used.

v The RSVP policy action specifies that the ToS byte be set to 01100000 while an
RSVP reservation is in place. It also limits the type of RSVP service requested by
RSVP applications to Controlled Load. Applications requesting Guaranteed
service are downgraded to using Controlled Load service. In addition, the action
limits the mean rate and token bucket size to 50000 bytes per second and 6000
bytes, respectively. These values are requested by RSVP applications in the
traffic specification, or Tspec.

v The action also limits the number of active RSVP flows that map to this policy to
10.

PolicyRule intserv
{

SourcePortRange 8000 8001
ProtocolNumberRange 6
PolicyActionReference intserv1
PolicyActionReference intserv2

}
PolicyAction intserv1
{

PolicyScope DataTraffic
OutgoingTOS 01100000

}
PolicyAction intserv2
{

PolicyScope RSVP
OutgoingTOS 01100000

572 z/OS V1R4.0 CS: IP Configuration Guide

FlowServiceType ControlledLoad
MaxRatePerFlow 400 # 50000 bytes/second
MaxTokenBucketPerFlow 48 # 6000 bytes
MaxFlows 10

}

Sysplex Distributor policy example
The goal of this Sysplex Distributor policy is to limit the number of SD target stacks
for inbound Telnet traffic. The policies are identified as SD policies by the
ForLoadDistribution TRUE attribute on the PolicyRule statement. The corresponding
policy on the target is also shown.

The following statements apply to the example in this section:

v Separate policies are defined on the Sysplex Distributor distributing and target
stacks.

v The policy rules select incoming Telnet connection requests.

v The selected target stack will be based on WLM information and QoS information
if activated at the target stacks.

v The rule (disttelnet) is coded on the distributing stack to select inbound traffic
destined to the Telnet server.

v The rule (targtelnet) is coded on the target stack to select outbound data from
the Telnet server.

v If none of the specified target stacks is available to service incoming requests
(either the node is down or the Telnet server is not active), then Sysplex
Distributor will distribute the requests to any available target stack.

Note: If the OutboundInterface 0.0.0.0 statement were not present, and neither
of the defined target stacks were available, Sysplex Distributor would
reject the request.

policyAction telnetGold
{

MinRate 500 # Provide minimum rate of 500 Kbps.
OutgoingTOS 10100000 # the TOS value of outgoing telnet packets.
outboundinterface 129.100.11.1
outboundinterface 129.100.21.1
outboundinterface 129.200.12.1
outboundinterface 0.0.0.0

}

policyRule disttelnet
{

ProtocolNumberRange 6
DestinationPortRange 23
PolicyRulePriority 20
policyactionreference telnetGold
ForLoadDistribution TRUE

}

policyRule targtelnet
{

ProtocolNumberRange 6
SourcePortRange 23
PolicyRulePriority 20
policyactionreference telnetGold
ForLoadDistribution FALSE

}

Chapter 12. Quality of Service (QoS) 573

Notes:

1. The ApplicationName attribute is only valid for a target rule and should not be
coded on a distributor rule because the application name determined for
inbound traffic (which is always the case on a distributor) will always be the
stack’s TCP jobname.

2. If you are using Telnet with multiple stacks in conjunction with the Sysplex
Distributor, see Chapter 8, “Accessing remote hosts using Telnet” on page 305
for more information.

Defining policies using LDAP

Differentiated Services policy example
The goal of this Differentiated Services policy is to map a subset of the traffic
outbound from an FTP server.

This policy is identified as a Differentiated Services policy by the
ibm-PolicyScope:DataTraffic attribute in the ibm-PolicyActionInstance object.

The following statements apply to the example in this section:

v The policy rule selects traffic originated by ports in the range 20-21 (FTP
outbound data connection uses port 20) from the source address 200.50.23.11 or
200.50.33.14 or 202.9.55.1.

v The policy rule is active on weekdays between 6 a.m. and 10 p.m. local time,
between the dates 7/1/2000 and 7/1/2005.

v The policy action specifies that the ToS byte be set to ’10000000’ for traffic that
conforms to this policy.

v The action establishes a token bucket traffic conditioner with a mean rate of 256
kilobits per second, a peak rate of 512 kilobits per second, and a burst size of 64
kilobytes. Any traffic that exceeds these specifications will be sent as best effort,
with an accompanying ToS byte of ’00000000’.

dn:cn=diffserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:diffserv-rule
ibm-policyRuleName:diffserv-rule
ibm-policyRuleEnabled:1
ibm-policyRuleConditionListType:2
ibm-policyRuleConditionListDN:cn=condassoc1, cn=diffserv-rule, cn=QoS, cn=advanced,

ou=policy, o=IBM, c=US
ibm-policyRuleConditionListDN:cn=condassoc2, cn=diffserv-rule, cn=QoS, cn=advanced,

ou=policy, o=IBM, c=US
ibm-policyRuleConditionListDN:cn=condassoc3a, cn=diffserv-rule, cn=QoS, cn=advanced,

ou=policy, o=IBM, c=US
ibm-policyRuleConditionListDN:cn=condassoc3b, cn=diffserv-rule, cn=QoS, cn=advanced,

ou=policy, o=IBM, c=US
ibm-policyRuleConditionListDN:cn=condassoc3c, cn=diffserv-rule, cn=QoS, cn=advanced,

ou=policy, o=IBM, c=US
ibm-policyRuleActionListDN:cn=actassoc1, cn=diffserv-rule, cn=QoS, cn=advanced,

ou=policy, o=IBM, c=US
ibm-policyRuleValidityPeriodList:cn=period1, cn=time, cn=repository, o=IBM, c=US
ibm-policyRulePriority:10
ibm-policyRuleMandatory:TRUE
ibm-policyRuleSequencedActions:1
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:QOS Differentiated Services rule

dn:cn=condassoc1, cn=diffserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US

574 z/OS V1R4.0 CS: IP Configuration Guide

objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1
ibm-policyConditionName:diffserv-condition1
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=IpProtTCP, cn=QoScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents reusable CNF condition at level 1 - TCP

dn:cn=condassoc2, cn=diffserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc2
ibm-policyConditionName:diffserv-condition2
ibm-policyConditionGroupNumber:2
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=ftpdPorts, cn=QoScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents reusable CNF condition at level 2 - ftpd ports

dn:cn=condassoc3a, cn=diffserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc3a
ibm-policyConditionName:diffserv-condition3a
ibm-policyConditionGroupNumber:3
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=Host1, cn=QoScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents first reusable CNF condition at level 3 - host1

dn:cn=condassoc3b, cn=diffserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc3b
ibm-policyConditionName:diffserv-condition3b
ibm-policyConditionGroupNumber:3
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=Host2, cn=QoScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents second reusable CNF condition at level 3 - host2

dn:cn=condassoc3c, cn=diffserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc3c
ibm-policyConditionName:diffserv-condition3c
ibm-policyConditionGroupNumber:3
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=Host3, cn=QoScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents third reusable CNF condition at level 3 - host3

dn:cn=actassoc1, cn=diffserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:diffserv-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=tokenbucket, cn=QoSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS

Chapter 12. Quality of Service (QoS) 575

ibm-policyKeywords:POLICY
description:Represents reusable action - token bucket

dn: cn=tokenbucket, cn=QoSact, cn=repository, o=IBM, c=US
objectclass:ibm-policyActionInstance
objectclass:ibm-policyActionAuxClass
objectclass:ibm-serviceCategoriesAuxClass
cn:tokenbucket
ibm-policyActionName:tokenbucket-action
ibm-PolicyScope:DataTraffic
ibm-OutgoingTOS:10000000
ibm-DiffServInProfileRate:256
ibm-DiffServInProfilePeakRate:512
ibm-DiffServInProfileTokenBucket:512
ibm-DiffServInProfileMaxPacketSize:120
ibm-DiffServOutProfileTransmittedTOSByte:00000000
ibm-DiffServExcessTrafficTreatment:BestEffort
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS diffserv token bucket action

dn:cn=ftpdPorts, cn=QoScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-applicationConditionAuxClass
cn:ftpdPorts
ibm-policyConditionName:ftpdPorts-condition
ibm-sourcePortRange:20-21
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS ftpd ports condition

dn:cn=IpProtTCP, cn=QoScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-applicationConditionAuxClass
cn:IpProtTCP
ibm-policyConditionName:IpProtTCP-condition
ibm-protocolNumberRange:6
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS protocol TCP condition

dn:cn=Host1, cn=QoScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-hostConditionAuxClass
cn:Host1
ibm-policyConditionName:Host1-condition
ibm-SourceIPAddressRange:3-200.50.23.11
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS Host 1 condition

dn:cn=Host2, cn=QoScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-hostConditionAuxClass
cn:Host2
ibm-policyConditionName:Host2-condition
ibm-SourceIPAddressRange:3-200.50.33.14
ibm-policyKeywords:QOS

576 z/OS V1R4.0 CS: IP Configuration Guide

ibm-policyKeywords:POLICY
description:Reusable QoS Host 2 condition

dn:cn=Host3, cn=QoScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-hostConditionAuxClass
cn:Host3
ibm-policyConditionName:Host3-condition
ibm-SourceIPAddressRange:3-202.9.55.1
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS Host 3 condition

dn:cn=period1, cn=time, cn=repository, o=IBM, c=US
objectclass:ibm-policyInstance
objectclass:ibm-policyTimePeriodConditionAuxClass
cn:period1
ibm-policyInstanceName:WeekdayPrime-time
ibm-ptpConditionTime:20000701000000:20050630235959
ibm-ptpConditionMonthOfYearMask:111111111111
ibm-ptpConditionDayOfMonthMask:1111111111111111111111111111111
ibm-ptpConditionDayOfWeekMask:0111110
ibm-ptpConditionTimeOfDayMask:060000:220000
ibm-ptpConditionLocalOrUtcTime:1
ibm-policyKeywords:POLICY
description:Active weekdays 6am - 10pm local time, 7/1/2000 to 7/1/2005

The goal of this policy is to ensure that outgoing data that match the specified
attributes will be assigned a QoS service level defined in action ″interactive1″.

The following statements apply to the example in this section:

v This rule will only match traffic on TCP connections (protocol 6) with a source
port of 80 (i.e. HTTP server) and application defined data beginning with the
string ″/catalog″.

v Since we are dealing with HTTP traffic, this rule is basically indicating that all
outgoing traffic associated with a URI that begins with ″/catalog″ should be
managed using the DS characteristics specified in the ″interactive1″ policy action.

dn:cn=web-catalog-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:web-catalog-rule
ibm-policyRuleName:web-catalog-rule
ibm-policyRuleEnabled:1
ibm-policyRuleConditionListType:1
ibm-policyRulePriority:10
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:QOS Web catalog rule

dn:cn=condassoc1, cn=web-catalog-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1
ibm-policyConditionName:web-catalog-condition1
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=IpProtTCP, cn=QoScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents first reusable DNF condition - TCP

dn:cn=condassoc2, cn=web-catalog-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US

Chapter 12. Quality of Service (QoS) 577

objectclass:ibm-policyRuleConditionAssociation
cn:condassoc2
ibm-policyConditionName:web-catalog-condition2
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=webPort, cn=QoScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents second reusable DNF condition - web port

dn:cn=condassoc3, cn=web-catalog-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-applicationConditionAuxClass
cn:condassoc3
ibm-policyConditionName:web-catalog-condition3
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-applicationData:/catalog
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Rule-specific condition - web catalog pages

dn:cn=actassoc1, cn=web-catalog-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:web-catalog-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=interactive1, cn=QoSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents reusable action - interactive 1

dn: cn=interactive1, cn=QoSact, cn=repository, o=IBM, c=US
objectclass:ibm-policyActionInstance
objectclass:ibm-policyActionAuxClass
objectclass:ibm-serviceCategoriesAuxClass
cn:interactive1
ibm-policyActionName:interactive1-action
ibm-policyScope:DataTraffic
ibm-outgoingTOS:10000000
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS interactive 1 action (TOS 100)

dn:cn=webPort, cn=QoScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-applicationConditionAuxClass
cn:webPort
ibm-policyConditionName:webPort-condition
ibm-sourcePortRange:80
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS web port condition

dn:cn=IpProtTCP, cn=QoScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-applicationConditionAuxClass
cn:IpProtTCP

578 z/OS V1R4.0 CS: IP Configuration Guide

ibm-policyConditionName:IpProtTCP-condition
ibm-protocolNumberRange:6
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS protocol TCP condition

RSVP policy example
The goal of this RSVP policy is to establish limits on resource reservations
requested by RSVP applications using the RSVP API (RAPI) interface. The policy is
identified as an RSVP policy by the ibm-PolicyScope:RSVP attribute in the
ibm-PolicyActionInstance object.

The following statements apply to the example in this section:

v The policy rule selects traffic from source ports in the range 8000 to 8001, with a
protocol ID of 6 (TCP).

v One policy action specifies that the ToS byte be set to 01100000 for traffic that
conforms to this policy.

v The RSVP policy action limits the type of RSVP service requested by RSVP
applications to Controlled Load. Applications requesting Guaranteed service are
downgraded to using Controlled Load service. In addition, the action limits the
mean rate and token bucket size to 50000 bytes per second and 6000 bytes,
respectively. These values are requested by RSVP applications in the traffic
specification, or Tspec.

v The action also limits the number of active RSVP flows that map to this policy to
10.

dn:cn=intserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:intserv-rule
ibm-policyRuleName:intserv-rule
ibm-policyRuleConditionListType:1
ibm-policyRuleConditionListDN:cn=condassoc1, cn=intserv-rule, cn=QoS, cn=advanced,

ou=policy, o=IBM, c=US
ibm-policyRuleActionListDN:cn=actassoc1, cn=intserv-rule, cn=QoS, cn=advanced,

ou=policy, o=IBM, c=US
ibm-policyRuleActionListDN:cn=actassoc2, cn=intserv-rule, cn=QoS, cn=advanced,

ou=policy, o=IBM, c=US
ibm-policyRuleValidityPeriodList:cn=period2, cn=time, cn=repository, o=IBM, c=US
ibm-policyRuleValidityPeriodList:cn=period3, cn=time, cn=repository, o=IBM, c=US
ibm-policyKeywords:Intserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:QOS Integrated Services rule

dn:cn=condassoc1, cn=intserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-hostConditionAuxClass
objectclass:ibm-applicationConditionAuxClass
cn:condassoc1
ibm-policyConditionName:intserv-condition
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-ProtocolNumberRange:6
ibm-SourceIPAddressRange:1
ibm-SourcePortRange:8000-8001
ibm-policyKeywords:Intserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Rule-specific condition - all local IP addresses, application TCP ports

Chapter 12. Quality of Service (QoS) 579

dn:cn=actassoc1, cn=intserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
objectclass:ibm-policyActionAuxClass
objectclass:ibm-serviceCategoriesAuxClass
cn:actassoc1
ibm-policyActionName:intserv-action1
ibm-policyActionOrder:1
ibm-PolicyScope:DataTraffic
ibm-OutgoingTOS:01100000
ibm-policyKeywords:Intserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Rule-specific action - set TOS

dn:cn=actassoc2, cn=intserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
objectclass:ibm-policyActionAuxClass
objectclass:ibm-serviceCategoriesAuxClass
cn:actassoc2
ibm-policyActionName:intserv-action2
ibm-policyActionOrder:2
ibm-PolicyScope:RSVP
ibm-OutgoingTOS:01100000
ibm-FlowServiceType:ControlledLoad
ibm-MaxRatePerFlow:400
ibm-MaxTokenBucketPerFlow:48
ibm-MaxFlows:10
ibm-policyKeywords:Intserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Rule-specific action - RSVP limitations

dn:cn=period2, cn=time, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyTimePeriodConditionAuxClass
cn:period2
ibm-policyConditionName:EndOfMonth-time
ibm-ptpConditionDayOfMonthMask:00000000000000000000000000000001

000000000000000000000000000000
ibm-ptpConditionLocalOrUtcTime:2
ibm-policyKeywords:POLICY
description:Active last day of the month (in UTC)

dn:cn=period3, cn=time, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyTimePeriodConditionAuxClass
cn:period3
ibm-policyConditionName:PacificNight-time
ibm-ptpConditionTimeOfDayMask:190000:030000
ibm-ptpConditionTimeZone:-08
ibm-policyKeywords:POLICY
description:Active 7pm - 3am local time, Pacific Time Zone (no daylight savings)

Sysplex Distributor routing policy example
The goal of this Sysplex Distributor policy is to limit the number of SD target stacks
for inbound Telnet traffic. The policies are identified as SD policies by the
ibm-policyGroupForLoadDistribution:TRUE attribute in the ibm-PolicyGroup object.

The following statements apply to the example in this section:

v Separate policies are defined on the Sysplex Distributor distributing and target
stacks.

v The policy rules select incoming Telnet connection requests.

580 z/OS V1R4.0 CS: IP Configuration Guide

v The selected target stack will be based on WLM information and QoS information
if activated at the target stacks.

v The rule (disttelnet) is coded on the distributing stack to select inbound traffic
destined to the Telnet server.

v The rule (targtelnet) is coded on the target stack to select outbound data from
the Telnet server.

v If none of the specified target stacks is available to service incoming requests
(either the node is down or the Telnet server is not active), then Sysplex
Distributor will distribute the requests to any available target stack.

Note: If the ibm-Interface:1–0.0.0.0 attribute were not present, and none of the
defined target stacks were available, Sysplex Distributor would reject the
request.

dn:cn=sysplex, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyGroup
objectclass:ibm-policyRuleContainmentAuxClass
objectclass:ibm-policyGroupLoadDistributionAuxClass
cn:sysplex
ibm-policyGroupName:QoSadvancedsysplex-Group
ibm-policyRulesAuxContainedSet:cn=disttelnet-rule,cn=QoS,cn=advanced,ou=policy,

o=IBM,c=US
ibm-policyGroupForLoadDistribution:TRUE
ibm-policyKeywords:Sysplex
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description: QoS advanced examples sysplex group.

dn:cn=disttelnet-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:disttelnet-rule
ibm-policyRuleName:disttelnet-rule
ibm-policyRuleValidityPeriodList:cn=period1, cn=time, cn=repository, o=IBM, c=US
ibm-policyRulePriority:20
ibm-policyKeywords:Sysplex
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:QOS Sysplex Distributor telnet rule

dn:cn=condassoc1, cn=disttelnet-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-applicationConditionAuxClass
cn:condassoc1
ibm-policyConditionName:disttelnet-condition
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-ProtocolNumberRange:6
ibm-DestinationPortRange:23
ibm-policyKeywords:Sysplex
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Rule-specific condition - telnet inbound SD traffic

dn:cn=actassoc1, cn=disttelnet-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:disttelnet-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=telnetGold, cn=QoSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:Sysplex

Chapter 12. Quality of Service (QoS) 581

ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents reusable action - telnet Gold Service

dn:cn=targtelnet-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:targtelnet-rule
ibm-policyRuleName:targtelnet-rule
ibm-policyRuleConditionListType:2
ibm-policyRuleValidityPeriodList:cn=period1, cn=time, cn=repository, o=IBM, c=US
ibm-policyRulePriority:20
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:QOS Sysplex Target telnet rule

dn:cn=condassoc1, cn=targtelnet-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1
ibm-policyConditionName:targtelnet-condition1
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=IpProtTCP, cn=QoScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents reusable condition at level 1 - TCP

dn:cn=condassoc2, cn=targtelnet-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc2
ibm-policyConditionName:targtelnet-condition2
ibm-policyConditionGroupNumber:2
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=telnetdPort, cn=QoScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents reusable condition at level 2 - telnetd port

dn:cn=actassoc1, cn=targtelnet-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:targtelnet-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=telnetGold, cn=QoSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents reusable action - telnet Gold Service

dn: cn=telnetGold, cn=QoSact, cn=repository, o=IBM, c=US
objectclass:ibm-policyActionInstance
objectclass:ibm-policyActionAuxClass
objectclass:ibm-serviceCategoriesAuxClass
cn:telnetGold
ibm-policyActionName:telnetGold-action
ibm-PolicyScope:DataTraffic
ibm-OutgoingTOS:10100000
ibm-MinRate:500
ibm-Interface:1--129.100.11.1
ibm-Interface:1--129.100.21.1
ibm-Interface:1--129.200.12.1
ibm-Interface:1--0.0.0.0
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS

582 z/OS V1R4.0 CS: IP Configuration Guide

ibm-policyKeywords:POLICY
description:Reusable QoS telnet Gold Service action

dn:cn=telnetdPort, cn=QoScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-applicationConditionAuxClass
cn:telnetdPort
ibm-policyConditionName:telnetdPort-condition
ibm-sourcePortRange:23
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS telnetd port condition

dn:cn=IpProtTCP, cn=QoScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-applicationConditionAuxClass
cn:IpProtTCP
ibm-policyConditionName:IpProtTCP-condition
ibm-protocolNumberRange:6
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS protocol TCP condition

dn:cn=period1, cn=time, cn=repository, o=IBM, c=US
objectclass:ibm-policyInstance
objectclass:ibm-policyTimePeriodConditionAuxClass
cn:period1
ibm-policyInstanceName:WeekdayPrime-time
ibm-ptpConditionTime:20000701000000:20050630235959
ibm-ptpConditionMonthOfYearMask:111111111111
ibm-ptpConditionDayOfMonthMask:1111111111111111111111111111111
ibm-ptpConditionDayOfWeekMask:0111110
ibm-ptpConditionTimeOfDayMask:060000:220000
ibm-ptpConditionLocalOrUtcTime:1
ibm-policyKeywords:POLICY
description:Active weekdays 6am - 10pm local time, 7/1/2000 to 7/1/2005

RSVP
Resource ReSerVation Protocol (RSVP) is a protocol that provides a mechanism to
reserve resources in support of Integrated Services. The z/OS UNIX RSVP agent
provides the following services on behalf of applications that want to use Integrated
Services:

v An RSVP API (RAPI) that allows applications to explicitly request RSVP services.
Using RAPI, applications indicate their intent to send or receive data, describe
the characteristics of the data traffic and request that RSVP reserve resources
along the data path to provide a given QoS to one or more traffic flows. For more
information about RAPI, refer to z/OS Communications Server: IP Programmer’s
Reference.

v Mapping of IP ToS settings to RSVP traffic, using policies defined for RSVP.

v Establishment of resource reservations on ATM interfaces by use of reserved
SVC connections.

Note: Resource reservations cannot be made on interfaces other than ATM for
outbound traffic on z/OS. However, RSVP-capable routers in the network
can still reserve resources, and the ToS byte can be set for RSVP traffic
to provide further means of prioritizing traffic.

Chapter 12. Quality of Service (QoS) 583

v Support for VIPA addresses as well as real IP addresses.

v Communication with other RSVP agents on hosts and routers in the network to
communicate application resource reservation requests.

Network administrators can use the z/OS UNIX Policy Agent to define
RSVP-specific policies. These policies can be used to limit the parameters of
application-requested resource reservations, provide ToS mappings for RSVP traffic,
and limit the number of traffic flows that can use RSVP services simultaneously.

RSVP is designed to be implemented on both end systems (hosts) and routers.
Different functions are provided by RSVP in these two environments. The z/OS
RSVP agent is supported as a host RSVP implementation only. It can communicate
with router RSVP implementations, but is not itself supported as such. For more
information about RSVP, refer to RFC 2205.

Configuring the RSVP agent
To configure the RSVP agent, update the configuration file to specify RSVP agent
operational parameters using the LogLevel, TcpImage, Interface and RSVP
statements. Refer to z/OS Communications Server: IP Configuration Reference for
detailed information about the statements.

To start the RSVP agent, you must first authorize the RSVP Agent using the
security product. See SEZAINST(EZARACF) for SAF considerations for started
tasks.

The following is an example of an RSVP configuration file.

This example:

v Runs the RSVP Agent on the stack selected using the standard resolver search
order, because a TcpImage statement is not configured.

v Disables RSVP processing on interface 10.11.12.13, while enabling it for all other
interfaces.

v Disables traffic control on interface 200.1.1.1. This means that no reservations
will be made on this interface.

v Allows a maximum of 50 active RSVP flows per interface.
Interface 10.11.12.13 Disabled
{}
Interface 200.1.1.1 Enabled
{
TrafficControl Disabled
}
Interface Others Enabled
{}
Rsvp All Enabled
{
MaxFlows 50
}

Starting and stopping RSVP
RSVP can be started from the z/OS shell or as a started task.

The RSVP agent uses the following search order to locate the configuration file
(highest priority is listed first):

584 z/OS V1R4.0 CS: IP Configuration Guide

v HFS file or MVS data set specified by the -c startup option. The syntax for an
HFS file is ’/dir/file’, and the syntax for an MVS data set is
″//’MVS.DATASET.NAME’″.

v HFS file or MVS data set specified with the RSVPD_CONFIG_FILE enviroment
variable.

v /etc/rsvpd.conf HFS file.

v ’hlq.RSVPD.CONF’ MVS data set.

Note: If this file is not present, RSVP is enabled on all network interfaces with
default parameters.

When starting from the shell, note that the RSVP executable resides in
/usr/lpp/tcpip/sbin. There is also a link from /usr/sbin. Make sure your path
statement (in the profile) contains either /usr/sbin or /usr/lpp/tcpip/sbin.

Use the S RSVPD command on an MVS console or SDSF to start RSVP as a
started task. A sample procedure is shipped in member EZARSVPP in SEZAINST.

RSVP can be stopped using the cancel command (C RSVPD) or using the kill
command in the z/OS shell. The following kill command with the TERM signal will
enable RSVP to clean up resources properly before terminating itself:
kill -s TERM pid

where pid is the RSVP process ID.

The RSVP process ID can be obtained using the following z/OS UNIX command:
ps -A

It can also be obtained from the /tmp/rsvpd.pid.imagename file. Refer to z/OS
Communications Server: IP Configuration Reference for more information.

Service Level Agreement Performance Monitor MIB subagent
The SNMP Service Level Agreement (SLA) Performance Monitor MIB subagent
provides information about defined service policies and performance data for
applications which are mapped to those policies. Statistics are retrieved by this
subagent and monitored for possible SLA performance deviations. Refer to RFC
2758 for more information about the SLAPM MIB.

Starting and stopping the SLA subagent
The SLA subagent can be started from the z/OS shell or as a started task.

When starting from the shell, note that the SLA subagent executable resides in
/usr/lpp/tcpip/sbin. There is also a link from /usr/sbin. Make sure your PATH
statement (in the profile) contains either /usr/sbin or /usr/lpp/tcpip/sbin.

For example, the following command starts the SLA subagent with these
characteristics:
pagtsnmp -d 1 -t 1800 -c special -P 5000

v To connect to the SNMP Agent, a community name of ″special″ and a port of
5000 are used.

v The debugging level is set to 1, meaning internal debugging messages are
written to syslogd.

Chapter 12. Quality of Service (QoS) 585

v The MIB table cache time is set to 30 minutes.

Use the S PAGTSNMP command on an MVS console or SDSF to start the SLA
subagent as a started task. A sample procedure is shipped in member EZAPAGSN
in SEZAINST.

The SLA Subagent can be stopped using the stop command (P PAGTSNMP) or
using the kill command in the z/OS shell. The following kill command with the
TERM signal will enable the SLA subagent to clean up resources properly before
terminating itself:
kill -s TERM pid

where pid is where pid is the pagtsnmo process ID.

The pagtsnmp process ID can be obtained using the following z/OS UNIX
command:
ps -A

Refer to z/OS Communications Server: IP Configuration Reference for more
information about the MIB objects supported by the SLA subagent.

Verification
To verify that policies are correctly defined and functioning properly, consider the
following points:

v Are the policies installed in the TCP/IP stacks?

v Is the expected traffic mapping to the correct policies?

v Are the Sysplex Distributor policy functions working correctly?

v Does anything need to be tuned?

The following sections provide more details about these considerations.

Are the policies installed in the TCP/IP stacks?
Use the NETSTAT SLAP or onetstat -j command to display QoS policy statistics.
This command only displays statistics for active QoS (installed) policies, so it can
be used to verify the correct policies are installed, even if the statistics are all 0.
Since the Policy Agent can install policies on multiple stacks, issue this command
on each stack to verify the correct set of QoS policies is installed.

Is the expected traffic mapping to the correct QoS policies?
While connections are active, use the NETSTAT ALL or onetstat -A command to
display details about the active connections. One piece of information displayed is
the policy rule name. If this name is blank, then the traffic is not mapped to any
active rule. Also, use the NETSTAT SLAP or onetstat -j command to display QoS
policy statistics. The output shows the time that each policy was last mapped to
traffic, and accumulated statistics for each policy. Monitor these values over time to
verify that new traffic is mapping as expected.

Note: The values displayed by the NETSTAT SLAP and onetstat -j commands can
wrap around to 0. If some of the values do not seem correct (for example,
total out bytes less than total out bytes in profile), then wrapping has
probably occurred.

586 z/OS V1R4.0 CS: IP Configuration Guide

Are the Sysplex Distributor policy functions working correctly?
To verify that the distributor is using the expected service levels when deciding how
to distribute traffic to each DVIPA/Port target, use the Netstat VDPT DETAIL or
onetstat -O DETAIL command on the distributing stack. The following QoS related
information will be displayed for each DVIPA/Port target:

v WLM weight unmodified by QoS

v Modified WLM/QoS aggregate weight, identified by *DEFAULT*

v Modified WLM/QoS service level weights, identified by service level name

To verify that active connections distributed to DVIPA/Port targets are using the
expected service level, use the Netstat VCRT DETAIL command on the distributing
stack. This will display the following policy related information:

v PolicyRule: the policy rule that the distributor used in selecting the policy action
for this connection.

v PolicyAction: the policy action that this connection is currently using. If
PolicyAction is specified by *NONE*, then the distributor is using the *DEFAULT*
fraction to distribute this connection.

Refer to z/OS Communications Server: IP Diagnosis for more information.

Does anything need to be tuned?
When poor performance (for example, low throughput, long response time, and so
on) is experienced unexpectedly and rather consistently by a certain set of users or
applications, or TRAPs are generated by the SLA Subagent, the problem might be
in the way the QoS policy is defined for the corresponding set of users or
applications. For example, the ToS/DS value might be set incorrectly to a lower
QoS level than is intended, for example, medium or low priority instead of high
priority. It is important to remember that given a fixed amount of network resources,
changing some traffic demand from a lower to higher QoS level will mean that other
traffic demands will be affected. Therefore, use care to ensure that in attempting to
meet one set of QoS requirements, different or worse problems do not result.

Another cause for poor performance might be in the way the bandwidth allocation
defined via the DiffServ token bucket parameters, or TCP maxrate or minrate, is not
adequate to accommodate the traffic demand. Yet another possibility might be that
either network or the server capacity is not adequate to handle the traffic demand.
This is evident when a majority of users or applications do not have their QoS
requirements met. When this happens, the network planning process must be
revisited.

For more information, see “Using the SLA subagent to monitor policies” on
page 588.

Using PASEARCH
Use the pasearch command to display policy details. This command displays both
active (installed in the stack) and inactive policies. Various parameters can be
specified to filter the results, for example to display only policies for certain stacks,
only QoS policies, only policy names, or only a single policy specified by name.
Refer to z/OS Communications Server: IP System Administrator’s Commands for
the complete syntax and sample output for pasearch.

Chapter 12. Quality of Service (QoS) 587

Using the SLA subagent to monitor policies

SLA subagent performance monitoring
The SLA Subagent provides information about service policies and performance
data for applications mapped to those policies via two tables.

Note: The SLA subagent can be used to monitor Differentiated Services policies,
and RSVP reservations if a corresponding RSVP policy is defined.

slapmPolicyRuleStatsTable
Provides information about defined service policies and aggregate
performance data for mapped applications.

slapmSubcomponentTable
Provides information about individual TCP or UDP applications and
application-specific performance data.

The SLA Subagent also supports performance monitoring via the
slapmPRMonTable object. Entries are created in the monitor table to establish the
desired criteria for monitoring. Two levels of monitoring are provided:

Aggregate
Monitoring is performed based on the aggregate of all TCP or UDP
applications that are mapped to one or more service policies.

Subcomponent
Monitoring is performed based on a single TCP or UDP application.

Three types of monitoring are provided for measuring application performance:

MinRate
The current input/output rates of the applications are compared to threshold
values established in the monitor table entry. If the current rates are less
than the threshold, an SNMP trap is sent if traps are enabled.

MaxRate
The current input/output rates of the applications are compared to threshold
values established in the monitor table entry. If the current rates are greater
than the threshold, an SNMP trap is sent if traps are enabled.

MaxDelay
The current delay rates of the applications are calculated by using TCP
round trip time (RTT). For aggregate monitoring, the RTT of all TCP
applications are averaged. The delay rates are compared to threshold
values established in the monitor table entry. If the current rates are greater
than the threshold, an SNMP trap is sent if traps are enabled.

Note: MaxDelay monitoring is only available for TCP applications.

Refer to RFC 2758 for the SLAPM MIB in the sample file slapm.text in the
/usr/lpp/tcpip/samples directory for more details about how to make the various
monitoring calculations.

When SNMP traps are enabled, and a not achieved trap is sent as described
above, a corresponding okay trap is sent when the traffic once again conforms to
the boundaries established in the monitor table entry.

For example, you can establish MaxDelay monitoring and use a max delay low
value of 50 and a max delay high value of 75. If the RTT of the applications rises

588 z/OS V1R4.0 CS: IP Configuration Guide

above 75, a not achieved trap is sent. If the RTT then drops below 50, an okay trap
is sent to indicate the problem has been resolved. However, if the applications end
before conforming to the established boundaries, an okay trap may not be sent
naturally. For application level traps, the okay trap is never sent because the
corresponding subcomponent table entry is deleted when the applications end,
which also removes the application level monitoring.

For aggregate traps, when the applications end, MaxRate and MaxDelay okay traps
will be sent, because a value of 0 for each of these should fall below the minimum
values established in the monitor table entry. Conversely, for MinRate monitoring,
an aggregate okay trap is not sent, because a value of 0 will never be greater than
the maximum value established in the monitor table.

In addition to the traps used to measure application performance, two additional
traps are used to monitor table administration:

Policy Deleted
Trap is sent when an entry is deleted from the slapmPolicyRuleStatsTable.

Monitor Deleted
Trap is sent when an entry is deleted from the slapPRMonTable.

Creating monitor table entries and enabling SNMP traps: Several MIB objects
are used when establishing monitor table entries and for configuring whether and
how often traps are sent. First, to establish monitor table entries, set the following
MIB object variables.

Note: Because most of these objects have default values, you might be able to
achieve the desired monitoring using only a subset of the objects.

slapmPRMonControl Controls what levels and types of monitoring are in
effect.

slapmPRMonInterval Sets the interval for calculating input/output and
delay rates and checks those values against the
monitor table thresholds.

slapmPRMonMinRateLow, slapmPRMonMinRateHigh,
slapmPRMonMaxRateLow, slapmPRMonMaxRateHigh,
slapmPRMonMaxDelayLow, slapmPRMonMaxDelayHigh

Establishes the threshold values for MinRate,
MaxRate, and MaxDelay monitoring. The min and
max rates are in units of kilobits per second, and
the max delay is in units of milliseconds.

slapmPRMonRowStatus Controls the status of a monitor table entry, for
instance whether or not the entry is active.

In addition, the following MIB objects are used to control the generation of traps:

slapmPolicyTrapEnable
Enables or suppresses generation of Policy Deleted and Monitor Deleted
traps.

slapmPolicyTrapFilter
Establishes the number of times a given MinRate, MaxRate, or MaxDelay
event must be encountered before a trap is generated.

Chapter 12. Quality of Service (QoS) 589

slapmPolicyPurgeTime
Establishes a timeout value for Policy Deleted traps. After a service policy is
deleted, the amount of time indicated by this object must expire before a
Policy Deleted trap is generated.

slapmPRMonControl
Controls whether or not aggregate and/or subcomponent traps are enabled.

Creating the monitor table index: When you create monitor table entries, specify
the appropriate index value. The index is composed of the following

v slapmPRMonOwnerIndex

v slapmPRMonSystemAddress

v slapmPRMonIndex

The OwnerIndex is expressed in the following format:
length.character.character...

where character is in ASCII decimal form.

For example, the value u1 is expressed as 2.117.31. The SystemAddress value will
always be 0. The Index value is the index into the slapmPolicyNameTable that
maps to the policy name.

For example, assume the following service policy is defined:
PolicyAction ElaineCat

{
PolicyScope RSVP
MaxRatePerFlow 640
MaxTokenBucketPerFlow 440
Maxdelay 1

}
PolicyRule ElainePol
{

ProtocolNumberRange 6
SourcePortRange 8000
PolicyActionReference ElaineCat

}

The SLA Subagent will create an entry in the slapmPolicyNameTable to represent
the policy rule. The index value for this entry is arbitrary and assigned by the
subagent. Corresponding entries in the other MIB tables, including the monitor
table, contain the index value that maps to the entry in the name table.

To assist you in creating the index for the monitor table entries, note that the index
value used in the slapmPolicyRuleStatsTable entries consists of the last two values
used in the monitor table index, namely the SystemAddress and Index. Thus, you
can walk through the policy statistics table using the following command:
osnmp -v walk slapmPolicyRuleStatsTable

Then, cut and paste the index value from the PolicyRuleStatsTable and add an
OwnerIndex of your choosing at the beginning of the index.

For the above example, the complete index using an OwnerIndex of ″u1″ is:
2.117.31.0.3
| | +--- name table index value (Index)
| +----- no SystemAddress (SystemAddress)
+-------------- length + "u1" (OwnerIndex)

590 z/OS V1R4.0 CS: IP Configuration Guide

Monitor table examples:

Note: If you are going to change any of the monitor table object values for an
existing table entry or row, you must take the row out of service to make the
changes. To do this, set the value of slapmPRMonRowStatus to 2.

After your changes are made, set the row status to a value of 1 to put it
back in service.

Two of the monitor table objects, monitor control and monitor status fields, are
important in setting up the entries and understanding why traps are generated. Both
of these fields have the SNMP data type BITS, which means they are bit strings,
where bit 0 is the low order bit. Any combination of bits can be set into these
objects.

Table 21 shows the meaning of the various bits:

Table 21. Monitor control and monitor status object bit values

slapmPRMonControl Object xx54 3210

0 - monitor MinRate 0000 0001 = 01

1 - monitor MaxRate 0000 0010 = 02

2 - monitor MaxDelay 0000 0100 = 04

3 - enable aggregate traps 0000 1000 = 08

4 - enable subcomponent traps 0001 0000 = 10

5 - monitor subcomponent 0010 0000 = 20

slapmPRMonStatus Object xx98 7654 3210

0 - slaMinInRateNotAchieved 0000 0000 0001 = 001

1 - slaMaxInRateExceeded 0000 0000 0010 = 002

2 - slaMaxDelayExceeded 0000 0000 0100 = 004

3 - slaMinOutRateNotAchieved 0000 0000 1000 = 008

4 - slaMaxOutRateExceeded 0000 0001 0000 = 010

5 - monitorMinInRateNotAchieved 0000 0010 0000 = 020

6 - monitorMaxInRateExceeded 0000 0100 0000 = 040

7 - monitorMaxDelayExceeded 0000 1000 0000 = 080

8 - monitorMinOutRateNotAchieved 0001 0000 0000 = 100

9 - monitorMaxOutRateExceeded 0010 0000 0000 = 200

The following examples show how to create monitor table entries to monitor at
various levels and types. You can also create other combinations using the monitor
control object.

This example assumes SNMP version 1 security and no SNMPD.CONF file.

First, enable traps, assuming Version 1 security and no SNMPD.CONF file. The
snmptrap.dest file should contain the IP address and protocol of an entity to receive
traps. In this example, use the osnmp command running in the background to
receive traps.
/etc/snmptrap.dest contains: 9.67.191.5 UDP

/etc/pw.src contains: public 0.0.0.0 0.0.0.0

Chapter 12. Quality of Service (QoS) 591

osnmp set slapmPolicyTrapEnable.0 1
osnmp set slapmPolicyTrapFilter.0 1
osnmp set slapmPolicyPurgeTime.0 60
osnmp trap > /tmp/trap.output &

To monitor for MinRate at an aggregate level:
osnmp set slapmPRMonControl.index \’00000009\’h

where 9 is aggregate monitor and trap for MinRate
1 is aggregate monitor for MinRate

osnmp set slapmPRMonMinRateLow.index l
osnmp set slapmPRMonMinRateHigh.index h

where l is the lower boundary and h is the upper boundary

osnmp set slapmPRMonRowStatus.index 1

If the MinRate occurs, then look at the monitor status object in the trap, or:

osnmp get slapmPRMonStatus.index
should be 1 if inbound MinRate not achieved

8 if outbound MinRate not achieved

To monitor for MaxRate at an aggregate level:
osnmp set slapmPRMonControl.index \’0000000a\’h

where a is aggregate monitor and trap for MaxRate
2 is aggregate monitor for MaxRate

osnmp set slapmPRMonMaxRateLow.index l
osnmp set slapmPRMonMaxRateHigh.index h

where l is the lower boundary and h is the upper boundary

osnmp set slapmPRMonRowStatus.index 1

If the MaxRate occurs, then look at the monitor status object in the trap, or:
osnmp get slapmPRMonStatus.index

should be 2 if inbound MaxRate not achieved
10 if outbound MaxRate not achieved

To monitor for MaxDelay at an aggregate level:
osnmp set slapmPRMonControl.index \’0000000c\’h

where c is aggregate monitor and trap for MaxDelay
4 is aggregate monitor for MaxDelay

osnmp set slapmPRMonMaxDelayLow.index l
osnmp set slapmPRMonMaxDelayHigh.index h

where l is the lower boundary and h is the upper boundary

osnmp set slapmPRMonRowStatus.index 1

If the MaxDelay occurs, then look at the monitor status object in the trap, or:
osnmp get slapmPRMonStatus.index

should be 4 if MaxDelay exceeded

To monitor for MinRate at an application level:
osnmp set slapmPRMonControl.index \’00000031\’h

where 31 is subcomponent monitor and trap for MinRate
21 is subcomponent monitor for MinRate

osnmp set slapmPRMonMinRateLow.index l

592 z/OS V1R4.0 CS: IP Configuration Guide

osnmp set slapmPRMonMinRateHigh.index h
where l is the lower boundary and h is the upper boundary

osnmp set slapmPRMonRowStatus.index 1

If the MinRate occurs, then look at the monitor status object in the trap, or:
osnmp get slapmPRMonStatus.index

should be 20 if inbound MinRate not achieved
100 if outbound MinRate not achieved

To monitor for MaxRate at an application level:
osnmp set slapmPRMonControl.index \’00000032\’h

where 32 is subcomponent monitor and trap for MaxRate
22 is subcomponent monitor for MaxRate

osnmp set slapmPRMonMaxRateLow.index l
osnmp set slapmPRMonMaxRateHigh.index h

where l is the lower boundary and h is the upper boundary

osnmp set slapmPRMonRowStatus.index 1

If the MaxRate occurs, then look at the monitor status object in the trap, or:
osnmp get slapmPRMonStatus.index

should be 40 if inbound MinRate not achieved
200 if outbound MinRate not achieved

To monitor for MaxDelay at an application level:
osnmp set slapmPRMonControl.index \’00000034\’h

where 34 is subcomponent monitor and trap for MaxDelay
24 is subcomponent monitor for MaxDelay

osnmp set slapmPRMonMaxDelayLow.index l
osnmp set slapmPRMonMaxDelayHigh.index h

where l is the lower boundary and h is the upper boundary

osnmp set slapmPRMonRowStatus.index 1

If the MaxDelay occurs, then look at the monitor status object in the trap, or:
osnmp get slapmPRMonStatus.index

should be 80 if MaxDelay exceeded

Chapter 12. Quality of Service (QoS) 593

594 z/OS V1R4.0 CS: IP Configuration Guide

Chapter 13. Intrusion Detection Services (IDS)

It is becoming increasingly important to not just protect systems from attacks but to
detect patterns of usage that might indicate impending attacks. Many attacks follow
a sequence of information gathering, unauthorized access to resources (information,
applications, storage) and denial of service. It can be difficult, or at times,
impossible to determine the originator of denial of service attacks. Correlating
information gathering activities with access violation may help identify an intruder
before they succeed.

Intrusion Detection Services provides support for:

v Scan detection and reporting

v Attack detection, reporting and prevention

v Traffic regulation for TCP connections and UDP receive queues

Each of these is described in detail below.

IDS policies are used to specify what events are to be detected under what
circumstances and what action to take. All IDS policies support logging events to a
specified message level in syslogd and/or the system console. Most IDS policies
support discarding packets when a specified limit is reached. Most IDS policies
support writing statistics records to the INFO message level of Syslogd on a
specified time interval, optionally only if exceptional events have occurred. All IDS
policies support tracing all or part of the triggering packet to an IDS specific
CTRACE facility, SYSTCPIS. IDS assigns a correlator value to each event.
Messages written to the system console and syslogd and records written to the IDS
trace all use this correlator. A single detected event may involve multiple packets.
The correlator value identifies which messages and packets are related to each
other. Each IDS policy has additional attributes that are specified either in
conditions or in the action.

Scan policies
Scans are recognized as the result of multiple information gathering events from a
single source IP within a defined period of time. Scanning in and of itself is not
harmful. However, many serious attacks, especially access violation attacks, are
preceded by information gathering scans. Because scans by their nature must use
reliable source IP addresses, they can be interesting events to monitor.

The IDS support defines a scanner as a source host that accesses multiple unique
resources (ports or interfaces) over a specified period of time. The number of
unique resources (Threshold) and the time period (Interval) can be specified via
policy. Two categories of scans are supported:

v Fast scan

– many resources rapidly accessed in a short time period (usually less than 5
minutes and program driven)

v Slow scan

– different resources intermittently accessed over a longer period of time (many
hours). This could be a scanner trying to avoid detection.

Sample scanners:

© Copyright IBM Corp. 2000, 2002 595

v Source host A has a program that loops through all low ports and tries to
connect to each port on target host X (fast scan). Note: each port is considered a
unique resource.

v Source host B manually does pings to each interface on target host X and then
tries to access well-known ports on target host X (most likely a slow scan) . Note:
each interface accessed by the ping is considered a unique resource and each
port accessed is considered a unique resource.

Not a scanner:

v Source host C starts 20 connections to port 23 . Since these connections are to
the same port, only one unique resource has been accessed. Therefore, host C
is not considered a scanner.

Certain scans may not be detected by IDS:

v source host E issues pings to addresses 9.1.1.1 through 9.255.255.255. Since
host X only collects data for the pings directed to X’s interfaces, this is not
detected by host X as a scan. Network IDS may detect this as wide scan.

Scan policy provides the ability to:

v Control the parameters that define a scan:

– Fast scan time interval

– Slow scan time interval

– Fast scan threshold

– Slow scan threshold

– Exclude well known legitimate scanners via an exclusion list

– Specify a sensitivity level by port or portrange (to reduce performance
impacts)

– Notify the installation of a detected scan via console message or syslogd
message

– Trace potential scan packets

The individual packets used in a scan can be categorized as normal, possibly
suspicious or very suspicious. To control the performance impact and analysis load
of scan monitoring, it will be useful to have a mechanism for adjusting our interest
level in potential scan events. For information gathering we will provide sensitivity
levels of High, Medium and Low to control recognizing countable events for normal,
possibly suspicious and very suspicious packets.

The following table shows how the policy-specified sensitivity affects the counting of
scan events. The event suspicion level is determined by the stack.

Sensitivity (from policy) Normal event Possibly suspicious
event

Very suspicious event

Low count

Medium count count

High count count count

To help reduce or eliminate false positives, IDS will allow policy-specified source IP
addresses, subnet masks, and (optionally) source port numbers to be excluded

596 z/OS V1R4.0 CS: IP Configuration Guide

from scan detection. For UDP and TCP port scans, scan detection can be limited to
specified destination port ranges. The sensitivity (high, medium and low) may be
specified by these port ranges.

Another way IDS will reduce false positives is by counting only unique events from
a specific source IP address within a scan interval. An event is considered unique if
the IP Protocol, Destination IP Address and Destination Port (UDP, TCP) or Type
(ICMP) have not been seen before within this scan interval.

IDS scan policy supports a fast scan interval and threshold and a slow scan interval
and threshold. A fast scan will be recognized if more than the fast scan
threshold-specified unique events are received. A slow scan will be recognized if
more than the slow scan threshold-specified unique events are received. Counting
of scan events will be done on an internal interval no greater than half of the fast
scan interval to avoid missing scans that occur within the fast scan interval but
spread across two reporting intervals. Within an internal interval, once the number
of unique events reaches the slow scan threshold, IDS knows that a scan has been
detected and it is not necessary to continue to save information about additional
related events in storage. This saves both storage and processing overhead. These
events, however, will be traced if requested by policy via the ibm-idsTraceData
attribute in the action.

Scan events come from the categories listed below. Any countable scan event will
count against an origin source IP address. The total number of countable events
from all categories is compared to the policy thresholds. When an origin source IP
address has exceeded the policy-defined fast or slow threshold an event may be
sent to the TRMD for logging to SYSLOG. Additionally, a console message may be
issued and the packet may be logged to the IDS packet trace depending on the
notification options in the action. When an origin source IP address has exceeded
the policy-defined fast or slow threshold an event will be sent to the TRMD for
logging to SYSLOG or console. Once a scan event is logged for a particular source
IP address, no further scan events will be reportable within the specified fast
interval. The intervals and thresholds for fast and slow scan are global, that is, only
one definition of them is allowed across all event categories.

v ICMP Scans

ICMP requests (Echo, Information, Timestamp, Subnet Mask) are used to map
network topology. Any request sent to a subnet base or broadcast address will be
treated as a very suspicious event. Echo Requests (ping) and Timestamp
Requests are very common and will be treated as normal events when they do
not include the IP Options for Record Packet Route or Record Timestamp. These
options are intended to be used only with ICMP Echo Request packets. The
stack ignores them on any other type of packet. The other types of requests are
uncommon and will be treated as possibly suspicious events.

Request type Destination address Event classification

any subnet base or
broadcast

very suspicious

Information or Subnet Mask single host possibly suspicious

Echo with IP Option Record Route
or Record Timestamp

single host possibly suspicious

Echo or Timestamp single host normal

v UDP Port Scans

Chapter 13. Intrusion Detection Services (IDS) 597

Because UDP is stateless, the stack is unable to differentiate between a client
port and a server port. A scanner sending messages to many ephemeral ports
looks very similar to a DNS server sending replies to many clients on ephemeral
ports. TCP/IP configuration allows UDP ports to be RESERVED, therefore
restricting a port so that it cannot be used. Any datagram received for a restricted
port will be treated as a highly suspicious event. Datagrams received for
unbound but unrestricted ports will be treated as possibly suspicious events and
datagrams received for bound ports will be treated as normal events. Event
generation can also be scoped to specific port ranges.

Socket state Event Event classification

Restricted (RESERVED to no one recv any packet very suspicious

Unbound, not restricted recv any packet possibly suspicious scanner
or application temporarily
down

Bound recv any packet normal

v TCP Port Scans

Because TCP is a stateful protocol, there are many different events that may be
classified as normal, possibly suspicious or highly suspicious. The identified
conditions are listed in the table that follows. TCP/IP configuration allow TCP
ports to be RESERVED, therefore restricting a port so that it cannot be used.
Event generation can also be scoped to specific port ranges.

Socket state Event Event classification

Any state recv unexpected flags (i.e.
SYN+FIN)

very suspicious

Restricted (RESERVED to no one recv any packet very suspicious

Unbound, not restricted recv any packet possibly suspicious
scanner or application
temporarily down

Listen recv standalone SYN no event (classification
deferred)

Half open connection recv ACK normal - connection
handshake completed

Half open connection recv RST possibly suspicious peer
covering tracks

Half open connection final time out very suspicious peer
abandoned handshake

Any connected state seq# out of window normal perhaps duplicate
packet

Any connected state recv standalone SYN normal perhaps peer
reboot

Any connected state final timeout possibly suspicious peer
abandoned connection

Attack policies
An attack can be a single packet designed to crash or hang a system. An attack
can also consist of multiple packets designed to consume a limited resource
causing a network, system or application to be unavailable to its intended users (i.e.
denial of service). IDS attack policy allows you to turn on attack detection for one or

598 z/OS V1R4.0 CS: IP Configuration Guide

more categories of attacks independently of each other. In general, the types of
actions that can be specified for an attack policy are event logging, statistics
gathering, packet tracing and discarding of the attack packets.

Most attack checking is done for inbound packets destined for this stack. The IDS
categories of attacks are:

v Malformed packets events

There are numerous attacks designed to crash a system’s protocol stack by
providing incorrect or partial header information. These packets are always
discarded when received regardless of IDS policy. The source IP address is
rarely reliable for these attacks.

You can use IDS policy to provide notification of malformed packet attacks.

v Inbound fragment restrictions

Many attacks are the result of fragment overlays in the IP or transport header.
This support allows you to protect your system against future attacks by
detecting fragmentation within the first 256 bytes of a datagram.

You can use IDS policy to provide notification of a packet that results from a
datagram being fragmented in the first 256 bytes, as well as to discard the
packet.

v IP protocol restrictions

While there are 256 possible valid IP protocols, only a handful are in common
usage today. This support allows you to protect your system against future
attacks by prohibiting those protocols that you are not actively and intentionally
using.

You can use IDS policy to provide notification of a packet with a restricted IP
protocol, as well as to discard the packet.

v IP option restrictions

As with IP protocols, there are 256 possible IP options, with only a small number
currently in common use. This support allows you to prevent misuse of options
you are not intentionally using. Note that checking for restricted IP options is
performed on all inbound packets, even those forwarded to another system.

You can use IDS policy to provide notification of a packet with a restricted IP
option, as well as to discard the packet.

v UDP perpetual echo

Some UDP applications unconditionally respond to every datagram received. In
some cases, such as Echo, CharGen or TimeOfDay, this is a useful network
management or network diagnosis tool. In other cases it may be polite
application behavior to send error messages in response to incorrectly formed
requests. If a datagram is inserted into the network with one of these applications
as the destination and another of these applications spoofed as the source, the
two applications will respond to each other continually. Each inserted datagram
will result in another perpetual echo conversation between them. This support
allows you to define the application ports that exhibit this behavior.

You can use IDS policy to provide notification of a perpetual echo packet, as well
as to discard the packet.

v ICMP redirect restrictions

ICMP redirect packets can be used to modify your routing tables. The
IGNOREREDIRECT statement in the TCPIP profile disables ICMP Redirects. You
can use IDS policy to provide notification of attempts to modify your routing
tables in this manner.

Chapter 13. Intrusion Detection Services (IDS) 599

You can also use IDS policy to disable ICMP Redirects. ICMP Redirect packets
will be ignored or discarded if either IGNOREREDIRECT is specified in the
TCPIP profile or if IDS policy is active for ICMP redirect attacks and the
associated policy action requests that the packet be discarded
(ibm-idsTypeActions:LIMIT).

v Outbound raw restrictions

Most network attacks require the ability to craft packets that would not normally
be built by a proper protocol stack implementation. This support allows you to
detect and prevent many of these crafting attempts so that your system is not
used as the source of attacks on other systems. As part of this checking, you can
restrict the IP protocols allowed in an outbound RAW packet. It is recommended
that you restrict the TCP protocol (6) on the outbound raw rule.

You can use IDS policy to provide notification of an outbound raw packet that is
considered an attack, as well as to discard the packet.

v TCP SYNflood Flood events

One popular denial of service attack is to flood a public server with connection
requests from incorrect or nonexistent source IP addresses. The intent is to use
up the available slots for connection requests and thereby deny legitimate access
from completing. z/OS CS provides protection from this attack regardless of IDS
policy.

You can use IDS policy to provide notification of an attack so that you may
address the situation with your network administrators and service providers in a
timely manner. Notification of a flood can include flood start and flood end event
messages and tracing of the first 100 packets discarded due to the flood.

For each attack category (e.g. restricted IP protocol) the single highest priority rule
is mapped at policy change.

One or more notification options can be specified in the action to provide the
desired documentation of detected attacks.

For IDS attack policy the ibm-idsNotification attribute allows attack events to be
logged to syslogd and/or the system console. Note that the console messages
provide a subset of the information provided in the syslogd messages. For all attack
categories except flood, a single packet triggers an event. To prevent message
flooding to the system console, you can specify the maximum number of console
messages to be logged per attack category within a 5 minute interval
(ibm-idsMaxEventMessage). If you specify logging to the console in your IDS policy
it is recommended that you specify a maximum event message; there is no default.
To prevent message flooding to syslogd, a maximum of 100 event messages per
attack category will be logged to syslogd within a 5 minute interval.

For IDS attack policy the statistics action provides a count of the number of attack
events detected during the statistics interval. The count of attacks is kept separately
for each category of attack (e.g. malformed) and a separate statistics record is
generated for each. If you want to turn on statistics for attacks, it is recommended
that you specify exception statistics (ibm-idsTypeActions:EXCEPTSTATS). With
exception statistics, a statistics record will only be generated for the category of
attack if the count of attacks is nonzero. If statistics is requested
(ibm-idsTypeActions:STATISTICS) a record will be generated every statistics interval
regardless of whether an attack has been detected during that interval or not.

For IDS attack policy the ibm-idsTraceData and ibm-idsTraceRecordSize attributes
indicate if packets associated with attack events are to be traced. For all attack

600 z/OS V1R4.0 CS: IP Configuration Guide

|

categories except flood, a single packet triggers an event and the packet is traced.
To prevent trace flooding, a maximum of 100 attack packets per attack category will
be traced within a 5 minute interval. For the flood category, the first 100 hundred
packets discarded during the flood will be traced.

It is applicable to all attack categories. However, Malformed and flood packets are
always discarded regardless of this setting.

An action can be unique to a specific category of attack (e.g. malformed) or shared
by one or more categories of attacks. If an action is shared, statistics data is still
kept separately for each type of attack. Also, the maximum console message limit is
enforced individually for each category of attack.

Traffic Regulation (TR) policies
IDS TR policies are used to limit memory resource consumption and queue delay
time during peak loads.

TR TCP
IDS TR policies for TCP ports limit the total number of connections an application
has active at one time. This can be used to limit the number of address spaces
created by forking applications such as FTPD and otelnetd. A fair share algorithm is
also provided based on the percentage of remaining available connections already
held by a source IP address.

The percentage is applied against the number of available connections for the port.
Therefore, as fewer connections become available, each host is allowed fewer new
connections. The percentage is applied against the number of available
connections, rather than the total number of connections allowed, in order to allow
access to a larger number of different hosts when resources are low.

When a host requests a connection, the number of connections it currently holds for
the port is compared to the percentage applied to the connections currently
available for the port. If the number currently held is less than the percentage of
currently available connections, the host is allowed to open an additional
connection. If equal or greater, the host is not allowed to open further connections
until more connections are freed up. All connection requesters for the port are
regulated by this mechanism. If a host does not currently have any connections
open on the port and unused connections are available, a host will always be
allowed at least 1 connection. Multi-user source IP addresses may be allowed a
larger number of connections by specifying a QoS policy with a higher number of
connections (MaxConnections) than allowed by the TR policy. TR will honor the
QoS differentiated services policy if the port is not in a constrained state. A QoS
exception is made only when QoS differentiated service policy is applied for the
specific source server port and specific outbound client destination IP address; if
either of these attributes specify a range or are null, the QoS exception will not be
made.

TR TCP generates a Constrained Event when a port reaches about 90% of its
Connection Limit. An Unconstrained Event is generated when the port falls below
about 88% of its limit. An IDS correlator is assigned for the duration of each
constrained state. If tracing is requested in the policy, the first 100 packets that
exceed the limit in each constrained state are traced along with the correlator. TR
TCP also generates events for each connection allowed because of a QoS override

Chapter 13. Intrusion Detection Services (IDS) 601

policy and for each connection denied for exceeding either the application’s
connection limit or the percent available limit.

TR UDP
Previously, control over UDP based applications consisted of application priority
management and the TCP/IP profile parameter UDPQueueLimit ON | OFF. Inbound
datagrams for bound UDP ports are accepted and queued until the queue limit is
reached or buffer memory is exhausted. If UDPQueueLimit is set to OFF, any single
bound port under a flood attack or with a stalled application could consume all
available buffer storage. It is recommended that UDPQueueLimit always be set to
ON. This limits the amount of storage that can be consumed by inbound datagrams
for any single bound port. Sockets that use the Pascal API, have a limit of 160 KB
in any number of datagrams. Sockets that use other APIs, have a limit of 2000
datagrams or 2880 KB.

IDS TR policies for UDP ports specify one of four abstract queue sizes for specified
bound IP addresses and ports. The four abstract sizes are VERY_SHORT, SHORT,
LONG and VERY_LONG. The actual queue sizes associated with these abstract
values are internal values subject to change. Most UDP applications have timeout
values based on human perceptions of responsiveness. These values tend to stay
constant while system processing speeds and network delivery speeds continue to
advance rapidly. This may require the physical sizes of these queues to change
over time. The initial implementation uses the values of 16, 256, 2048 and 8192
(2**4, 2**8, 2**11, 2**13) for the number of datagrams and an average datagram
size of 2 KB to calculate the byte sizes (32 KB, 512 KB, 4 MB, 16 MB). For
performance reasons, sockets that use the Pascal API will only enforce the byte
limit. Sockets that use other APIs will enforce both limits. Sockets without a policy
specified for their port will use the existing UDPQueueLimit mechanism.

For applications that can process datagrams at a rate faster than the average
arrival rate, the queue acts as a speed matching buffer that shifts temporary peak
workloads into following valleys. The more that the application processing rate
exceeds the average arrival rate and the larger the queue, the greater the variation
in arrival rates that can be absorbed without losing work. Very fast applications with
very bursty traffic patterns may benefit from LONG or VERY_LONG queue sizes.

For applications that consistently receive datagrams at a higher rate than they are
able to process them, the queue acts to limit the effective arrival rate to the
processing rate by discarding excess datagrams. In this case the queue size only
influences the average wait time of datagrams in the queue and not the percentage
of work lost. In fact, if the wait time gets too large, the peer application may have
given up or retransmitted the datagram before it is processed. Slow applications
with consistently high traffic rates may benefit from SHORT queue sizes.

In general, client side applications will tend to have lower system priority giving
them lower datagram processing rates. They also tend to have much lower
datagram arrival rates. Giving them SHORT or VERY_SHORT queue sizes may
reduce the risk to system buffer storage under random port flood attacks with little
impact on percentage of datagrams lost.

TR UDP generates a Constrained Event when a port reaches about 90% of its
Queue Limit. An Unconstrained Event is generated when the port falls below about
88% of its limit. An IDS correlator is assigned for the duration of each constrained
state. If tracing is requested in the policy, the first 100 packets that exceed the limit
in each constrained state are traced along with the correlator.

602 z/OS V1R4.0 CS: IP Configuration Guide

Defining TR TCP policies using the Policy Agent
The TCP Traffic Management policy in IBM Communications Server for OS/390
V2R10 was defined as part of the QoS policy with a PolicyScope of TR. It could
only be defined in the Policy Agent configuration file; the LDAP server was not
supported. In z/OS CS, the TR function was incorporated into the IDS function. The
full range of IDS policy is only available in LDAP. For upward compatibility, TR
policy that existed previously will continue to be supported in the Policy Agent
configuration file and will work unchanged, with the exception that it will be
displayed differently by the pasearch command (as an IDS policy instead of a QoS
policy with policy scope TR). However, if you want to use any of the expanded
Intrusion Detection Services Traffic Regulation support, the expanded functions are
only available through LDAP policy. You can use a combination of the LDAP policy
for the new functions and keep the TCP traffic regulation policy in the configuration
file, although this is not recommended.

Defining IDS policies using LDAP
IDS policies are stored in a server that supports LDAP, processed by Policy Agent
and installed into a z/OS CS TCP/IP stack. You should be familiar with the
information in Chapter 11, “Policy-Based Networking” on page 539 on running Policy
Agent and LDAP before creating IDS policies.

A conservative approach to defining IDS policy will avoid unexpected application
outages and excessive rule processing. The following examples describe policies
provided in the sample files shipped with the system. (Refer to “Policy sample files”
on page 541).

IDS policy definition considerations
IDS policies can be defined with different ibm-idsConditionType values. Each IDS
policy must define exactly one ibm-idsConditionType. Specification of other
additional conditions beyond those listed below will cause the rule to not be found.
The supported types are:

SCAN_GLOBAL
This policy is searched by ibm-idsConditionType only. The single highest
priority SCAN_GLOBAL rule is mapped at policy change and cached. The
action defines the FastScan and SlowScan parameters as well as reporting
and tracing actions to take when a scan is detected. The Limit and
Statistics actions are ignored.

SCAN_EVENT
These policies are searched by ibm-idsConditionType and a protocol
condition of ICMP, TCP or UDP. For protocols TCP and UDP the policy
search includes local destination port and bound IP address as well. For
ICMP, the single highest priority SCAN_EVENT rule is mapped at policy
change and cached. The TCP and UDP rules are mapped when a
potentially countable event occurs. If the event is associated with a bound
socket, the rule is cached. The actions associated with these rules define
the sensitivity level to use for counting events towards the scan thresholds
and source exclusion list to use for the mapped events. Packet tracing
occurs if the action associated with the SCAN_GLOBAL rule activates
tracing and the sensitivity in the action associated with the SCAN_EVENT
rule sensitivity indicates the event is countable.

ATTACK
There are several Attack Types. The conditions supported on each are

Chapter 13. Intrusion Detection Services (IDS) 603

defined below. For each attack type, the single highest priority rule is
mapped at policy change and cached. The reporting, tracing and statistics
actions are supported for all attack types. Other supported actions are
defined below. The supported attack types are:

MALFORMED_PACKET
This policy is searched by ibm-idsConditionType and
ibm-idsAttackType only. The LIMIT action is ignored; malformed
packets are always discarded by the stack, with or without policy.

FLOOD
This policy is searched by ibm-idsConditionType and
ibm-idsAttackType only. The LIMIT action is ignored; excessive
half-open TCP connections are always discarded by the stack, with
or without policy.

ICMP_REDIRECT
This policy is searched by ibm-idsConditionType and
ibm-idsAttackType only. ICMP redirect packets are discarded if
either this policy specifies action LIMIT or the TCPIP PROFILE
specifies IGNOREREDIRECT.

IP_FRAGMENT
This policy is searched by ibm-idsConditionType and
ibm-idsAttackType only. If this policy specifies action LIMIT,
datagrams that are fragmented within the first 256 bytes are
discarded.

RESTRICTED_IP_OPTIONS
This policy is searched by ibm-idsConditionType and
ibm-idsAttackType only. This attack type condition is expected to be
ANDed with a list of conditions defining the IP options to disallow. If
no IP options are specified, the rule will not accomplish anything. IP
option 0 (end of list) and 1 (NO-OP) may not be disallowed and are
ignored if specified. If this policy specifies action LIMIT, packets
containing a disallowed option are discarded.

RESTRICTED_IP_PROTOCOL
This policy is searched by ibm-idsConditionType and
ibm-idsAttackType only. This attack type condition is expected to be
ANDed with a list of conditions defining the IP protocols to disallow.
If no IP protocols are specified, the rule will not accomplish
anything. IP protocols 1 (ICMP), 6 (TCP), and 17 (UDP) may not be
disallowed and are ignored if specified. If this policy specifies action
LIMIT, packets containing a disallowed protocol are discarded.

OUTBOUND_RAW
This policy is searched by ibm-idsConditionType and
ibm-idsAttackType only. This attack type condition may optionally be
ANDed with a list of conditions defining the IP protocols to disallow.
If this policy specifies action LIMIT, any packet written to a RAW
socket that has a source IP address not in the stack’s home list,
that is fragmented by the application, that specifies one of the ICMP
reply types or that specifies a disallowed protocol are discarded.

PERPETUAL_ECHO
This policy is searched by ibm-idsConditionType and
ibm-idsAttackType only. This attack type condition must be specified
in a complex rule using CNF and multiple condition levels. The
attack type condition is at one of the condition levels. There must

604 z/OS V1R4.0 CS: IP Configuration Guide

be a list of conditions defining the Local Port list at a second level.
There must be a list of conditions defining the Remote Port list at a
third level. Each of the port lists is limited by the stack to the first 20
ports specified. The negated flag is ignored by the stack on Port list
conditions. Destination port is always checked against Local Port
list. Source port is checked against the appropriate port list based
on whether the source IP address is in the stack’s home list. If this
policy specifies action LIMIT, UDP packets with both ports in
checked port lists are discarded.

TR These policies may optionally be ANDed with any combination of conditions
defining protocol (TCP or UDP), local destination port or local destination IP
address. TCP rules are mapped when a local application does a listen on a
socket or when an inbound connection handshake completes. UDP rules
are mapped when an inbound packet arrives at a local bound socket. UDP
TR policy supersedes the TCPIP PROFILE setting of UDPQUEUELIMIT for
covered ports. Mapped rules are cached and associated with the bound
socket.

For TCP, the action defines the total number of allowed connections, the
percentage of remaining available connections any single source IP may
acquire and whether these limits are applied globally across all applications
using this port number or applied individually to each application using an
instance of this port number. For UDP, the action defines which of the four
available queue sizes is applied to each application using this port number.
TR actions define the reporting, statistics and tracing actions for covered
ports. If the policy specifies action LIMIT, connections or packets that
exceed the limits are discarded.

Notes:

1. For TCP, a total connection limit or percentage available limit of zero,
with an action of LIMIT effectively quiesces the application.

2. For TCP, ibm-idsLocalHostIPAddress cannot be specified in any
conditions if ibm-idsTRtcpLimitScope PORT specified.

3. For UDP, a policy for a port without an action of LIMIT effectively makes
the application unlimited.

4. Each IDS TR action must specify at least one ibm-idsTypeActions.

IDS scan policy example
The goal of scan policy is to detect all scanners with potentially malicious intent
while avoiding large numbers of false positives. You can make this process more
efficient by reserving all unused low ports in the TCPIP profile. This will allow you to
use the low sensitivity setting on scans for these ports. As you investigate the scans
detected, you will initially find your own network management tools. These can be
explicitly excluded. If you include UDP ephemeral ports in a high sensitivity policy,
you will discover that your DNS servers show up as scanners. You can explicitly
exclude these as well.

The following scan rules are defined:

v Scan Global

Defines a global set of parameters for detecting scans, and also defines reporting
parameters for scan events.

– A Fast Scan is defined as 5 unique events in 2 minutes from a single source
IP address.

– A Slow Scan is defined as 10 unique events in 480 minutes (8 hours).

Chapter 13. Intrusion Detection Services (IDS) 605

– The first 200 bytes of the packet associated with each countable event will be
traced.

– When a scan is detected an event will be written to syslog warning level,
along with a detailed list of all the unique events included in the scan.

– No message will be written to the console.

– Statistics records will not be written to syslog.

v Scan Event Low

Defines a set of traffic for which low sensitivity scan detection will be performed.
Inbound traffic to all TCP and UDP ports between 1 and 1023 will be monitored.
It is recommended that unused low ports be RESERVED in the TCPIP Profile.

v Scan Event Medium

Defines a set of traffic for which medium sensitivity scan detection will be
performed. ICMP inbound traffic will be monitored.

dn:cn=scanglobal-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:scanglobal-rule
ibm-policyRuleName:ScanGlobal-rule
ibm-policyRuleConditionListType:2
ibm-policyRuleEnabled:1
ibm-policyRulePriority:2
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Example of IDS global scan rule

dn:cn=condassoc1, cn=scanglobal-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsScanConditionAuxClass
cn:condassoc1
ibm-policyConditionName:ScanGlobal-condition
ibm-idsConditionType:SCAN_GLOBAL
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Rule-specific condition

dn:cn=actassoc1, cn=scanglobal-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
objectclass:ibm-idsActionAuxClass
objectclass:ibm-idsScanActionAuxClass
objectclass:ibm-idsNotificationAuxClass
cn:actassoc1
ibm-policyActionName:ScanGlobal-action
ibm-idsActionType:SCAN_GLOBAL
ibm-policyActionOrder:1
ibm-idsTypeActions:LOG
ibm-idsNotification:SYSLOG
ibm-idsNotification:SYSLOGDETAIL
ibm-idsLoggingLevel:4
ibm-idsTraceData:RECORDSIZE
ibm-idsTraceRecordSize:200
ibm-idsFSInterval:2
ibm-idsFSThreshold:5
ibm-idsSSInterval:480
ibm-idsSSThreshold:10
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Rule-specific action - Fast scan = 5 in 2 minutes, Slow scan = 10 in 8 hours

dn:cn=scaneventlow-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:scaneventlow-rule
ibm-policyRuleName:ScanEventLow-rule
ibm-policyRuleConditionListType:2
ibm-policyRuleEnabled:1

606 z/OS V1R4.0 CS: IP Configuration Guide

ibm-policyRulePriority:2
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:IDS scan event rule for low sensitivity on TCP and UDP Low Ports

dn:cn=condassoc2, cn=scaneventlow-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc2
ibm-policyConditionName:ScanEventLow-condition2
ibm-policyConditionDN:cn=ScanTcpLowPorts, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyConditionGroupNumber:2
ibm-policyConditionNegated:FALSE
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable CNF condition level 2 - scan TCP low ports

dn:cn=condassoc3, cn=scaneventlow-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc3
ibm-policyConditionName:ScanEventLow-condition3
ibm-policyConditionDN:cn=ScanUdpLowPorts, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyConditionGroupNumber:2
ibm-policyConditionNegated:FALSE
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable CNF condition level 2 - scan UDP low ports

dn:cn=actassoc1, cn=scaneventlow-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
objectclass:ibm-idsActionAuxClass
objectclass:ibm-idsScanSensitivityActionAuxClass
objectclass:ibm-idsScanExclusionActionAuxClass
cn:actassoc1
ibm-policyActionName:ScanEventLow-action
ibm-idsActionType:SCAN_EVENT
ibm-policyActionOrder:1
ibm-idsSensitivity:LOW
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Rule-specific action - low sensitivity

dn:cn=scaneventmedium-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:scaneventmedium-rule
ibm-policyRuleName:ScanEventMedium-rule
ibm-policyRuleConditionListType:2
ibm-policyRuleEnabled:1
ibm-policyRulePriority:2
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:IDS scan event rule for medium sensitivity on ICMP

dn:cn=condassoc1, cn=scaneventmedium-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsScanEventConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:condassoc1
ibm-policyConditionName:ScanEventMedium-condition
ibm-idsConditionType:SCAN_EVENT
ibm-policyConditionGroupNumber:2
ibm-policyConditionNegated:FALSE
ibm-idsProtocolRange:1
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Rule-specific condition - ICMP protocol

dn:cn=actassoc1, cn=scaneventmedium-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
objectclass:ibm-idsActionAuxClass

Chapter 13. Intrusion Detection Services (IDS) 607

objectclass:ibm-idsScanSensitivityActionAuxClass
cn:actassoc1
ibm-policyActionName:ScanEventMedium-action
ibm-idsActionType:SCAN_EVENT
ibm-policyActionOrder:1
ibm-idsSensitivity:MEDIUM
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Rule-specific action - medium sensitivity

dn:cn=ScanTcpLowPorts, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
ibm-idsConditionType:SCAN_EVENT
objectclass:ibm-idsScanEventConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:ScanTcpLowPorts
ibm-policyConditionName:ScanTcpLowPorts-condition
ibm-idsProtocolRange:6
ibm-idsLocalPortRange:1-1023
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS Scan TCP Low Ports condition

dn:cn=ScanUdpLowPorts, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
ibm-idsConditionType:SCAN_EVENT
objectclass:ibm-idsScanEventConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:ScabUdpLowPorts
ibm-policyConditionName:ScanUdpLowPorts-condition
ibm-idsProtocolRange:17
ibm-idsLocalPortRange:1-1023
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS Scan UDP Low Ports condition

IDS attack policy examples
The goal of attack policy is to help protect your system from both known and
unknown attacks and to give you timely notification when attacks do occur.
Malformed packet policy covers many known attacks designed to cause system
crashes. These packets are always discarded and rarely have legitimate source
address information. Many malformed packet attacks use fragmentation to overlay
header fields. The IDS fragment restriction policy is intended to protect you from
unknown attacks of this type by disallowing fragmentation in the first 256 bytes of
any datagram. Unless you know you need ICMP redirect, you should disallow it with
policy. There are several types of flood attacks. IDS can identify TCP SYN floods.
IDS policy should be used to notify you when a flood occurs. You will need to work
with your network administrators and service providers to track the flood backwards,
one physical hop at a time, to locate the source(s).

The IP protocol restrictions and IP option restrictions provide additional protection
against future unknown attacks. The philosophy behind them is to disallow anything
that you do not have a known reason to allow. The outbound raw policy is intended
to help you detect someone using your system as the base for an attack. It looks
for several behaviors associated with spoofed packets.

Attack rules define the set of conditions that define what constitutes an attack for a
given attack type. The highest priority rule of each attack type is used. The action
associated with an attack rule defines reporting and logging options for a detected
attack.

608 z/OS V1R4.0 CS: IP Configuration Guide

The following types of attack rules are defined:

v Malformed Packet: Various types of known attacks based on malformed packets.

v Flood: TCP SYN flood attacks.

v ICMP Redirect: Disallows ICMP redirect receipts.

v IP Fragment: Disallows Fragmentation within first 256 bytes of datagrams.

v IP Protocol: Defines disallowable IP protocols.

– Uses complex conditions to disallow everything except ICMP, TCP and UDP.

– Uses DNF (condition list type 1) to evaluate complex conditions.

– Conditions in the same group are ANDed together, groups are ORed.

v Outbound Raw Restrictions: Validity checking for outbound packets using RAW
sockets.

– Uses complex conditions to disallow everything except ICMP, UDP, IGMP and
OSPFIGP.

v Several reusable Protocol conditions are defined that can be shared between the
IP Protocol Restriction rule and the Outbound Raw rule.

v A single reusable attack action is defined and shared among all the attack rules.

– Events are written to syslog ALERT level.

– Events are not written to the system console.

– The first 200 bytes of packets associated with an attack are traced.

– Statistics are evaluated every 60 minutes and only written if an attack
occurred.

– Limit was not specified, so packets associated with IP Protocol Restrictions,
IP Fragment Restriction and Outbound Raw Restrictions will not be deleted.

dn:cn=attackMalformed-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:attackMalformed-rule
ibm-policyRuleName:AttackMalformed-rule
ibm-policyRuleConditionListType:1
ibm-policyRuleEnabled:1
ibm-policyRulePriority:2
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Example of IDS attack rule for Malformed Packets

dn:cn=condassoc1, cn=attackMalformed-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsAttackConditionAuxClass
cn:condassoc1
ibm-policyConditionName:attackMalformed-condition
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-idsConditionType:ATTACK
ibm-idsAttackType:MALFORMED_PACKET
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Rule-specific condition - attack type

dn:cn=actassoc1, cn=attackMalformed-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:attackMalformed-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=attackact1, cn=IDSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable action - attack action 1

dn:cn=attackFlood-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US

Chapter 13. Intrusion Detection Services (IDS) 609

objectclass:ibm-policyRule
cn:attackFlood-rule
ibm-policyRuleName:AttackFlood-rule
ibm-policyRuleConditionListType:1
ibm-policyRuleEnabled:1
ibm-policyRulePriority:2
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Example of IDS attack rule for Floods

dn:cn=condassoc1, cn=attackFlood-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsAttackConditionAuxClass
cn:condassoc1
ibm-policyConditionName:attackFlood-condition
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-idsConditionType:ATTACK
ibm-idsAttackType:FLOOD
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Rule-specific condition - attack type

dn:cn=actassoc1, cn=attackFlood-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:attackFlood-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=attackact1, cn=IDSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable action - attack action 1

dn:cn=attackICMPRedirect-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:attackICMPRedirect-rule
ibm-policyRuleName:AttackICMPRedirect-rule
ibm-policyRuleConditionListType:1
ibm-policyRuleEnabled:1
ibm-policyRulePriority:2
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Example of IDS attack rule for ICMP Redirect

dn:cn=condassoc1, cn=attackICMPRedirect-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsAttackConditionAuxClass
cn:condassoc1
ibm-policyConditionName:attackICMPRedirect-condition
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-idsConditionType:ATTACK
ibm-idsAttackType:ICMP_REDIRECT
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Rule-specific condition - attack type

dn:cn=actassoc1, cn=attackICMPRedirect-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:attackICMPRedirect-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=attackact1, cn=IDSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable action - attack action 1

dn:cn=attackIpFragment-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US

610 z/OS V1R4.0 CS: IP Configuration Guide

objectclass:ibm-policyRule
cn:attackIpFragment-rule
ibm-policyRuleName:AttackIpFragment-rule
ibm-policyRuleConditionListType:1
ibm-policyRuleEnabled:1
ibm-policyRulePriority:2
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Example of IDS attack rule for IP fragment restriction

dn:cn=condassoc1, cn=attackIpFragment-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsAttackConditionAuxClass
cn:condassoc1
ibm-policyConditionName:attackIpFragment-condition
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-idsConditionType:ATTACK
ibm-idsAttackType:IP_FRAGMENT
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Rule-specific condition - attack type

dn:cn=actassoc1, cn=attackIpFragment-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:attackIpFragment-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=attackact1, cn=IDSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable action - attack action 1

dn:cn=attackIpProt-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:attackIpProt-rule
ibm-policyRuleName:AttackIPprot-rule
ibm-policyRuleConditionListType:1
ibm-policyRuleEnabled:1
ibm-policyRulePriority:2
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Example of IDS attack rule for restricted protocol

dn:cn=condassoc1, cn=attackIpProt-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1
ibm-policyConditionName:AttackIPprot-condition1
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=attackIpProtcond1, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents first reusable DNF condition at level 1

dn:cn=condassoc1a, cn=attackIpProt-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1a
ibm-policyConditionName:AttackIPprot-condition1a
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:TRUE
ibm-policyConditionDN:cn=IpProtICMP, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents second reusable DNF condition at level 1 (negated) allow ICMP

dn:cn=condassoc1b, cn=attackIpProt-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1b

Chapter 13. Intrusion Detection Services (IDS) 611

ibm-policyConditionName:AttackIPprot-condition1b
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:TRUE
ibm-policyConditionDN:cn=IpProtTCP, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents third reusable DNF condition at level 1 (negated) allow TCP

dn:cn=condassoc1c, cn=attackIpProt-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1c
ibm-policyConditionName:AttackIPprot-condition1c
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:TRUE
ibm-policyConditionDN:cn=IpProtUDP, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents fourth reusable DNF condition at level 1 (negated) allow UDP

dn:cn=actassoc1, cn=attackIpProt-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:AttackIPprot-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=attackact1, cn=IDSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable action - attack action 1

dn:cn=attackOutboundRaw-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:attackOutboundRaw-rule
ibm-policyRuleName:AttackOutboundRaw-rule
ibm-policyRuleConditionListType:1
ibm-policyRuleEnabled:1
ibm-policyRulePriority:2
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Example of IDS attack rule for Outbound Raw restrictions

dn:cn=condassoc1, cn=attackOutboundRaw-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1
ibm-policyConditionName:AttackOutboundRaw-condition1
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=attackOutboundRawcond1, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents first reusable DNF condition at level 1

dn:cn=condassoc1a, cn=attackOutboundRaw-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1a
ibm-policyConditionName:AttackOutboundRaw-condition1a
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:TRUE
ibm-policyConditionDN:cn=IpProtICMP, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents second reusable DNF condition at level 1 (negated) allow ICMP

dn:cn=condassoc1b, cn=attackOutboundRaw-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1b
ibm-policyConditionName:AttackOutboundRaw-condition1b
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:TRUE
ibm-policyConditionDN:cn=IpProtUDP, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack

612 z/OS V1R4.0 CS: IP Configuration Guide

ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents third reusable DNF condition at level 1 (negated) allow UDP

dn:cn=condassoc1c, cn=attackOutboundRaw-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1c
ibm-policyConditionName:AttackOutboundRaw-condition1c
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:TRUE
ibm-policyConditionDN:cn=IpProtIGMP, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents fourth reusable DNF condition at level 1 (negated) allow IGMP

dn:cn=condassoc1d, cn=attackOutboundRaw-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1d
ibm-policyConditionName:AttackOutboundRaw-condition1d
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:TRUE
ibm-policyConditionDN:cn=IpProtOSPFIGP, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents fifth reusable DNF condition at level 1 (negated) allow OSPFIGP

dn:cn=actassoc1, cn=attackOutboundRaw-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:AttackOutboundRaw-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=attackact1, cn=IDSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable action - attack action 1

dn: cn=attackact1, cn=IDSact, cn=repository, o=IBM, c=US
objectclass:ibm-policyActionInstance
objectclass:ibm-idsActionAuxClass
objectclass:ibm-idsNotificationAuxClass
objectclass:ibm-idsAttackActionsAuxClass
cn:attackact1
ibm-policyActionName:AttackLog-action
ibm-idsActionType:ATTACK
ibm-idsTypeActions:LOG
ibm-idsNotification:SYSLOG
ibm-idsLoggingLevel:1
ibm-idsTypeActions:EXCEPTSTATS
ibm-idsStatInterval:60
ibm-idsTraceData:RECORDSIZE
ibm-idsTraceRecordSize:200
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:IDS common attack action - LOG(SYSLOG(1) NOCONSOLE) NOLIMIT
description:IDS common attack action - EXECPTSTATS(60) TRACE(200)

dn:cn=attackIpProtcond1, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsAttackConditionAuxClass
cn:attackIpProtcond1
ibm-policyConditionName:AttackIPprot-condition1
ibm-idsConditionType:ATTACK
ibm-idsAttackType:RESTRICTED_IP_PROTOCOL
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS attack condition 1 for restricted IP protocol

dn:cn=attackOutboundRawcond1, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass

Chapter 13. Intrusion Detection Services (IDS) 613

objectclass:ibm-idsAttackConditionAuxClass
cn:attackOutboundRawcond1
ibm-policyConditionName:AttackOutboundRaw-condition1
ibm-idsConditionType:ATTACK
ibm-idsAttackType:OUTBOUND_RAW
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS attack condition 1 for Outbound Raw restrictions

dn:cn=IpProtICMP, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:IpProtICMP
ibm-policyConditionName:IpProtICMP
ibm-idsConditionType:ATTACK
ibm-idsProtocolRange:1
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS condition for IP protocol ICMP

dn:cn=IpProtIGMP, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:IpProtIGMP
ibm-policyConditionName:IpProtIGMP
ibm-idsConditionType:ATTACK
ibm-idsProtocolRange:2
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS condition for IP protocol IGMP

dn:cn=IpProtTCP, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:IpProtTCP
ibm-policyConditionName:IpProtTCP
ibm-idsConditionType:ATTACK
ibm-idsProtocolRange:6
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS condition for IP protocol TCP

dn:cn=IpProtUDP, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:IpProtUDP
ibm-policyConditionName:IpProtUDP
ibm-idsConditionType:ATTACK
ibm-idsProtocolRange:17
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS condition for IP protocol UDP

dn:cn=IpProtOSPFIGP, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:IpProtOSPFIGP
ibm-policyConditionName:IpProtOSPFIGP
ibm-idsConditionType:ATTACK
ibm-idsProtocolRange:89
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS condition for IP protocol OSPFIGP

614 z/OS V1R4.0 CS: IP Configuration Guide

Traffic Regulation (TR) policy examples
The goal of TR policy is to protect your system from usage spikes. A phased
approach to determine the correct policy for your system is recommended.

To gather baseline statistics, an installation will first need to run in Statistics mode,
with the traffic regulation daemon (TRMD) running. In statistics mode, the following
information is provided for the port on a policy defined interval:

v Total number of connections requested during the interval

v Total number of connections closed during the interval

v The IP address of the host that requested a connection during the interval and
held the highest number of concurrent connections during the interval, and the
highest number of concurrent connections held by this IP address

v A suggested value for TotalConnections based on this interval

v A suggested value for Percentage based on this interval

While the baseline statistics records provide suggested policy values for the
interval, the installation should evaluate data from multiple intervals. The values
suggested are those that would avoid denying any of the connections in the
interval. Choose lower values if the interval represents a workload larger than you
want to allow.

After the installation determines the policy values to use, try running with the Log
action specified. Specifying the Log action, without the Limit action, basically tests
out the policy. The connections that would have been denied (if the Limit action was
specified) are logged, but the connection is allowed to occur. After the installation is
satisfied with the experimental policy, the policy action can be set to Limit.

The following traffic regulation TCP rules are defined:

v TR TCP: Defines TCP baseline STATISTICS gathering for the low port range.

– This rule provides statistics reports to determine normal traffic patterns for
several applications.

v TR TCP WEB: Defines Application limits and Host percentage limits for a single
application.

– This rule enforces set limits.

– The rule has a higher priority than the TR TCP rule.

– The rule is limited to a single server application that is bound to a specific IP
address.

dn:cn=trtcp-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:trtcp-rule
ibm-policyRuleName:TRtcp-rule
ibm-policyRuleConditionListType:1
ibm-policyRuleEnabled:1
ibm-policyRuleConditionListDN:cn=condassoc1,cn=trtcp-rule,cn=IDS,cn=starter,

ou=policy,o=IBM,c=US
ibm-policyRuleActionListDN:cn=actassoc1,cn=trtcp-rule,cn=IDS,cn=starter,

ou=policy,o=IBM,c=US
ibm-policyRulePriority:2
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Example of IDS TR TCP rule

dn:cn=condassoc1, cn=trtcp-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1

Chapter 13. Intrusion Detection Services (IDS) 615

ibm-policyConditionName:TRtcp-condition1
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=TrTcpLowPorts, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable condition - TR TCP low ports

dn:cn=actassoc1, cn=trtcp-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:TRtcp-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=trtcpact1, cn=IDSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable action - TR TCP action 1

dn:cn=trtcpWeb-rule, cn=IDS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:trtcpWeb-rule
ibm-policyRuleName:trtcpWeb-rule
ibm-policyRuleConditionListType:1
ibm-policyRuleEnabled:1
ibm-policyRuleConditionListDN:cn=condassoc1,cn=trtcpWeb-rule,cn=IDS,cn=advanced,

ou=policy, o=IBM,c=US
ibm-policyRuleActionListDN:cn=actassoc1,cn=trtcpWeb-rule,cn=IDS,cn=advanced,

ou=policy,o=IBM,c=US
ibm-policyRuleValidityPeriodList:cn=period1, cn=time, cn=repository, o=IBM, c=US
ibm-policyRulePriority:7
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Example of IDS TR TCP rule with limit

dn:cn=condassoc1, cn=trtcpWeb-rule, cn=IDS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1
ibm-policyConditionName:TRtcpWeb-condition1
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=TrTcpWebPort, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable condition - TR TCP web port

dn:cn=actassoc1, cn=trtcpWeb-rule, cn=IDS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:TRtcpWeb-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=trtcpact2, cn=IDSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable action - TR TCP action 2

dn: cn=trtcpact1, cn=IDSact, cn=repository, o=IBM, c=US
objectclass:ibm-policyActionInstance
objectclass:ibm-idsActionAuxClass
objectclass:ibm-idsNotificationAuxClass
objectclass:ibm-idsTRtcpActionAuxClass
cn:trtcpact1
ibm-policyActionName:TRtcpLog-action

616 z/OS V1R4.0 CS: IP Configuration Guide

ibm-idsActionType:TR
ibm-idsTypeActions:LOG
ibm-idsNotification:SYSLOG
ibm-idsLoggingLevel:4
ibm-idsTypeActions:STATISTICS
ibm-idsStatInterval:60
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:IDS TR TCP action TCP(64K,100%) LOG(SYSLOG(4) NOCONSOLE) NOLIMIT
description:TRACE(HEADER) STATISTICS(60)

dn:cn=trtcpact2, cn=IDSact, cn=repository, o=IBM, c=US
objectclass:ibm-policyActionInstance
objectclass:ibm-idsActionAuxClass
objectclass:ibm-idsNotificationAuxClass
objectclass:ibm-idsTRtcpActionAuxClass
cn:trtcpact2
ibm-policyActionName:TRtcpLimit-action
ibm-idsActionType:TR
ibm-idsTypeActions:LIMIT
ibm-idsTypeActions:LOG
ibm-idsNotification:SYSLOG
ibm-idsLoggingLevel:4
ibm-idsTypeActions:EXCEPTSTATS
ibm-idsStatInterval:60
ibm-idsTRtcpTotalConnections:1000
ibm-idsTRtcpPercentage:10
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:IDS TR TCP action TCP(1K,10%) LOG(SYSLOG(4) NOCONSOLE) LIMIT
description:TRACE(HEADER) EXCEPTSTATS(60)

dn:cn=TrTcpLowPorts, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
ibm-idsConditionType:TR
objectclass:ibm-idsTrafficRegulationConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:TrTcpLowPorts
ibm-policyConditionName:TrTcpLowPorts-condition
ibm-idsProtocolRange:6
ibm-idsLocalPortRange:1-1023
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS TR TCP Low Ports condition

dn:cn=TrTcpWebPort, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
ibm-idsConditionType:TR
objectclass:ibm-idsTrafficRegulationConditionAuxClass
objectclass:ibm-idsHostConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:TrTcpWebPort
ibm-policyConditionName:TrTcpWebPort-condition
ibm-idsProtocolRange:6
ibm-idsLocalPortRange:80
ibm-idsLocalHostIPAddress:3-10.14.243.87
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS TR TCP Web Port condition

The following traffic regulation UDP rule is defined:

Chapter 13. Intrusion Detection Services (IDS) 617

v TR UDP: Defines UDP queue size for the low port range.

– This rule provides statistics reports to determine normal traffic patterns for
several applications.

dn:cn=trudp-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:trudp-rule
ibm-policyRuleName:TRudp-rule
ibm-policyRuleConditionListType:1
ibm-policyRuleEnabled:1
ibm-policyRuleConditionListDN:cn=condassoc1,cn=trudp-rule,cn=IDS,cn=starter,

ou=policy,o=IBM,c=US
ibm-policyRuleActionListDN:cn=actassoc1,cn=trudp-rule,cn=IDS,cn=starter,

ou=policy,o=IBM,c=US
ibm-policyRulePriority:2
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Example of IDS TR UDP rule

dn:cn=condassoc1, cn=trudp-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1
ibm-policyConditionName:TRudp-condition1
ibm-policyConditionGroupNumber:7
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=TrUdpLowPorts, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable condition - TR UDP low ports

dn:cn=actassoc1, cn=trudp-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:TRudp-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=trudpact1, cn=IDSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable action - TR UDP action 1

dn: cn=trudpact1, cn=IDSact, cn=repository, o=IBM, c=US
objectclass:ibm-policyActionInstance
objectclass:ibm-idsActionAuxClass
objectclass:ibm-idsNotificationAuxClass
objectclass:ibm-idsTRudpActionAuxClass
cn:trudpact1
ibm-policyActionName:TRudpLog-action
ibm-idsActionType:TR
ibm-idsTypeActions:LOG
ibm-idsNotification:SYSLOG
ibm-idsLoggingLevel:4
ibm-idsTypeActions:STATISTICS
ibm-idsStatInterval:60
ibm-idsTRudpQueueSize:LONG
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:IDS TR UDP action UDPQ(LONG) LOG(SYSLOG(4) NOCONSOLE) NOLIMIT
description:TRACE(HEADER) STATISTICS(60)

dn:cn=TrUdpLowPorts, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
ibm-idsConditionType:TR

618 z/OS V1R4.0 CS: IP Configuration Guide

objectclass:ibm-idsTrafficRegulationConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:TrUdpLowPorts
ibm-policyConditionName:TrUdpLowPorts-condition
ibm-idsProtocolRange:17
ibm-idsLocalPortRange:1-1023
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS TR UDP Low Ports condition

Verification
To verify that policies are correctly defined and functioning properly, consider the
following points:

v Are the policies active?

v Is the expected traffic mapping to the correct policies?

v Are the IDS Policy functions working correctly?

The following sections provide more details about these considerations.

Are the correct policies active?
Check your LDAP server log or command output for errors encountered when your
policies were loaded into LDAP. Some LDAP servers treat consecutive blank lines
in an LDIF file as end of file; ensure that all of the policy objects in your LDIF files
are acknowledged by LDAP.

Check your Policy Agent log file for errors while processing your policy.

Use the pasearch command to verify that the intended policies are active and have
the expected attributes for the target stack.

Is the expected traffic mapping to the correct policies?
Use the netstat -k SUMmary command to ensure that the intended policy has been
mapped for each of the Attack types, Scan-Global type and the Scan-Event type for
protocol ICMP. Refer to the Refer to z/OS Communications Server: IP System
Administrator’s Commands for more information on the netstat command.

These IDS functions each select the single highest priority policy for their respective
types at each policy change.

Use the netstat -k PROTOcol TCP and netstat -k PROTOcol UDP commands to
ensure that the intended Scan-Event and TR policies have been mapped to the
intended local sockets.

These IDS functions select the highest priority policy for the Protocol, local Port and
local IP address when there is relevant activity against the socket.

For TCP this usually entails either a listen or the completion of an inbound
connection handshake. For UDP this usually entails either a bind or an inbound
datagram. Scan policies are also selected on some inbound error paths.

Are the IDS policy functions working correctly?
IDS policies that include TypeAction:STATISTICS or TypeAction:LOG and
Notification:SYSLOG cause the stack to make log record information available to

Chapter 13. Intrusion Detection Services (IDS) 619

TRMD. If TRMD is running you may run the IDS report generator TRMDSTAT
against the appropriate log files to produce reports on the area of interest.

TRMD
TRMD runs as an authorized program and requires some RACF setup (TRMD must
be able to run as a started task and have superuser authority). See the EZARACF
member of SEZAINST for sample RACF commands.

The resolver configuration file is used to determine the stack that TRMD will use.
Ensure that the RESOLVER_CONFIG environment variable is correctly set before
starting TRMD. A separate instance of TRMD must be run for each TCP/IP stack.

The Log records written by TRMD contain 2 timestamps:

v A timestamp generated when the event was detected by the stack. This
timestamp is generated by the stack and is always Coordinated Universal Time
(UTC).

v A timestamp that is generated when the syslogd record ID is created. This
timestamp is dependent on the setting of the TZ environment variable at the time
that TRMD is started. If the installation wants this timestamp to be based on
UTC, then ensure the TZ environment variable is properly set (for example,
export TZ=0) before starting TRMD.

The TCP/IP stack must be running before TRMD can be started.

As described below, TRMD can be started from the z/OS shell or as a started task.

Running TRMD as a started task
A sample procedure is shipped in member EZATRMDP in SEZAINST. Follow the
instructions in the sample member to define your environment.

The offset from Coordinated Universal Time (UTC) of the syslog time in the
timestamp of TRMD messages is determined by the TZ environment variable. If the
timestamp is required in UTC and has not been set by the TZ environment variable,
specify the following in the TRMD procedure:
// PARM=(’POSIX(ON) ALL31(ON)’,
// ’ENVAR("LIBPATH=/usr/lib"’,
// ’"TZ=0")/-d 1’)

To start TRMD as a started task, use the S TRMD command from the MVS console
or SDSF. In some cases, TRMD issues a fork, and the job name will be the original
job name with a number appended. For example, S TRMD might result in the
TRMD started task running under the job name TRMD1. Use the D A,TRMD*
command to verify the job name that TRMD is running under.

If running as a started task, issue P jobname to stop TRMD.

Running TRMD from the z/OS UNIX shell
Only a superuser can run TRMD from the z/OS UNIX shell.

Ensure that the RESOLVER_CONFIG environment variable is correctly set before
starting trmd.

The offset from Coordinated Universal Time (UTC) of the syslog time in the
timestamp of TRMD messages is determined by the TZ environment variable. If the

620 z/OS V1R4.0 CS: IP Configuration Guide

|
|

|
|
|

|

timestamp is to appear in Coordinated Universal Time (UTC), change the TZ
specification in /etc/profile or export TZ=″0″ before starting TRMD.

After the proper environment is set up, issue the following to start TRMD:
trmd

Stopping TRMD
To stop TRMD, issue the following kill command :
kill -s TERM pid

where pid is the TRMD process ID

To obtain the TRMD process ID, issue the following z/OS UNIX command:
ps -A

Debug options can also be specified when starting TRMD. Refer to z/OS
Communications Server: IP Configuration Reference for more information.

TRMDSTAT
Trmdstat is a utility program that runs from the z/OS UNIX shell. Trmdstat reads a
log file, analyzes the log records generated by TRMD, and provides summary or
detailed reports based on the options specified.

The following reports can be requested:

v Overall summary of logged connection events

v IDS summary of logged events

v Reports of logged connection events

v Reports of logged intrusions defined in the ATTACK policy

v Reports of logged intrusions defined in the TCP policy

v Reports of logged intrusions defined in the UDP policy

v Reports of statistics events

Refer to z/OS Communications Server: IP System Administrator’s Commands for
the TRMDSTAT command and samples of the reports generated by TRMDSTAT.

Chapter 13. Intrusion Detection Services (IDS) 621

|

622 z/OS V1R4.0 CS: IP Configuration Guide

Chapter 14. Network management

This chapter describes how to configure:

v Simple Network Management Protocol Agent (osnmpd)

v z/OS UNIX SNMP command (osnmp)

v NetView® SNMP command

v Subagents

v Trap forwarder daemon

Before you configure, read “Understanding search orders of configuration
information” on page 18. It covers important information about data set naming and
search sequences. The z/OS UNIX osnmp command is the SNMP command used
to access MIB object information from the z/OS shell, as the NetView SNMP
command does from NetView.

For an overview of the functional components of SNMP, refer to the SNMP
information in z/OS Communications Server: IP Migration.

Overview of SNMP
SNMP is a set of protocols that describes management data and the protocols for
exchanging that data between heterogeneous systems. The protocols include both
the description of the management data, defined in the Management Information
Base (MIB), and the operations for exchanging or changing that information. By
implementing common protocols, management data can be exchanged between
different platforms with relative ease.

Three primary functional entities are defined in SNMP: managers, agents, and
subagents. A manager is a management application that typically requests
management data. This application could be a simple command-line interface (such
as the z/OS UNIX osnmp command and the Netview SNMP command supported in
z/OS CS) or a more complex application (such as an MIB browser or a
performance monitoring tool). The agent is the server at the host that responds to
requests for management data. On z/OS CS, the server is called OSNMPD. The
agent is often assisted in its support of management data by one or more
subagents that are responsible for providing support for particular sets of
management data.

The protocol used to exchange information between SNMP agents and managers is
SNMP. The interface used to exchange information between the z/OS CS SNMP
agent (and most other agents supported by IBM) and SNMP subagents is the
Distributed Protocol Interface (DPI®). The two management commands provided by
z/OS CS are the:

v NetView SNMP command

v z/OS UNIX osnmp/snmp command

The NetView SNMP and z/OS UNIX osnmp commands are management
applications that can be used to monitor and control network elements. When you
use NetView SNMP with TCP/IP, you require the NetView program to provide an
end-user interface to the SNMP client. A NetView operator can use the SNMP
command to communicate with SNMP agents. NetView acts like an SNMP client.
The osnmp command acts like an SNMP client in the z/OS shell.

© Copyright IBM Corp. 2000, 2002 623

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

|
|
|
|
|
|

z/OS CS also provides a special case management application called the Trap
Forwarder Daemon to allow multiple managers on z/OS to listen for traps
concurrently at the same IP address. The Trap Forwarder Daemon only forwards
traps. It does not allow submission of SNMP requests nor does it forward
inform-type notifications.

Note: For a list of the MIB objects supported by the SNMP agent and subagents
shipped with z/OS CS, refer to z/OS Communications Server: IP System
Administrator’s Commands.

Overview of z/OS CS SNMP version 3
SNMP Version 3 (SNMPv3) is the standards-based solution to previous SNMP
security. SNMPv3 is defined in RFCs 2571 through 2575 issued in April 1999 [see
Appendix F, “Related protocol specifications (RFCs)” on page 797]. The SNMPv3
architecture is modularized so that portions of it can be enhanced over time without
requiring the entire architecture to be replaced. SNMPv3 defines a framework that
consists of (among other things):

v A message processing model (SNMPv3)

v A security model (user-based security)

v An access control model (view-based access control)

The framework is structured so that multiple models can be supported concurrently
and replaced over time. For example, although there is a new message format for
SNMPv3, messages created with the SNMPv1 and SNMPv2c formats can still be
supported. Similarly, the user-based security model can be supported concurrently
with community-based security models previously used.

Processing an SNMP request
Figure 68 illustrates the interface between TCP/IP and the implementation of SNMP.

This list illustrates the sequence of events from the time you issue an SNMP
command until you receive the response:

1. The user issues a NetView SNMP (SNMP) or z/OS UNIX SNMP (osnmp)
command.

MVS

osnmp
Command

SNMP
Command

UDP socket calls

z/OS
UNIX
Shell

NetView

Agents address space

TCP/IP address space

User’s
address
space

NetView
address
space

Same MVS image or
different MVS image

IOCTL
calls

SNMP Agent

TCP/IP
Subagent

TCP/IP

AF_UNIX
socket
calls

Figure 68. Overview of SNMP support

624 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|

|

|

|
|
|
|
|

2. The command processor validates and encodes the request in a Protocol Data
Unit (PDU), and sends it to the SNMP agent.

3. The SNMP agent validates the request and, if necessary, sends it to an SNMP
subagent. Requests for agent-oriented objects are handled by the agent and all
others are handled by a subagent. To determine which objects are handled by
the agent and which by a subagent, refer to the Management Information Base
Appendix in z/OS Communications Server: IP System Administrator’s
Commands.

4. The agent sends the response to the originator of the request. The command
processor displays the response.

Note: Although not shown in Figure 68 on page 624, other subagents, such as the
OMPROUTE subagent and the SLA subagent shipped as part of z/OS CS,
also communicate with the SNMP agent using AF_UNIX socket calls or TCP
socket calls from their own address spaces.

The SNMP agent and the SNMP subagents record trace information via the z/OS
UNIX syslog daemon using the daemon facility. For detailed information regarding
syslogd and specifying the daemon facility in the /etc/syslog.conf configuration file,
see “Logging of system messages” on page 39.

Deciding on SNMP security needs
The SNMP agent supports SNMPv1, SNMPv2c, and SNMPv3 security. SNMPv1
and SNMPv2c are community-based security, where a community name (or
password) is passed with a request. If the community name is recognized as one
that can be used by the IP address from which the request originates, the SNMP
agent processes the request.

SNMPv3 provides a more powerful and flexible framework for message security and
access control. Message security involves providing:

v Data integrity checking, to ensure that the data was not altered in transit

v Data origin verification, to ensure that the request or response originates from the
source from which it claims to have come

v Message timeliness checking and, optionally, data confidentiality, to protect
against eavesdropping

Access control is the ability to control exactly what data an individual user can read
or write.

The SNMPv3 architecture introduces the User-Based Security Model (USM) for
message security and the View-Based Access Control Model (VACM) for access
control. The architecture supports the concurrent use of different security, access
control, and message processing models. For example, community-based security
can be used concurrently with USM.

USM uses the concept of a user for which security parameters (levels of security,
authentication and privacy protocols, and keys) are configured at both the agent
and the manager. Messages sent using USM are better protected than messages
sent with community-based security, where passwords are sent in the clear and
displayed in traces. With USM, messages exchanged between the manager and the
agent have data integrity checking and data origin authentication. Message delays
and message replays (beyond what happens normally due to a connectionless
transport protocol) are protected against with the use of time indicators and request
IDs. Data confidentiality, or encryption, is also available.

Chapter 14. Network management 625

|
|

|

The use of VACM involves defining collections of data (called views), groups of
users of the data, and access statements that define which views a particular group
of users can use for reading, writing, or receipt in a notification.

SNMPv3 also introduces the ability to dynamically configure the SNMP agent using
SNMP SET commands against the MIB objects that represent the agent’s
configuration. This dynamic configuration support enables addition, deletion, and
modification of configuration entries either locally or remotely. Remote modification
of user keys can be especially useful.

Decide on your security needs—community-based or user-based.

If you are satisfied with the security of your existing configuration, you can continue
to use community-based security with no migration. If you would like to take
advantage of USM or VACM, you will need to migrate your configuration. Note that
USM can be used only when both the SNMP agent and the manager requesting the
data support USM, as the z/OS CS SNMP agent and the osnmp command do.
VACM can be used even for community-based requests, but doing so requires
migration of existing community name and trap destination definitions. Following is
a list of the advantages and disadvantages of using each type of security.

Table 22. Security advantages and disadvantages

SNMPv1/SNMPv2c advantages SNMPv3 disadvantages

Traditional standards-based administrative
model.

Emerging standards-based administrative
model.

Widely implemented on many platforms. Not yet implemented on many platforms.

Easy to configure. More robust configuration options.

SNMPv1/SNMPv2c disadvantages SNMPv3 advantages

SNMPv1 and SNMPv2c allow particular IP
addresses to access all data or no data.

SNMPv3 allows a particular user to access
particular data.

Not very robust (password sent in PDU). Robust (data integrity and data origin
authentication).

Any user that can read data can also change
the data (for objects defined as read-write).

The ability to change data can be limited to
specific users.

No data confidentiality. Encryption available.

Configuration changes require restarting of
SNMP agent.

Configuration changes for USM and VACM
can be made dynamically, either locally or
remotely.

For more information about security, see “Creating user keys” on page 633.

Complete the following steps to configure SNMP:

1. Configure the SNMP agent (OSNMPD).

2. Configure the SNMP commands:

v SNMP for NetView SNMP

v osnmp for z/OS UNIX SNMP

3. Configure the SNMP subagents.

4. Configure the ATM Open Systems Adapter 2 (ATM OSA) support.

5. Configure the trap forwarder daemon.

626 z/OS V1R4.0 CS: IP Configuration Guide

Step 1: Configure the SNMP agent (OSNMPD)

Configure the SNMP agent based upon your security need. The SNMP agent
accepts both SNMPv1 and SNMPv2c requests for community-based security. The
SNMP agent can be configured to also use the User-based Security Model and the
View-based Access Control Model. To configure the SNMP agent, perform the
following tasks:
v “Provide TCP/IP profile statements”
v Depending upon whether you want to use USM and VACM, do one of the

following:

– If you are using community-based security and do not need USM or VACM,
see “Provide community-based security and notification destination
information” on page 629.

– If you want the flexibility of using USM or VACM or community-based security,
see “Provide community-based and user-based security and notification
destination information” on page 631.

v “Provide MIB object configuration information” on page 634
v Refer to z/OS Communications Server: IP Configuration Reference for more

information about OSNMPD parameters.

Provide TCP/IP profile statements
Update the following configuration statements in hlq.PROFILE.TCPIP:

AUTOLOG
PORT

There are two primary TCP/IP ports used by the SNMP agent, one for receiving
incoming requests and one for sending traps to managers.

SNMP agent
(OSNMPD)

PW.SRC

OSNMPD.DATA

SNMPTRAP.DEST

SNMPD.CONF SNMPD.BOOTS

OR

and

and

For community based security
(SNMPV1 and SNMPV2C)

For community-based and/or
user-based security

(SNMPV1, SNMPV2C)and/or SNMPV3

Figure 69. Configuration files for SNMP agent

Chapter 14. Network management 627

The default port used by the SNMP agent to receive incoming requests is 161. If
you want the agent to use port 161 for this purpose and want to insure that no
other application uses this port, you must specify the following PORT statement in
your profile data set:
PORT

161 UDP OSNMPD ; SNMP Agent port for SNMP requests

If the agent will be started from the z/OS shell, reserve the port instead for z/OS
UNIX by typing OMVS instead of OSNMPD.

If you want to define a port other than 161 for SNMP requests, you must do the
following:
1. Start the agent with a -p parameter.
2. Configure management applications to use the new port:

v For the osnmp command, make an entry in the OSNMP.CONF file with the
correct port number. For details on creating this entry, see the description for
targetAgent in the OSNMP.CONF statement in the z/OS Communications
Server: IP Configuration Reference.

v Where supported, configure other management applications to use the new
port.

3. Configure subagents to use the new port:

a. Specify the port number to use on the SACONFIG profile statement for the
TCP/IP subagent.

b. Specify the port number to use on the ROUTESA_CONFIG profile statement
for the OMPROUTE subagent.

c. Specify the port number to use on the -p parameter when starting the SLA
subagent.

d. If you are using DPI subagents other than those supplied with z/OS CS, set
the SNMP_PORT environment variable to enable user-written subagents to
connect to the agent.

The SNMP agent uses port 162, by default, for sending traps to the managers
specified in SNMPTRAP.DEST or SNMPD.CONF file. Port 162 should be reserved
for the management application primarily responsible for trap processing. If your
environment requires multiple management applications at the same IP address to
receive traps, consider using the Trap Forwarder Daemon. See “Step 5: Configure
the trap forwarder daemon” on page 646 for more details. If the SNMP query engine
is typically used for processing traps and other applications, such as osnmp, are
only occasionally used, the following port reservations are recommended.
PORT

162 UDP SNMPQE ; SNMPQuery Engine

You must also reserve additional ports for use by the osnmp command by
specifying
nnnnn UDP OMVS

where nnnnn is a number in the range 0–65535 and nnnnn is used as the -p
parameter value on the osnmp trap command.

If you want the SNMPQE and OSNMPD address spaces to be started automatically
when the TCPIP address space is started, then include SNMPQE and OSNMPD in
the AUTOLOG statement:

628 z/OS V1R4.0 CS: IP Configuration Guide

AUTOLOG
SNMPQE ; SNMP Query Engine
OSNMPD ; SNMP Agent

ENDAUTOLOG

Provide community-based security and notification destination
information

If you are using only community-based security without the view-based access
control model, do the following to configure the security and trap destinations.

Provide community name information
SNMP agents are accessed by remote network management stations. To allow
network management stations to send inquiries to the SNMP agent, you may
provide PW.SRC information that defines a list of community names and IP
addresses that can use these community names. The community name operates as
a password when accessing objects on a destination SNMP agent.

The PW.SRC information is optional. If no PW.SRC information is found and no
community name is specified for the -c parameter at agent invocation, then the
SNMP agent will accept requests with a community name of ’public’ from any IP
address. If a PW.SRC file exists, but is empty, and if no community name is
specified on the -c parameter at the agent invocation, then no requests will be
accepted by the agent.

Note: Verify that there is no SNMPD.CONF file because this file can only be used
with SNMPv3. If an SNMPD.CONF file is found, the PW.SRC file will not be
used.

If creating a data set, you can specify a sequential data set with the following
attributes: RECFM=FB, LRECL=80, and BLKSZ=3120. Other data set attributes
might also work, depending on your installation parameters.

PW.SRC example: The PW.SRC statements could be specified as follows:
passwd1 9.0.0.0 255.0.0.0
passwd2 129.34.81.22 255.255.255.255

The PW.SRC statements specify community names and hosts that can use each
community name. The format of a statement is:

community_name desired_network snmp_mask

Refer to z/OS Communications Server: IP Configuration Reference for more
information about syntax.

The community name of an incoming SNMP request is compared to the known
community names. If a match is found, then the IP address of the incoming request
is logically ANDed with the snmp_mask of the PW.SRC statement. The result of the
logical ANDing process is compared with the desired_network. If they match, the
request is accepted.

In the preceding example, if a request for community_name passwd1 is received
from the IP address 9.34.22.122, IP address 9.34.22.122 is ANDed with 255.0.0.0.
The result is 9.0.0.0, which equals the specified desired_network for passwd1, so
this request is accepted. In passwd2, if the community_names match, only requests
from host 129.34.81.22 are accepted.

Chapter 14. Network management 629

If the community_name values do not match, or the IP address ANDed with the
snmp_mask does not match, an AUTHENTICATION_FAILURE trap is sent if both of the
following are true:

v A destination entry exists in SNMPTRAP.DEST.

v Authentication failure traps have been enabled. These traps are enabled by
setting MIB object ″snmpEnableAuthenTraps.0″ to 1.

A desired_network and snmp_mask of all zeros allows anyone with the correct
community_name to make requests.

Note: By default, the SNMP agent and the osnmp command send packets such
that a VIPA address will be used as the originating address in the packet, if
SOURCEVIPA is configured. This is a change introduced in V2R10;
previously, the SNMP agent and the osnmp command set a socket option to
cause the physical interface addresses to be used as the originating
addresses on packets they sent. That meant the PW.SRC file had to contain
all of the possible physical interface addresses that might be used, rather
than a smaller number of VIPA addresses. A customer can override this
change in behavior, if desired, by invoking the SNMP agent with the -a
option or by using either the -a option or the NOSVIPA option in the osnmp
command’s OSNMP.CONF configuration file.

Provide trap destination information
Traps are unsolicited messages that are sent by an SNMP agent to an SNMP
network management station. An SNMP trap contains information about a
significant network event. The management application running at the management
station interprets the trap information sent by the SNMP agent.

The following traps are agent-generated:
v Authentication failure
v Cold start

The following traps are generated by the TCP/IP subagent:

v Link down

v Link up

v PVC creation

v PVC deletion

PVC traps are reported for ATM Permanent Virtual Connections. For further
information, see “Step 4: Configure the Open Systems Adapter (OSA) support”
on page 642.

The following traps are generated by the SLA subagent:

v Monitored event not achieved for aggregate policy

v Monitored event okay for aggregate policy

v Monitored even not achieved for individual connection policy

v Monitored event okay for individual connection policy

v Policy deleted

v Monitor table entry deleted

Note: The SNMP agent Distributed Protocol Interface allows subagents other than
those shipped with z/OS CS (which might be running on another host) to

630 z/OS V1R4.0 CS: IP Configuration Guide

generate SNMP traps. This can allow for support of other types of traps. For
more information about SNMP DPI, see the z/OS Communications Server:
IP Programmer’s Reference.

For additional detail on these traps, refer to the SNMP Trap Types information in
z/OS Communications Server: IP User’s Guide and Commands.

To use traps, you must provide SNMPTRAP.DEST information defining a list of
managers to which traps are sent. The SNMPTRAP.DEST information is optional. If
no trap destination file is found, then the SNMP agent sends traps to the IP address
of the SNMP agent and issues a warning message indicating that defaults are in
effect. If a trap destination file exists, but is empty, no traps are sent.

Note: Verify that there is no SNMPD.CONF file. If an SNMPD.CONF file is found,
the SNMPTRAP.DEST file will not be used.

If creating a data set, you can specify a sequential data set with the following
attributes: RECFM=FB, LRECL=80, and BLKSZ=3120. Other data set attributes
might also work, depending on your installation parameters.

SNMPTRAP.DEST example: The SNMPTRAP.DEST statements could be
specified as follows:
SNMP Trap Destination information
124.34.216.1 UDP
MVSSYS2 UDP

Refer to z/OS Communications Server: IP Configuration Reference for more
information about syntax.

Provide community-based and user-based security and notification
destination information

If you want to use user-based security, either concurrently with or instead of
community-based security, you must configure security definitions and notification
destinations.

SNMPv3 provides the ability to configure the agent dynamically, from either a local
or remote host, and to make changes in the configuration while the SNMP agent is
running. Doing SNMP agent configuration dynamically requires a good
understanding of how the SNMP SET commands can be issued to create new rows
or to change or delete existing rows, as well as familiarity with the SNMP engine
configuration tables defined in RFCs 2571 through 2576. (For additional detail, see
RFCs 2571 through 2576, as well as RFCs 1901 through 1910.)

As an alternative to dynamically configuring the SNMP agent, z/OS CS supports a
configuration file to be read at agent initialization called the SNMPD.CONF file.
Dynamic configuration changes made with SNMP SET commands to the SNMP
agent configuration entries will be written out to the SNMPD.CONF file, so they will
continue to be in effect even after the SNMP agent is restarted.

SNMPD.CONF file
The SNMPD.CONF file defines the SNMP agent security and notification
destinations. If the SNMPD.CONF file exists, the agent can support SNMPv1,
SNMPv2c, and SNMPv3 requests. If no SNMPD.CONF file exists, the agent will
support only SNMPv1 and SNMPv2c requests.

Chapter 14. Network management 631

Note: If the SNMPD.CONF file is found, the PW.SRC file and the
SNMPTRAP.DEST files are not used.

SNMPD.CONF dynamic configuration: If the SNMPD.CONF information is
located in an MVS data set rather than an HFS file, special considerations must be
made to support dynamic configuration changes to the SNMP agent’s configuration.
If dynamic configuration changes are made, the file is rewritten to reflect the
changes. Therefore, consider the following when allocating the SNMPD.CONF file
to an MVS data set:

v The record length (LRECL) should be 512 bytes to accommodate the longest
possible entry.

v The use of a member of a partitioned data set is tolerated but not recommended.
Because the file might be rewritten often, frequent compression of the partitioned
data set may become necessary. In addition, locking on the file is done at the
data set level, not at the member level, so other members of the partitioned data
set would not be usable while the SNMP agent was running (once a dynamic
configuration change had been made).

SNMPD.CONF example: A sample SNMPD.CONF file is shipped as
/usr/lpp/tcpip/samples/snmpd.conf.

Refer to z/OS Communications Server: IP Configuration Reference for more
information about syntax.

The sample OSNMP.CONF file used by the osnmp command contains entries that
match the sample SNMPD.CONF data set. See “Configure the z/OS UNIX SNMP
(osnmp) command” on page 640 for additional information on configuring the osnmp
command.

Note: By default, the SNMP agent and the osnmp command send packets such
that a VIPA address will be used as the originating address in the packet, if
SOURCEVIPA is configured. This is a change introduced in V2R10;
previously, the SNMP agent and the osnmp command set a socket option to
cause the physical interface addresses to be used as the originating
addresses on packets they sent. That meant the SNMPD.CONF file had to
contain all of the possible physical interface addresses that might be used,
rather than a smaller number of VIPA addresses. A customer can override
this change in behavior, if desired, by invoking the SNMP agent with the -a
option or by using either the -a option or the NOSVIPA option in the osnmp
command’s OSNMP.CONF configuration file.

SNMPD.BOOTS
The SNMP agent uses the SNMPD.BOOTS configuration file to support SNMPv3
security. This file contains agent information used to authenticate the SNMPv3
requests. The SNMPD.BOOTS keeps the agent identifier and the number of times
the agent reboots. If no SNMPD.BOOTS file exists when the agent is started, the
agent creates one. You may want to add comments to the beginning of this file. If a
file does exist, the agent uses the values specified in the file for setting its engineID
and engineBoots values. If the file exists but contains incorrect values for engineID
or engineBoots, the agent issues a message and terminates.

Notes:

1. The recommended approach is to allow the SNMP agent to create the file.

2. If the SNMPD.BOOTS file is not provided, the SNMP agent creates the file. If
multiple SNMPv3 agents are running on the same MVS image, use the

632 z/OS V1R4.0 CS: IP Configuration Guide

|

environment variable to specify different SNMPD.BOOTS files for the different
agents. For security reasons, ensure unique engineIDs are used for different
SNMP agents.

Creating user keys
Authentication

Authentication is generally required for SNMPv3 requests to be processed (unless
the security level requested is ’noAuth’). When authenticating a request, the SNMP
agent verifies that the authentication key sent in an SNMPv3 request can be used
to create a message digest that matches the message digest created from the
authentication key defined for the user.

The osnmp command uses the authentication key found on an entry in the
OSNMP.CONF configuration file. It needs to correlate with the authentication key
specified on a USM_USER entry for that user in the agent’s SNMPD.CONF
configuration file.

As an alternative to storing authentication keys in the client configuration file, the
osnmp command allows user passwords to be stored. If the osnmp command is
configured with a password, the code generates an authentication key (and privacy
key if requested) for the user. These keys must, of course, produce the same
authentication values as the keys configured for the USM_USER in the agent’s
SNMPD.CONF file or configured dynamically with SNMP SET commands. However,
the use of passwords in the client configuration file is considered less secure than
the use of keys in the configuration file.

The authentication key is generated from two pieces of information:

v The specified password.

v The identification of the SNMP agent at which the key will be used. If the agent
is an IBM agent and its engineID was generated using the vendor-specific
engineID formula, the agent may be identified by IP address or host name.
Otherwise, the engineID must be provided as the agent identification.

A key that incorporates the identification of the agent at which it will be used is
called a localized key. It can be used only at that agent. A key that does not
incorporate the engineID of the agent at which it will be used is called nonlocalized.

Keys stored in the osnmp command’s configuration file, OSNMP.CONF, are
expected to be nonlocalized keys. Keys stored in the SNMP agent’s configuration
file, SNMPD.CONF, can be either localized or nonlocalized, though the use of
localized keys is considered more secure.

Encryption

Keys used for encryption are generated using the same algorithms as those used
for authentication. However, key lengths may differ. For example, an HMAC-SHA
authentication key is 20 bytes long, but a localized encryption key used with
HMAC-SHA is only 16 bytes long.

z/OS CS provides a facility called pwtokey that enables conversion of passwords
into localized and nonlocalized authentication and privacy keys. The pwtokey
procedure takes as input a password and an identifier of the agent and generates
authentication and privacy keys. Since the procedure used by the pwtokey facility is
the same algorithm used by the osnmp command, the person configuring the

Chapter 14. Network management 633

SNMP agent can generate appropriate authentication and privacy keys to put in the
SNMPD.CONF file for a user, given a particular password and the IP address at
which the agent will run.

Use the pwtokey command to convert passwords into authentication and privacy
keys. Refer to z/OS Communications Server: IP System Administrator’s Commands.

Provide security product access to agent from subagents
An SNMP subagent can connect to the z/OS Communications Server SNMP agent
by using the DPI API (the DPI API is documented in the z/OS Communications
Server: IP Programmer’s Reference) and specifying either a z/OS UNIX or a TCP
connection. Subagents using a z/OS UNIX connection are required to have
superuser authority. For subagents specifying a TCP connection, you can utilize the
installation’s SAF compliant security product (such as the z/OS Security Server
(RACF)) to control which of the SNMP subagents are permitted to connect to the
SNMP agent. One security product resource name can be created per TCP/IP stack
per MVS image. The security product resource name is specified in the following
format:
EZB.SNMPAGENT.sysname.tcpprocname

where sysname is the name of the MVS system image and tcpprocname is the
TCP/IP started procedure name.

The profile must be created under the SERVAUTH class. After creating the profiles,
use the security product to define the user IDs of those subagents which should be
permitted to connect via TCP to the SNMP Agent. Authorization failures are
documented by security product failure messages and SNMP agent traces.

Note: If you use this authorization function, only SNMP subagents which are
associated with the same TCP/IP stack as the SNMP agent will be permitted
to connect to the agent. Local SNMP subagents associated with other
TCP/IP stacks, or remote SNMP subagents, will not be permitted to connect.
Also, any subagents which connected to the SNMP agent before the agent
security product resource name was created will not have been authorized
via the security product.

You can use the control statements in the sample JCL job provided in
SEZAINST(EZARACF) to define this authorization. For example, if you wanted to
permit any SNMP subagents associated with a user ID of USER2 to connect to the
SNMP agent you could use the following definitions:
RDEFINE SERVAUTH EZB.SNMPAGENT.MVSA.TCP1 UACC(NONE)
PERMIT EZB.SNMPAGENT.MVSA.TCP1 ACCESS(READ) CLASS(SERVAUTH) ID(USER2)

Provide MIB object configuration information
An installation can set values for selected MIB objects by providing OSNMPD.DATA
information. A sample of OSNMP.DATA is installed as HFS file
/usr/lpp/tcpip/samples/osnmpd.data. Refer to z/OS Communications Server: IP
Configuration Reference for syntax information. If no OSNMPD.DATA file is found,
the defaults for these MIB objects are as follows:

Object Default

dpiPathNameForUnixStream
The default is /tmp/dpi_socket.

sysDescr If the environment variable HOSTNAME exists, its value is used.

634 z/OS V1R4.0 CS: IP Configuration Guide

Otherwise, the default value identifies the z/OS system under which
the agent is running. The maximum length of this object is 255
octets.

sysContact ″SNMPBASE-Unspecified″. The maximum length of this object is
255 octets.

sysLocation ″SNMPBASE-Unspecified″. The maximum length of this object is
255 octets.

sysName ″SNMPBASE-Unspecified″. The maximum length of this object is
255 octets.

sysObjectId 1.3.6.1.4.1.2.3.13

Note: sysObjectID is defined as the vendor’s authoritative
identification of the network management subsystem
contained in the entity. That is, it is intended to uniquely
identify the SNMP agent. Changing this value is not
recommended and will be disabled in a subsequent release.

sysServices A single octet that defaults to 0. See the RFC 1907 description for
this object.

snmpEnableAuthenTraps
Default value is 2, which means traps are disabled.

saDefaultTimeout
5 seconds.

saMaxTimeOut
600 seconds.

saAllowDuplicateIDs
Default is 1, which means multiple instances of a subagent are
allowed.

Note: Because a subagent identifier cannot be specified for DPI
version 1 subagents, a constant identifier is used for all
version 1 subagents. Therefore, this object must be set to
″Yes″ (1) to allow multiple DPI version 1 subagents to run
concurrently.

For information about where these MIB objects are defined, refer to the z/OS
Communications Server: IP User’s Guide and Commands.

If creating a data set, you can specify a sequential data set with the following
attributes: RECFM=FB, LRECL=80, and BLKSZ=3120. Other data set attributes
might also work, depending on your installation parameters.

Start the SNMP agent (OSNMPD)
The SNMP agent (OSNMPD) runs in a separate address space that executes load
module EZASNMPD. OSNMPD can be started with or without parameters. When
starting OSNMPD from MVS, add the parameters to the PARMS= keyword on the
EXEC statement of the OSNMPD cataloged procedure. When starting OSNMPD
from z/OS UNIX, specify the desired parameters on the osnmpd command. Refer to
z/OS Communications Server: IP Configuration Reference for the command syntax.

Chapter 14. Network management 635

|
|
|
|
|

Sample JCL procedure for starting OSNMPD from MVS
Update cataloged procedure OSNMPD by copying the sample in
hlq.SEZAINST(OSNMPDPR) to your system or recognized PROCLIB. Change the
data set names as required to suit your local configuration. The OSNMPD address
space requires access to the IBM C/370 Library during execution.

Parameters may be passed to the agent on the PARMS= keyword on the EXEC
statement of the OSNMPD cataloged procedure. Refer to z/OS Communications
Server: IP Configuration Reference for the command syntax and parameter
information. Any agent parameters you wish to specify may be added as shown in
the following example:
//OSNMPD EXEC PGM=EZASNMPD,REGION=4096K,TIME=NOLIMIT,
// PARM=’POSIX(ON) ALL31(ON)/ -c abc -d 255 -p 761’

In this example, the agent will use port 761 to accept requests, community name
’abc’ will be added to the list of community names supported by the agent, and all
agent traces will be activated. For more information on tracing, see the z/OS
Communications Server: IP Diagnosis.

Starting OSNMPD from z/OS UNIX
To run the SNMP agent in background, you must add an ampersand (&) to the
command and the issuer of the command must be in z/OS UNIX superuser mode.
For a detailed explanation of the osnmpd parameters, refer to z/OS
Communications Server: IP Configuration Reference.

Any agent parameters you wish to specify may be added as shown in the following
example:
osnmpd -c abc -d 255 -p 761

In this example, the agent will use port 761 to accept requests, community name
’abc’ will be added to the list of community names supported by the agent, and all
agent traces will be activated. For more information on tracing, see z/OS
Communications Server: IP Diagnosis.

Step 2: Configure the SNMP commands
The two SNMP client applications provided with z/OS CS are:

v SNMP command from the NetView environment

v osnmp command in the z/OS shell

The SNMP command in the NetView environment requires the use of the NetView
product. It supports SNMP version 1. The osnmp command in the z/OS shell
supports SNMP versions 1, 2, and 3. Depending on your requirements, you may
decide to configure either or both of these clients, or to use an SNMP client on
another platform.

636 z/OS V1R4.0 CS: IP Configuration Guide

Configure the NetView SNMP (SNMP) command

The SNMP command in the NetView environment can be used to send SNMP
version 1 requests to SNMP agents on either local or remote hosts. The SNMP
command requires the command processor itself, the SNMPIUCV task for
inter-address space communication, and the SNMP query engine, which creates the
packets sent to the SNMP agent. The NetView SNMP command supports only
community-based security.

Configure the SNMP query engine
Update the SNMPQE cataloged procedure by copying the sample in
hlq.SEZAINST(SNMPPROC) to your system or recognized PROCLIB. Specify
SNMP parameters and change the data set names as required to suit your local
configuration. The SNMPQE address space requires access to the IBM C/370
Library during execution.

The SNMP query engine (SQESERV) needs access to the hlq.MIBDESC.DATA
data set for the MIB variable descriptions. You can find a sample of this data set in
hlq.SEZAINST(MIBDESC).

MIBDESC.DATA data set: The MIBDESC.DATA data set defines the short names
for MIB variables. Short names are the character representation for the ASN.1
variable names. For example, sysUpTime is the short name for 1.3.6.1.2.1.1.3.0
(the MIB variable that stores the time since the SNMP agent was last restarted).
Short names are generally shown as a combination of upper and lowercase
characters, though SNMP on z/OS CS ignores these case distinctions. Variable
names must always be in ASN.1 language when they are sent to an SNMP agent.
You can always use ASN.1 language to specify the variable names in an
enterprise-specific tree (assuming that the agent supports them). You can use these
short names to specify the MIB variables.

When you issue an SNMP GET, GETNEXT, or SET command, and specify the
variable name in ASN.1 notation, the SNMP Query Engine uses that name and
sends it in the SNMP packet to the agent. When you issue an SNMP GET,
GETNEXT, or SET command, and specify the short name for the variable (for

NetView SNMP
command

SNMPIUCV
task

SNMP Query
Engine

SNMPARMS

MIBDESC.DATA

Figure 70. Configuration files for NetView SNMP

Chapter 14. Network management 637

example, sysDescr), the SNMP Query Engine looks for that name in the
MIBDESC.DATA data set and uses the ASN.1 name specified in the data set when
it sends the SNMP packet to the agent.

The SNMPQE address space must be able to access the MIBDESC.DATA data set.

You can change the short names in the MIBDESC.DATA data set to the equivalent
in your national language. You can also leave the current names and add the
equivalent names in your national language. However, the SNMP MIBVNAME
function returns only the first entry found in the data set that satisfies the search. In
addition, all enterprise-specific variables used by hosts in your network should be
added to this data set.

Entries in the data set do not need to be in a specific sequence. Each name starts
on a new line. The following shows the line format.
short_name asn.1_name type time_to_live

Each variable on the line is separated by either one or more spaces or tabs. An
asterisk (*) in column 1 indicates that the line is a comment line.

Following is a sample MIBDESC.DATA line with a sysDescr variable translated in
Dutch and a few enterprise variables added (in this example, company ABC
received 1.3.6.1.4.1.42 as the ASN.1 number for their enterprise):

* MIB Variable name | ASN.1 notation | Type | TTL *

* Following is Dutch name for sysDescr
systeemBeschrijving 1.3.6.1.2.1.1.1. display 900
sysDescr 1.3.6.1.2.1.1.1. display 900

...
other entries
...

* Following are Enterprise-Specific variables for company ABC
ABCInfoPhone 1.3.6.1.4.1.42.1.1 display 900
ABCInfoAddress 1.3.6.1.4.1.42.1.2 display 900

The TTL field contains the number of seconds that a variable lives in the Query
Engine’s internal cache. If there are multiple requests for the same variable within
the TTL period, the variable value is obtained from the cache, and unnecessary
network traffic is avoided.

You can define multiple short names or text names for the same variable, as shown
with the Dutch translation of the sysDescr variable. In this case, the SNMP Query
Engine returns the first value in the table on an SNMP MIBVNAME request. In the
previous example, the SNMP Query Engine would return systeemBeschrijving and
not sysDescr. The name returned is in mixed case.

When the SNMP Query Engine receives a short name or text name in a GET,
GETNEXT, or SET request, it compares the name against the entries in the
MIBDESC.DATA data set. This comparison is not case-sensitive. For example, a
request for SYSDESCR, SysDescr, or sysDescr matches the sysDescr entry with an
ASN.1 notation of 1.3.6.1.2.1.1.1..

When the SNMP Query Engine receives an SNMP response, it looks up the
variable in the MIBDESC.DATA table Type field for information about translating the
value into displayable characters. The information contained in the Type field is
case-sensitive and must be specified in lowercase.

638 z/OS V1R4.0 CS: IP Configuration Guide

Note: If you are using SNMP to receive response or trap PDUs which contain
enterprise-specific variables, the variables must be added to the
MIBDESC.DATA data set.

Specifying the SNMPQE parameters: The SQESERV module can be configured
to start without parameters or you can add any of the following parameters to
PARMS=’ in the PROC statement of the SNMPQE cataloged procedure. For
example,
//SNMPQE PROC MODULE=SNMPQE,PARMS=’-h MVSA’

Refer to z/OS Communications Server: IP Configuration Reference for the
command syntax.

Refer to z/OS Communications Server: IP Diagnosis for more information on
tracing.

Setting up authorization for SNMPQE: To create RAW sockets necessary for
SNMP PING requests, the user ID associated with the SNMPQE started task must
have superuser authority (z/OS UNIX UID of 0) or be permitted to
BPX.SUPERUSER facility authority.

Configure NetView as an SNMP monitor
To configure the NetView interface as an SNMP monitor, perform each of the
following tasks:
v Configure for SNMPIUCV
v Configure for the SNMP command processor
v Configure for the SNMP messages
v Update the SNMP initialization parameters

Configure for SNMPIUCV: SNMPIUCV is the NetView optional task that handles
IUCV communication between the NetView program and the SNMP query engine.
SNMPIUCV resides in the hlq.SEZADSIL data set.

Add the following TASK statement for SNMPIUCV to the DSIDMN member of the
data set specified by the DSIPARM DD statement in the NetView start procedure.
TASK MOD=SNMPIUCV,TSKID=SNMPIUCV,PRI=5,INIT=Y

This statement causes SNMPIUCV to start automatically when the NetView
program is started.

If you specify INIT=N instead of INIT=Y in the TASK statement for SNMPIUCV, a
NetView operator can start the SNMPIUCV task by entering the following:
START TASK=SNMPIUCV

The SNMPIUCV task tries to connect through IUCV to the SNMP query engine. If
this fails, it retries the connect as specified by the SNMPQERT keyword in the
SNMPARMS member of the hlq.SEZADSIP data set. The default is every 60
seconds.

Configure for the SNMP command processor: SNMP is the command
processor that allows NetView operators and CLISTs to issue SNMP commands.
SNMP resides in the hlq.SEZADSIL data set. This data set should be concatenated
to the STEPLIB DD statement in the NetView start procedure.

Add the following statement to the DSICMD member of the data set specified by
the DSIPARM DD statement in the NetView start procedure.

Chapter 14. Network management 639

SNMP CMDMDL MOD=SNMP,ECHO=Y,TYPE=R,RES=Y

After the SNMPIUCV task is started, you can issue the SNMP command. The
SNMP command passes a request to the SNMPIUCV task to forward to SNMPQE.
The return code represents a request number that is associated with the request.
The responses are returned asynchronously and contain this request number. The
operator or CLIST must use the request number to correlate the response to the
request.

Configure for the SNMP messages: The NetView SNMP messages reside in the
hlq.SEZADSIM data set as DSISNMnn, where nn is the number of the member.
The valid message members are DSISNM00 through DSISNM05, DSISNM10,
DSISNM12, and DSISNM99. The data set containing these members should be
added to the DSIMSG DD statement in the NetView start procedure.

Update the SNMP initialization parameters: SNMPIUCV reads the SNMPARMS
member in the hlq.SEZADSIP data set at startup. This data set contains the
initialization parameters for SNMP. The data set containing SNMPARMS should be
added to the DSIPARM DD statement in the NetView startup procedure. Refer to
z/OS Communications Server: IP Configuration Reference for detailed information
for the SNMP parameter data set (SNMPARMS).

Configure the z/OS UNIX SNMP (osnmp) command

The osnmp command is used to send SNMP requests to SNMP agents on local or
remote hosts. The requests can be SNMPv1, SNMPv2, or SNMPv3. For SNMPv2
and SNMPv3 requests, the OSNMP.CONF configuration file is required. The
winSNMPname specified on an OSNMP.CONF statement can be used as the value
of the -h parameter on the osnmp command. For a detailed explanation of the
parameters you can specify on the osnmp command, see the z/OS
Communications Server: IP System Administrator’s Commands.

To configure the osnmp command, perform the following tasks:
v Provide osnmp configuration information
v Provide user MIB object information

osnmp

OSNMP.CONF

MIBS.DATA

Figure 71. Configuration files for osnmp

640 z/OS V1R4.0 CS: IP Configuration Guide

|
|

Provide osnmp configuration information
The OSNMP.CONF file is used to define target agents and, for SNMPv3, the
security parameters to be used in sending requests to them.

The contents of the file, regardless of location, are the same. Only the first file
found is used. A sample of this file is installed as HFS file
/usr/lpp/tcpip/samples/snmpv2.conf. This sample should be copied and modified for
your installation. Refer to z/OS Communications Server: IP Configuration Reference
for more information.

Examples:

v Example 1:

The following entry defines an SNMPv2c node for osnmp:
mvs1 9.67.113.79 snmpv2c

where mvs1 is the name used with the -h parameter on the osnmp command
and 9.67.113.79 is the IP address of the SNMPv2c agent.

v Example 2:

The following entry defines an SNMPv3 node:

where v3mak is the name used on the -h parameter of the osnmp command.
SNMP requests sent using this entry uses USM user name u1 using HMAC-MD5
authentication but no encryption.

v Example 3:

The following entry defines an SNMPv3 node. The needed authentication and
privacy keys will be generated from the password u6password.

The USM user is u6. The authentication protocol is HMAC-SHA, and CBC 56-bit
DES encryption is used.

Provide user MIB object information
If you want to use the textual names for MIB objects that are not defined in the
compiled MIB, then you can define them to the osnmp command using the
MIBS.DATA file. All the objects in the list in the Management Information Base (MIB)
Objects appendix in the z/OS Communications Server: IP User’s Guide and
Commands are in the compiled MIB. A sample of the MIBS.DATA file is installed as
HFS file /usr/lpp/tcpip/samples/mibs.data. Copy this sample and modify it for your
installation.

MIBS.DATA statement syntax
The MIBS.DATA statements syntax can be used to specify character (usually called
textual) names for MIB objects not defined in any compiled MIB supplied with z/OS
CS. You can then use these character/textual names as the name of the objects on
the osnmp command.

The format of a statement in this file is:
character_object_name object_identifier object_type

Refer to z/OS Communications Server: IP Configuration Reference for more
information about syntax.

v3mak 127.0.0.1 snmpv3 u1 - - AuthNoPriv HMAC-MD5 7a3e34265e0e029f27d8b4235ecfa987 - -

v3sap 127.0.0.1 snmpv3 u6 u6password - AuthNoPriv HMAC-SHA - DES -

Chapter 14. Network management 641

Step 3: Configure the SNMP subagents
This section contains information about configuring the TCP/IP subagent.

There are three SNMP subagents shipped with z/OS CS:

v The TCP/IP subagent reports information about the TCP/IP stack.

v The OMPROUTE subagent reports information specific to OSPF. The
ROUTESA_CONFIG statement is used in the OMPROUTE configuration file to
configure the OMPROUTE subagent. For details on ROUTESA_CONFIG, refer to
z/OS Communications Server: IP Configuration Reference.

v The SLA subagent reports information about defined service policies and
performance statistics related to traffic using those policies. For configuration
information about the SLA subagent, see Chapter 12, “Quality of Service (QoS)”
on page 565.

There are two statements in the profile data set used to configure the TCP/IP
subagent, the SACONFIG and ITRACE statements.

v SACONFIG

Use the SACONFIG statement to configure the subagent. The SACONFIG
parameters determine whether or not the subagent is automatically started at
TCP/IP initialization, what port number to use to contact the agent, and other
configuration values. For a detailed explanation of this statement, refer to z/OS
Communications Server: IP Configuration Reference.

v ITRACE

Use the ITRACE statement to determine what trace information, if any, should be
recorded by the subagent. For a detailed explanation of this statement, refer to
z/OS Communications Server: IP Configuration Reference.

Step 4: Configure the Open Systems Adapter (OSA) support
The TCP/IP subagent can retrieve SNMP management data from the Open
Systems Adapter Support Facility (OSA/SF) for several OSA adapters. ATM
management data is supported for any OSA-2 ATM or OSA-Express ATM155
adapters. Ethernet management data is supported for any OSA-Express Gigabit
Ethernet or OSA-Express QDIO Fast Ethernet adapters. Tables of OSA-Express
management data are supported for any OSA-Express Gigabit Ethernet, Fast
Ethernet, or ATM155 adapters.

The TCP/IP subagent retrieves the data using the OSA/SF components IOAOSASF
(OSA/SF application) and IOASNMP (OSA/SF socket application). For more
information on these components, see “OSA/SF prerequisites” on page 644.
Specifying the SACONFIG profile statement, with the OSAENABLED and OSASF
parameters, in the TCP/IP profile data set causes the TCP/IP subagent to try to
connect to the OSA/SF socket application, IOASNMP, using the TCP protocol and
the port number specified on the OSASF parameter. If the subagent connects
successfully, the following message is issued:
EZZ3218I SNMP SUBAGENT: CONNECTED TO OSA/SF

Because of timing considerations, the TCP/IP subagent might not be able to
connect to IOASNMP at initalization. If this occurs, the subagent will attempt to
connect when the first request for OSA MIB data is received. Therefore, the
EZZ3218I message might not always be issued during subagent initialization.

642 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|

|

|
|
|
|

When retrieving management data from the OSA adapters, the TCP/IP subagent
sends a request to IOASNMP for the data, passing the adapter’s portname as an
identifier. The portname is obtained from the DEVICE and LINK profile statements
used to define the adapter to the TCP/IP stack. The IOASNMP socket application
uses APPC to pass the request to the OSA/SF application. The OSA/SF application
then retrieves the data from the adapter and returns it to IOASNMP. IOASNMP uses
its TCP connection to the TCP/IP subagent to return the data to the subagent. If
this configuration is active and either the IOASNMP application or the TCP/IP
subagent terminates, the subagent will issue the following message:
EZZ3219I SNMP SUBAGENT: DISCONNECTED FROM OSA/SF

To obtain the management data, the adapters must be defined to the TCP/IP stack
where the subagent is active, through DEVICE and LINK statements in the TCP/IP
profile.

v To retrieve ATM management data, the ATM adapter must be defined as an ATM
device/link, even if it is configured for ATM LAN emulation mode and is therefore
also defined to some TCP/IP instance as an LCS or MPCIPA device. For
OSA-Express ATM155 adapters configured for QDIO LAN Emulation mode, you
can use one of the adapter’s logical port names on the PORTNAME parameter
of the ATM DEVICE statement.

v To retrieve Ethernet management data, the OSA-Express adapter must be
defined as an MPCIPA Ethernet link.

v To retrieve OSA-Express management data, the adapters must be defined as the
following TCP/IP device/link types:

– MPCIPA link for Gigabit Ethernet

– MPCIPA or LCS Ethernet link for Fast Ethernet

– ATM device/link for ATM155

If the port name is manually configured at the adapter, then management data can
be retrieved from the adapter even if it is not active and not in use by any TCP/IP
stack or by VTAM. If the port name is dynamically configured (e.g. MPCIPA links),
then the adapter has to be active to some TCP/IP stack to retrieve the management
data.

Current support consists of:

v Interface table from RFC2233 for ATM, LAN emulation links, AAL5 and ATM layer
interfaces.

v ATM Channel table from the IBM MVS Enterprise-Specific MIB for OSA-2 ATM
adapters.

v ATM Port and PVC tables from the IBM MVS Enterprise-Specific MIB for OSA-2
ATM and OSA-Express ATM155 adapters .

v ATM LAN Emulation tables from the IBM MVS Enterprise-Specific MIB for OSA-2
ATM and OSA-Express ATM155 adapters.

v atmInterfaceConfTable from RFC1695 for OSA-2 ATM and OSA-Express ATM155
adapters.

v IP over ATM tables from RFC2320 for OSA-2 ATM and OSA-Express ATM155
adapters.

v OSA-Express Channel and Performance tables from the IBM MVS
Enterprise-Specific MIB for OSA-Express Gigabit Ethernet, Fast Ethernet, and
ATM155 adapters. The performance MIB object values in the
ibmMvsOsaExpChannelTable, and all of the MIB object values in the
ibmMvsOsaExpPerfTable, are only available starting with zSeries processors
where the adapters are, at least, at microcode level 1.31.

Chapter 14. Network management 643

|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|

v OSA-Express Ethernet Port table from the IBM MVS Enterprise-Specific MIB for
OSA-Express Gigabit Ethernet and Fast Ethernet adapters.

v OSA-Express Ethernet SNA table from the IBM MVS Enterprise-Specific MIB for
OSA-Express Fast Ethernet adapters.

v dot3StatsTable from EtherLike-MIB in RFC2665 for OSA-Express Gigabit
Ethernet and QDIO Fast Ethernet adapters.

v Asynchronous SNMP Trap generation for operational management:

– ATM Permanent Virtual Circuit (PVC) creation -
ibmMvsAtmOsasfAtmPvcCreate Trap (ATM OSA-2 only).

– ATM Permanent Virtual Circuit (PVC) deletion -
ibmMvsAtmOsasfAtmPvcDelete Trap (ATM OSA-2 only).

v Provide method for assigning an IP Address to the ATM Port.

Use the osnmp set command against the ibmMvsAtmOsasfPortIpAddress MIB
object to assign the IP Address.

OSA/SF prerequisites
The TCP/IP subagent provided by z/OS CS will connect to OSA/SF to obtain
management data. For a subagent to establish a connection to OSA/SF, two
OSA/SF components must be started:

v IOAOSASF

IOAOSASF is a sample JCL procedure that can be used to start the main
OSA/SF address space. The sample has a job name of OSASF1.

v IOASNMP

IOASNMP is a sample JCL procedure that starts the OSA/SF-provided z/OS
UNIX socket application that interconnects the TCP/IP subagent with OSASF1.

These sample procedures and all entities that they call are provided with OSA/SF.
For a detailed explanation of how to set up OSA/SF on your MVS system, see OSA
Planning. The primary purpose of OSA/SF is to manage OSA Adapters. It has been
extended to support OSA management via SNMP. An instance of IOAOSASF,
IOASNMP, the TCP/IP stack, the TCP/IP subagent, and the SNMP agent must be
started on every MVS image where OSA management support is needed.

The recommended startup order is:

1. Start IOAOSASF and wait until it completely initializes. IOAOSASF must be
started before IOASNMP.

2. Include OSNMPD (the CS SNMP agent) and IOASNMP on the AUTOLOG
profile statement for your TCP/IP stack. This ensures that they will be started by
autolog processing when TCP/IP is started. For additional profile statement
requirements, see “Required TCP/IP profile statements” on page 645. Start the
TCP/IP stack.

On an MVS image only a single instance of either IOAOSASF or IOASNMP can (or
should) be started. An attempt to start multiple copies of IOAOSASF will be
rejected. Starting multiple copies of IOASNMP will yield unpredictable results.

Ensure that OSA/SF is at Version 2 Release 1 level or higher with the OSA/SF
APAR OW45237 applied.

644 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|

|

|
|
|
|
|

Required TCP/IP profile statements
For a detailed description of the statements mentioned here, refer to z/OS
Communications Server: IP Configuration Reference. The following TCP/IP profile
statements must be updated for OSA management support:

v SACONFIG

On the SACONFIG statement, OSA Management support must be enabled by
specifying OSAENABLED. Omission of OSAENABLED when TCP/IP is started
will result in no OSA management support. The SACONFIG statement controls
the operation of the subagent that runs in a TCP/IP address space as a separate
task.

The OSASF parameter specifies which port IOASNMP should use to Listen for
connections from subagents to OSA/SF. For an explanation of the usage of this
parameter when starting multiple TCP/IP instances, see “Multiple TCP/IP
instances considerations”. It is recommended that the OSASF port be reserved
by also specifying it on a PORT statement.

For example:
SACONFIG OSAENABLED OSASF 721

v PORT

Prereserve the port to be used in communication with OSA/SF.

For example:
PORT

721 TCP IOASNMP ; OSA/SF TCP/IP Communications

In the above example since IOASNMP runs as a z/OS UNIX application the port
could have been reserved for z/OS UNIX. Review the /etc/services HFS file to
insure that there are no port conflicts.

v DEVICE and LINK

Provide ATM DEVICE and LINK statements for any OSA ATM adapter for which
you want SNMP ATM management data. For example:
DEVICE osaName ATM PORTNAME portname
LINK linkName ATM osaName

Provide DEVICE and LINK statements for any OSA-Express Ethernet adapter for
which you want SNMP Ethernet management data. For example:
DEVICE portname MPCIPA NONROUTER
LINK linkName IPAQENET portname

Multiple TCP/IP instances considerations

Subagent connection to OSA/SF
When multiple z/OS CS instances are active in the same MVS image, only one of
the TCP/IP instances is connected to IOASNMP. In order for a TCP/IP instance to
connect to IOASNMP the OSASF parameter must be specified on the SACONFIG
Profile statement.

IOASNMP connects to a TCP/IP instance and acts as a server, receiving
connections from those TCP/IP subagents where OSAENABLED was specified on
the SACONFIG Profile statement. The result is that all these subagents connect
through the same TCP/IP to IOASNMP in order to retrieve OSA information from
OSA/SF. For a depiction of this process, see Figure 72 on page 646.

Chapter 14. Network management 645

If IOASNMP loses its connection to TCP/IP it terminates and needs to be restarted.

If the currently connected TCP/IP terminates, IOASNMP will attempt to connect to
another TCP/IP instance for which the OSASF parameter was specified on the
SACONFIG Profile statement, using the port number specified for the OSASF
parameter. The subagents will also attempt to reconnect to OSA/SF via IOASNMP
using this same OSASF port number. For this reason it is recommended that the
same OSASF port number be used on the SACONFIG statement of every TCP/IP
instance where the OSASF parameter is specified.

Whenever a socket error occurs on the OSA/SF socket, the connected subagents
will issue the following message:
EZZ3219I SNMP SUBAGENT: DISCONNECTED FROM OSA/SF

When the subagent connection is reestablished, the following message is issued:
EZZ3218I SNMP SUBAGENT: CONNECTED TO OSA/SF

Step 5: Configure the trap forwarder daemon
Most SNMPv1 agents forward traps to port 162. If a manager needs to listen for
these traps, it has to bind to port 162 and listen for it. When a manager has already
issued a bind it is impossible for another manager to listen for the same traps. The
Trap Forwarder daemon eliminates this problem by listening for traps on port 162
and forwarding them to all the configured managers.

You can configure the Trap Forwarder daemon to receive a trap on a specified port
and forward it to multiple other ports on the same host and on different hosts. This
will allow multiple SNMP managers on z/OS to be able to receive all the traps sent
to one port.

To configure the Trap Forwarder daemon, perform the following tasks:

1. Provide PROFILE.TCPIP statements.

2. Provide Trap Forwarder configuration.

3. Start the Trap Forwarder daemon (TRAPFWD).

Figure 72. Subagent connection to OSA/SF

646 z/OS V1R4.0 CS: IP Configuration Guide

Provide PROFILE.TCPIP statements
Add or update the following PORT configuration statements in hlq.PROFILE.TCPIP.

The default port used by the trap forwarder daemon to receive trap datagrams is
UDP port 162. If you want to ensure that no other application uses this port, you
must specify the following PORT statement:
PORT

162 UDP TRAPFWD ; Trap Forwarder daemon

If the daemon will be started from the z/OS shell, reserve the port for z/OS UNIX by
changing OMVS instead of TRAPFWD. Note that by doing so, the osnmp command
could make use of the port if it is started (with the trap option) before TRAPFWD is
started.

Provide trap forwarder configuration information
The TRAPFWD.CONF file defines the configuration parameters for trapfwd daemon.

A sample of the TRAPFWD.CONF is shown below:
#
A sample configuration file for trapfwd
#
Syntax : ip_address/host_name port_number option
#
#
9.67.113.79 1064 ADD_RECVFROM_INFO
myHost 1066
myHost 1067 ADD_RECVFROM_INFO
myHost 1099
9.67.35.37 1064 ADD_RECVFROM_INFO
- 1065
- 1068 ADD_RECVFROM_INFO

For more information about the statement syntax, refer to z/OS Communications
Server: IP Configuration Reference.

Starting and stopping the trap forwarder daemon
The Trap Forwarder daemon can be started from the z/OS UNIX shell or from the
MVS console.

Starting the trap forwarder daemon from z/OS UNIX
This example starts the Trap Forwarder daemon on the standard port (port 162).
trapfwd

This example starts the Trap Forwarder daemon on a particular port (port 5062).
trapfwd -p 5062

Starting the trap forwarder daemon from an MVS console: Update cataloged
procedure TRAPFWD by copying the sample in hlq.SEZAINST(EZASNTRA) to your
system. Refer to z/OS Communications Server: IP Configuration Reference the for
more information about this cataloged procedure.

Stopping the trap forwarder daemon:

From MVS:
P TRAPFWD

Chapter 14. Network management 647

|

If TRAPFWD was started from a cataloged procedure, procname is the member
name of that procedure. If TRAPFWD was started from the z/OS shell, procname is
useridX, where X is the sequence number set by the system. To determine the
sequence number issue d omvs u=userid from the console. This will show the
programs running under the user ID.

From UNIX:
kill < pid >

Issue the kill command to the process ID (PID) associated with TRAPFWD. To find
the PID issue the ps -ef command from the z/OS shell.

Tracing: The modify command can be used to display the existing tracing level
and also to change the tracing level.

The following example sets the trace level of the Trap Forwarder Daemon to 1.
MODIFY TRAPFWD,TRACE,LEVEL=1

The following example displays the level of tracing set for the Trap Forwarder
Daemon.
MODIFY TRAPFWD,TRACE,QUERY

Refer to z/OS Communications Server: IP Configuration Reference for more
information about syntax.

Dynamically refreshing configuration: The modify command can be used to
dynamically refresh the configuration information. When this is done, the old
configuration information is discarded completely. The configuration file is read
again and the daemon is initialized.

The following example refreshes the configuration by reading the configuration file.
MODIFY TRAPFWD,REFRESH

Refer to z/OS Communications Server: IP Configuration Reference for more
information about syntax.

648 z/OS V1R4.0 CS: IP Configuration Guide

Chapter 15. Remote Print Server (LPD)

Read “Understanding search orders of configuration information” on page 18. It
covers important information about data set naming and search sequences.

The Remote Print (LPD) server supports the Line Print Daemon and allows you to
print on JES controlled printers from any host in your TCP/IP network that
implements the Line Print client functions. These client functions are invoked with
the LPR command. LPR is available as a TSO command, and the LPD server is
implemented as a started z/OS task.

Refer to the z/OS Communications Server: IP System Administrator’s Commands
for information on starting and stopping the TCP/IP print server (LPD). When LPD is
stopped by the MVS operator with the P procname command, LPD will terminate
any TCP/IP connections currently transferring data. Before ending, LPD will finish
spooling to JES any print jobs that it has received and is currently spooling. JES will
handle these jobs after LPD ends.

This chapter describes how to configure the LPD server. To operate the LPD server
after it is running, refer to z/OS Communications Server: IP Configuration
Reference.

The (SMTP or LPD) server uses the Pascal socket API, so VMCF must be started
for the server to successfully initialize. If VMCF is not started, message EZY1980E
will be issued and the server will terminate.

Configuring the Remote Print Server
Steps to configure the Remote Print Server:

1. Specify AUTOLOG and PORT statements in PROFILE.TCPIP.

2. Update the LPD server cataloged procedure.

3. Update the LPD server configuration data set.

4. Create a banner page (optional).

For information about operating and controlling the LPD server, refer to z/OS
Communications Server: IP Configuration Reference.

Step 1: Configuring PROFILE.TCPIP for LPD
If you want the LPD server started automatically when the TCPIP address space is
started, include the name of the member containing the LPD server cataloged
procedure in the AUTOLOG list in hlq.PROFILE.TCPIP. For example:
AUTOLOG

LPSERVE
ENDAUTOLOG

To ensure that port TCP 515 is reserved for the LPD server, also add the name of
the member containing the LPD cataloged procedure to the PORT statement in
hlq.PROFILE.TCPIP. For example:
PORT

515 TCP LPSERVE

See the z/OS Communications Server: IP Configuration Reference for more
information about the AUTOLOG and PORT statements.

© Copyright IBM Corp. 2000, 2002 649

Step 2: Updating the LPD server cataloged procedure
Update the LPD server cataloged procedure to suit your local configuration by
copying the sample to your system or recognized PROCLIB from
hlq.SEZAINST(LPSPROC) and modifying the sample. Specify LPD parameters, and
change the data set names as required. See “Specifying LPD server parameters”
for more information on the LPD server parameters.

Specifying LPD server parameters
The system parameters required by the LPD server are passed by the PARM option
on the EXEC statement of the LPD cataloged procedure. Update the following
parameters as required.

LPDDATA=‘data_set_name’
Specifies the fully qualified name of the data set containing the LPD
configuration statements. This data set can be sequential or a member of a
PDS.

LPDPRFX=‘PREFIX your_prefix’
Specifies the high-level qualifier to be used for temporary data sets created by
the LPD server. Include both the PREFIX keyword and your qualifier in the
quoted string. The qualifier may be up to 26 characters. If it is blank, it defaults
to the procedure name. The LPD task requires the authority to create and
modify data sets with this prefix.

DIAG=‘options’
Specifies any of the following diagnostic options in a quoted string of keywords
separated by blanks. For example, DIAG=’VERSION TRACE’

VERSION
Displays the version number.

TYPE Activates high-level trace facility in the LPD server. Significant events,
such as the receipt of a job for printing, are recorded in the //SYSOUT
DD data set specified in your LPD server cataloged procedure.

TRACE
Causes a detailed trace of activities within the LPD server to record in
the //SYSOUT DD data set specified in your LPD server cataloged
procedure. The detailed tracing can also be activated with the DEBUG
statement in the LPD server configuration data set and with the TRACE
command of the SMSG interface.

Note: The JCL PARM= statement has a limit of 100 characters.

Configuring LPDDATA
Use a DD card that requires the LPD configuration file to be in a data set.

//SYSLPDD DD DISP=SHR,DSN=TCPIP.V2R7.SEZAINST(LPDDATA)

Using this example, the DD card must be specified as SYSLPDD, but the data set
name can be any valid data set name with a member specified up to 44 characters.

In order to use the DD card method, you must comment out the LPDDATA= and
remove ″&LPDDATA’’; from the PARM= statement.

Note: The search order for the configuration file is:
1. LPDDATA= on the PARM= statement
2. //SYSLPDD DD statement
3. hlq.LPD.CONFIG

650 z/OS V1R4.0 CS: IP Configuration Guide

If both the LPDDATA= statement on the PARM= statement and the
//SYSLPDD DD statement are specified, the data set name specified on
LPDDATA= is used.

The LPD server does not limit the number of print jobs it handles per connection.
This can cause a memory abend to occur if too many print jobs are sent in one
connection. Certain LPR clients, such as SUN UNIX, are set up to send multiple
jobs in one connection. It is recommended that the LPD start procedure be started
with a region size of 6M and the LPR client send no more than 50 print jobs in one
connection.

Step 3: Updating the LPD server configuration data set
The LPD configuration data set defines the local, NJE, and remote services
(printers and punches) used by the LPD server. To update the LPD server
configuration data set, copy the sample provided in hlq.SEZAINST(LPDDATA) and
modify it to suit your installation. Refer to z/OS Communications Server: IP
Configuration Reference for more details.

v To define a printer or punch:

– Include a SERVICE statement with the appropriate parameters for each
printer or punch your are defining.

– Specify the type of service with the LOCAL, NJE, or REMOTE parameter in
the SERVICE statement.

– For local or NJE services, include any of the optional parameters to further
define the service: EXIT, FAILEDJOB, FILTERS, LINESIZE, PAGESIZE,
RACF, and SMTP.

– For remote services, specify the destination printer and host. Any additional
specifications are defined on the remote system and are not necessary in the
SERVICE statement.

v To turn on LPD server tracing, include the optional DEBUG statement.

v To authorize users for the SMSG interface, include the optional OBEY statement.

v Printer names cannot contain an at sign (@).

Step 4: Creating a banner page (optional)
LPBANNER is the name of the default program that is provided in executable form
in the SEZATCP data set. This program is specified on the EXIT parameter in the
SERVICE statement. LPBANNER prints a separator page that contains, in large
letters, a banner stating “LPD BANNER”, the user ID, the job name, and the job
class. Field headings of HOST, USER, JOB, and CLASS appear in smaller letters.

The sample exit LPBANNER uses machine carriage control and is designed to be
used with the SERVICE PRINTER LOCAL or SERVICE PRINTER NJE statements.
Banner pages are usually not used with the SERVICE PUNCH or SERVICE
RECFMU statements; however, if you want to have banner pages (headers) for the
SERVICE PUNCH or SERVICE RECFMU devices, a user created banner exit is
required.

You can either use the executable form or copy and modify the sample source
provided in hlq.SEZAINST(EZAAE04S) and hlq.SEZAINST(EZAAE04T) to create a
banner. If you are changing the source to create your own banner, assemble and
link-edit these data sets as reentrant. You can modify and use the following JCL to
do this. Changing the ENTRY and NAME to something other than LPBANNER will
avoid possible maintenance problems in the future.

Chapter 15. Remote Print Server (LPD) 651

//ASMLNK JOB MSGLEVEL=(1,1),MSGCLASS=A,CLASS=A,REGION=1024K
//ASM1 EXEC PGM=ASMA90,PARM=’OBJECT,XREF(FULL)’
//STEPLIB DD DISP=SHR,DSN=HLA.OSV1R4.SASMMOD1
//* ASSEMBLER H
//SYSLIB DD DSN=tcpip..V3R4.SEZACMAC,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,5)),DSN=&&SYSUT1
//SYSPUNCH DD DUMMY,DCB=BLKSIZE=80
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSN=&&OBJECT(EZAAE04S),DISP=(,PASS),UNIT=SYSDA,
// SPACE=(CYL,(5,5,1)),DCB=BLKSIZE=400
//SYSIN DD DSN=tcpip.V3R4.SEZAINST(EZAAE04S),DISP=SHR
/*
//ASM2 EXEC PGM=ASMA90,PARM=’OBJECT,NODECK,XREF’
//STEPLIB DD DISP=SHR,DSN=HLA.OSV1R4.SASMMOD1
//* ASSEMBLER H
//SYSLIB DD DSN=tcpip.V3R4.SEZACMAC,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,5)),DSN=&&SYSUT1
//SYSPUNCH DD DUMMY,DCB=BLKSIZE=80
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSN=&&OBJECT(EZAAE04T),DISP=(OLD,PASS)
//SYSIN DD DSN=tcpip.V3R4.SEZAINST(EZAAE04T),DISP=SHR
/*
//LNK EXEC PGM=IEWL,PARM=’LIST,NCAL,RENT,LET’
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLMOD DD DSN=tcpip.V3R4.SEZATCP,DISP=SHR
//AEZAMODS DD DSN=tcpip.V3R4.AEZAMODS,DISP=SHR
//OBJECT DD DSN=&&OBJECT,DISP=(OLD,DELETE)
//SYSLIN DD *

ORDER EZBOECPR
INCLUDE AEZAMODS(EZBOECPR)
INCLUDE OBJECT(EZAAE04S)
INCLUDE OBJECT(EZAAE04T)
MODE AMODE(24),RMODE(24)
ENTRY LPBANNER
NAME LPBANNER(R)

/*

652 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Chapter 16. Remote procedure calls

This chapter contains information to help you configure:

v PORTMAP

v UNIX PORTMAP

v NCS

v NDB

Read “Understanding search orders of configuration information” on page 18. It
covers important information about data set naming and search sequences.

Configuring the PORTMAP address space
This section describes how to configure the PORTMAP address spaces, which runs
the Portmapper function.

Portmapper is the software that supplies client programs with the port numbers of
server programs. Clients contact server programs by sending messages to port
numbers where receiving processes receive the message. Because you make
requests to the port number of a server rather than directly to a server program,
client programs need a way to find the port number of the server programs they
wish to call. Portmapper standardizes the way clients locate the port number of the
server programs supported on a network.

Steps to configure PORTMAP:

1. Specify AUTOLOG and PORT statements in hlq.PROFILE.TCPIP.

2. Update the PORTMAP cataloged procedure.

3. Define the data set for well-known procedure names.

Step 1: Configuring PROFILE.TCPIP for PORTMAP
If you want the PORTMAP server to start automatically when the TCPIP address
space is started, you should include PORTMAP in the AUTOLOG statement in the
hlq.PROFILE.TCPIP data set.
AUTOLOG

PORTMAP
ENDAUTOLOG

Note: If your system is using the Network File System (NFS) server, you must
start the PORTMAP address space. See z/OS Network File System
Customization and Operation for more information.

To ensure that port UDP 111 and TCP 111 are reserved for the PORTMAP server,
also add the name of the member containing the PORTMAP cataloged procedure to
the PORT statement in hlq.PROFILE.TCPIP:
PORT

111 UDP PORTMAP
111 TCP PORTMAP

See the z/OS Communications Server: IP Configuration Reference for more
information about the AUTOLOG and PORT statements.

© Copyright IBM Corp. 2000, 2002 653

Step 2: Updating the PORTMAP cataloged procedure
Update the PORTMAP cataloged procedure to suit your local conditions by copying
the sample provided in hlq.SEZAINST(PORTPROC) to your system or recognized
PROCLIB and modifying it to suit your local conditions. Change the data set names
as required. Refer to the z/OS Communications Server: IP Configuration Reference
for more details.

Step 3: Defining the data set for well-known procedure names
z/OS CS includes a data set that contains a list of commonly used procedure
names. This data set is used by the RPCINFO command to resolve remote
program numbers into their equivalent program names.

To create the data set, copy the ETCRPC member of hlq.SEZAINST to the default
data set called hlq.ETC.RPC. If a user has a user_id.ETC.RPC data set defined, it
takes precedence over the preceding data set.

Normally, you would not change this data set except to add a new application to the
list. To add a new application, add a line that contains the following items:
v The program_name of the new application or procedure
v The program_number of the new application or procedure
v Any comments regarding the description of the program

The items are variable in format, each separated by a blank.

The hlq.SEZAINST(ETCRPC) data set contains the well-known procedure names.
Following is the ETCRPC sample.
#
rpc 1.2 86/10/07
#
COPYRIGHT = NONE.
#
portmapper 100000 portmap sunrpc
rstatd 100001 rstat rup perfmeter
rusersd 100002 rusers
nfs 100003 nfsprog
ypserv 100004 ypprog
mountd 100005 mount showmount
ypbind 100007
walld 100008 rwall shutdown
yppasswdd 100009 yppasswd
etherstatd 100010 etherstat
rquotad 100011 rquotaprog quota rquota
sprayd 100012 spray
3270_mapper 100013
rje_mapper 100014
selection_svc 100015 selnsvc
database_svc 100016
rexd 100017 rex
alis 100018
sched 100019
llockmgr 100020
nlockmgr 100021
x25.inr 100022
statmon 100023
status 100024
#
NDB Program numbers added for more useful rpcinfo output
Values are in decimal. Corresponding hexadecimal values
for the NDB port manager is X’20000020’ and for the NDB
servers are from X’20000021’ to X’20000084’.
#

654 z/OS V1R4.0 CS: IP Configuration Guide

|
|

ndbportmgr 536870944
ndbserver1 536870945
ndbserver2 536870946
ndbserver3 536870947
ndbserver4 536870948
ndbserver5 536870949
ndbserver6 536870950
ndbserver7 536870951
ndbserver8 536870952
ndbserver9 536870953
ndbserver10 536870954
ndbserver11 536870955
ndbserver12 536870956
ndbserver13 536870957
ndbserver14 536870958
ndbserver15 536870959
ndbserver16 536870960
ndbserver17 536870961
ndbserver18 536870962
ndbserver19 536870963
ndbserver20 536870964
ndbserver21 536870965
ndbserver22 536870966
ndbserver23 536870967
ndbserver24 536870968
ndbserver25 536870969
ndbserver26 536870970
ndbserver27 536870971
ndbserver28 536870972
ndbserver29 536870973
ndbserver30 536870974
ndbserver31 536870975
ndbserver32 536870976
ndbserver33 536870977
ndbserver34 536870978
ndbserver35 536870979
ndbserver36 536870980
ndbserver37 536870981
ndbserver38 536870982
ndbserver39 536870983
ndbserver40 536870984
ndbserver41 536870985
ndbserver42 536870986
ndbserver43 536870987
ndbserver44 536870988
ndbserver45 536870989
ndbserver46 536870990
ndbserver47 536870991
ndbserver48 536870992
ndbserver49 536870993
ndbserver50 536870994
ndbserver51 536870995
ndbserver52 536870996
ndbserver53 536870997
ndbserver54 536870998
ndbserver55 536870999
ndbserver56 536871000
ndbserver57 536871001
ndbserver58 536871002
ndbserver59 536871003
ndbserver60 536871004
ndbserver61 536871005
ndbserver62 536871006
ndbserver63 536871007
ndbserver64 536871008
ndbserver65 536871009
ndbserver66 536871010

Chapter 16. Remote procedure calls 655

ndbserver67 536871011
ndbserver68 536871012
ndbserver69 536871013
ndbserver70 536871014
ndbserver71 536871015
ndbserver72 536871016
ndbserver73 536871017
ndbserver74 536871018
ndbserver75 536871019
ndbserver76 536871020
ndbserver77 536871021
ndbserver78 536871022
ndbserver79 536871023
ndbserver80 536871024
ndbserver81 536871025
ndbserver82 536871026
ndbserver83 536871027
ndbserver84 536871028
ndbserver85 536871029
ndbserver86 536871030
ndbserver87 536871031
ndbserver88 536871032
ndbserver89 536871033
ndbserver90 536871034
ndbserver91 536871035
ndbserver92 536871036
ndbserver93 536871037
ndbserver94 536871038
ndbserver95 536871039
ndbserver96 536871040
ndbserver97 536871041
ndbserver98 536871042
ndbserver99 536871043
ndbserver100 536871044

Starting the PORTMAP address space
If you did not include PORTMAP in the AUTOLOG statement, you can start
PORTMAP with the START command. For example:

START PORTMAP

PORTMAP must be started before NDB can run.

Configuring the z/OS UNIX PORTMAP address space
This section describes how to configure the z/OS UNIX PORTMAP address space,
which runs the Portmapper function.

Steps to configure z/OS UNIX PORTMAP:

1. Specify PORT statements in hlq.PROFILE.TCPIP.

2. Update the PORTMAP cataloged procedure.

Step 1: Configuring PROFILE.TCPIP for UNIX PORTMAP
If you want the PORTMAP server to start automatically when the TCPIP address
space is started, you should include PORTMAP in the AUTOLOG statement in the
hlq.PROFILE.TCPIP data set.
AUTOLOG

PORTMAP JOBNAME PORTMAP1
ENDAUTOLOG

656 z/OS V1R4.0 CS: IP Configuration Guide

To ensure that port UDP 111 and TCP 111 are reserved for the z/OS UNIX
PORTMAP server, add the z/OS UNIX PORTMAP server jobname to the PORT
statement in hlq.PROFILE.TCPIP. If you use the sample cataloged procedure,
PORTMAP, to start the z/OS UNIX PORTMAP server, the jobname is PORTMAP1:
PORT

111 UDP PORTMAP1 ; Portmapper Server
111 TCP PORTMAP1 ; Portmapper Server

See the z/OS Communications Server: IP Configuration Reference for more
information about the PORT statement.

Step 2: Updating the PORTMAP cataloged procedure
Update the PORTMAP cataloged procedure to suit your local conditions by copying
the sample provided in hlq.SEZAINST(OPORTPRC) to your system or recognized
PROCLIB and modifying it to suit your local conditions. Change the data set names
as required. Refer to the z/OS Communications Server: IP Configuration Reference
for more details.

Starting the PORTMAP address space
There are two ways to start the portmapper as a z/OS UNIX socket application:

v From the z/OS shell

v As a started task

To start the portmapper from the z/OS shell, the user ID must be an authorized
superuser. The authorized superuser ID can issue oportmap & to start the
portmapper. For the authorization procedure, see z/OS UNIX System Services
Planning.

You can also start PORTMAP as a started task with the START command as
follows:

START PORTMAP

Note: If your system is using the Network File System (NFS) server, see z/OS
Network File System Customization and Operation for more information.

Configuring the NCS interface
This section describes how to configure the Network Computing System (NCS).

NCS is the Remote Procedure Call (RPC) implementation of Apollo’s Network
Computing Architecture (NCA**).

NCS includes:
1. RPC run-time library
2. Location broker
3. Network Interface Definition Language (NIDL) compiler

The RPC run–time library and the location broker provide runtime support. Together
these two elements make up the Network Computing Kernel (NCK) which includes
all the software necessary to run a distributed application. The NIDL compiler is a
tool for developing NCS-based applications.

In order to execute NCS applications in an MVS environment, you must start a local
location broker (LLBD). One of the hosts in your TCP/IP network must also start the

Chapter 16. Remote procedure calls 657

global location broker (GLBD). Both the LLBD and the NRGLBD maintain
information about active NCS server applications.

Understanding the LLBD server
The LLBD manages the LLB database which stores information for the NCS-based
servers running on this host.

Your host must run LLBD if you want to support the location broker forwarding
function or allow remote access to the LLB database. The LLBD function must be
started on the host before any other NCS-based servers are started and before the
NRGLBD is started.

The LLB database is stored in the data set ADM@SRV.LLB@LL.DATABASE, which
is not created until an entry is registered with the LLBD. This data set can be
administered using the lb@admin tool.

Understanding the NRGLBD server
The NRGLBD manages the NCS global location broker (GLB) database. The GLB
helps clients locate servers on a network or internet.

There are two versions of the GLB daemon: replicated GLBD and NRGLBD. The
replicated GLBD is only available on Apollo, SunOS, and Ultrix systems. For other
systems, such as IBM, only the NRGLBD is available. The advantage of replicated
GLBD over NRGLBD is that the GLBD can be run at the same time on several
network hosts, providing greater availability in the event that one of the hosts
running GLBD fails or if there is a partial network failure.

You cannot use the NRGLBD on your system if:
v The replicated version of GLBD can run on some other host in your network
v Another host in your network is already running NRGLBD

The GLB database is stored in a data set ADM@SRV.LLB@LG.DATABASE. This
data set is not created until an entry is registered with the NRGLBD.

The record structure for the LLBD and the NRGLBD databases is identical.

Steps to configure NCS:
1. Specify AUTOLOG and PORT statements in hlq.PROFILE.TCPIP.
2. Update the NRGLBD cataloged procedure in hlq.SEZAINST(NRGLBD).
3. Update the LLBD cataloged procedure in hlq.SEZAINST(LLBD).

For more information about NCS, see Network Computing System Reference
Manual.

Step 1: Configuring PROFILE.TCPIP for NCS
If you want LLBD and NRGLBD to start automatically when the TCPIP address
space is started, then you should include the names of the members containing the
LLBD and NRGLBD cataloged procedures in the AUTOLOG statement in the
hlq.PROFILE.TCPIP data set.

The LLBD must be running before you start NRGLBD. Therefore, you must put
LLBD before NRGLBD in the AUTOLOG statement.

658 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|

AUTOLOG
LLBD
NRGLBD

ENDAUTOLOG

To ensure that port UDP 135 is reserved for the LLBD server, add the name of the
member containing the LLBD cataloged procedure to the PORT statement in the
hlq.PROFILE.TCPIP data set.
PORT

135 UDP LLBD

Note: z/OS UNIX DCE also uses port 135 and therefore cannot be used
concurrently with NCS.

See the z/OS Communications Server: IP Configuration Reference for more
information about the AUTOLOG and PORT statements.

Step 2: Updating the NRGLBD cataloged procedure
Update the NRGLBD cataloged procedure by copying the sample provided in
hlq.SEZAINST(NRGLBD) to your system or recognized PROCLIB and modifying it
to suit your local conditions. Refer to the NCS chapter in z/OS Communications
Server: IP Configuration Reference for more details.

Step 3: Updating the LLBD cataloged procedure
Update the LLBD cataloged procedure by copying the sample provided in
hlq.SEZAINST(LLBD) to your system or recognized PROCLIB and modifying it to
suit your local conditions. Refer to the NCS chapter in z/OS Communications
Server: IP Configuration Reference for more information.

Configuring the Network Database (NDB) System
This section describes how to configure the Network Database (NDB) System. NDB
provides access to mainframe relational database systems using TCP/IP and the
remote procedure call (RPC) protocol. This allows interoperability among a variety
of workstation and mainframe users with DB2 and MVS. End users in a VM, MVS,
DOS, OS/2, RISC System/6000 AIX, or Sun UNIX Microsystems environment can
issue SQL statements interactively or invoke NDB services from within a C
application program. NDB services can then be used to pass SQL statements to
DB2 and to handle responses from DB2.

The Network Database (NDB) System consists of:
v The Network Database (NDB) Port Manager
v The NDB Port Client
v 1–100 NDB Servers
v NDB Clients

Note: The NDB System requires the Portmapper to run. See “Configuring the
PORTMAP address space” on page 653 for further information.

Steps to Configure the NDB System

1. Update the NDB setup sample job (NDBSETUP).

2. Run the NDB setup sample job.

3. Update and install the DB2 sample connection exit routine (DSN3SATH), if
necessary.

Chapter 16. Remote procedure calls 659

4. Update the PORTS cataloged procedure (PORTSPRC).

5. Update the PORTC cataloged procedure (PORTCPRC).

6. Create the NDB clients.

Note: Repeat steps 1 and 2, and step 3 if necessary, to configure each DB2
subsystem that is to be accessed by NDB servers.

Step 1: Updating the NDB setup sample job
Update the NDBSETUP sample job by copying the sample in
hlq.SEZAINST(NDBSETUP) to a partitioned data set (PDS) or sequential data set
and modifying it to suit your local installation. Change the DD statements as
required. A copy of NDBSETUP can also be found z/OS Communications Server: IP
Configuration Reference.

To restrict the use of NDB to selected users, modify the GRANT statement in
NDBSETUP job replacing PUBLIC with a list of the specified TSO user IDs to whom
you want to grant access. See the DB2 SQL Reference for correct statement
syntax.

THE NDBSETUP job binds the DBRM DBUTIL2 into the DB2 subsystem specified.
In previous releases, the DBRM was bound using the plan name DBUTIL2. For
V3R2, the DBRM is bound using the plan name EZAND320. By using different plan
names for each release, you can have different levels of TCP/IP simultaneously
accessing the same DB2 subsystems.

Note: NDBSETUP binds the DBRM DBUTIL2 with the isolation level of cursor
stability: ISOLATION(CS) on the BIND command. If a higher degree of unit
of work integrity is needed than is provided by an isolation level of cursor
stability, this can be changed to an isolation level of repeatable read:
ISOLATION(RR) on the BIND command. Refer to the DB2 Application
Programming and SQL Guide for information regarding isolation level
settings and their effects. Check with your database administrator regarding
isolation level policies at your site.

Step 2: Running the NDB setup job
Run NDBSETUP to bind the DBRM DBUTIL2 to the DB2 subsystem specified and
grant the execute (run) privileges to public. Verify that it ran successfully before
proceeding with this configuration.

Notes:

1. The DB2 subsystem must be Version 2 Release 3 or higher. This requirement
applies to all TCP/IP servers that use DB2.

2. The DB2 subsystem must be up and running before you submit the NDBSETUP
job.

3. The NDBSETUP job must be executed from a user ID with the authority to bind
plans for the specified DB2 subsystem.

Step 3: Updating and installing the DB2 sample connection exit routine

Note: If you will be running only one NDB server in a single address space, you
may skip this step.

Because the address space running a PORTC cataloged procedure is capable of
running between 1 to 20 NDB servers, changes must be made in the DB2 sample

660 z/OS V1R4.0 CS: IP Configuration Guide

connection exit routine, DSN3SATH ASSEMBLE. These changes tell DB2 where to
look for the host userid to be used for this session (the host userid was supplied by
the user at NDB client invocation).

After making the necessary changes in DSN3SATH ASSEMBLE, this routine can be
assembled and link edited using the DB2 supplied job DSNTIJEX in the DSNSAMP
library. See DSN3SATH ASSEMBLE modifications for NDB for the updated
assembler code. For more information, see the DB2 Administration Guide.
DSNTIJEX will place a copy of the executable in the DSNEXIT library. There is one
DSNEXIT library for each DB2 subsystem and it must be updated with the
recommended modifications for each DB2 subsystem that will be accessed via
NDB. Run DSNTIJEX once (updating the hlq for the DSNEXIT library) for each DB2
subsystem that will be accessed via NDB.

DSN3SATH ASSEMBLE modifications for NDB
...
**********SECTION 1: DETERMINE THE PRIMARY AUTHORIZATION ID *********
* *
* IF THE INPUT AUTHID IS NULL OR BLANKS, CHANGE IT TO THE AUTHID *
* IN EITHER THE JCT OR THE FIELD POINTED TO BY ASCBJBNS. *
* *
* THE CODE IN THIS SECTION IS AN ASSEMBLER LANGUAGE VERSION OF *
* THE DEFAULT IDENTIFY AUTHORIZATION EXIT. IT IS EXECUTED ONLY *
* IF THE FIELD ASXBUSER IS NULL UPON RETURN FROM THE RACROUTE *
* SERVICE. FOR EXAMPLE, IT DETERMINES THE PRIMARY AUTH ID FOR *
* ENVIRONMENTS WITH NO SECURITY SYSTEM INSTALLED AND ACTIVE. *
* *

SPACE
* MOVED CHECK ON AIDLPRIM THAT WAS HERE TO PAST CHECK FOR TSO FOREGRND

L R7,ASCBCSCB GET CSCB ADDRESS
CLI CHTRKID-CHAIN(R7),CHTSID IS IT TSO FOREGROUND ADDR SPACE
BNE SATH010 BRANCH IF NOT

* HERE IS NEW LOCATION OF CHECK ON AIDLPRIM
CLI AIDLPRIM,BLANK IS THE INPUT PRIMARY AUTHID NULL
BH SATH020 SKIP IF A PRIMARY AUTH ID EXISTS

* END OF MOVED CODE - CHECK ON AIDLPRIM
L R7,ASCBJBNS GET ADDRESS OF LOGON ID
MVC AIDLPRIM,0(R7) MAKE IT THE PRIMARY AUTH ID
B SATH019 TO END OF THIS ROUTINE

SATH010 DS 0H NOT TSO, BUT BATCH OR STC SPACE
L R6,PSATOLD-PSA CURRENT TCB ADDRESS

* START OF CODE ADDED TO SUPPORT TCP/IP NDB MULTI DB2 SUBSYSTEM FUNCT
USING TCB,R6
L R7,TCBSENV CURRENT ACEE ADDRESS
USING ACEE,R7
CLC ACEEACEE,EYEACEE IS THIS AN ACEE?
BNE SATH015 NO, GO USE JOB USER ID
L R14,TCBJSCB ADDRESS OF JSCB
USING IEZJSCB,R14
CLC JSCBPGMN,=CL8’PORTCLNT’ IS IT NDB SERVER AS ?
BNE SATH015 NO, GO USE JOB USER ID
MVC AIDLPRIM,ACEEUSRI MOVE USER ID INTO AIDL PRIMARY
MVC AIDLACEE,TCBSENV MOVE ACEE POINTER INTO AIDL
B SATH020
DROP R6,R7,R14

SATH015 DS 0H
CLI AIDLPRIM,BLANK IS THE INPUT PRIMARY AUTHID NULL
BH SATH020 SKIP IF A PRIMARY AUTH ID EXISTS

* END OF CODE ADDED TO SUPPORT TCP/IP NDB MULTI DB2 SUBSYSTEM FUNCTION
L R7,TCBJSCB-TCB(,R6) CURRENT JSCB ADDRESS
L R5,JSCBJCT-IEZJSCB(,R7) CURRENT JCT ADDRESS
LA R5,X’10’(,R5) ADJUST FOR CORRECT DSECT MAPPING
MVC AIDLPRIM(7),JCTUSER-INJMJCT(R5) COPY JOB USER ID

Chapter 16. Remote procedure calls 661

MVI AIDLPRIM+7,BLANK ASSURE BLANK PADDING
SATH019 DS 0H END OF ROUTINE

EJECT...

Step 4: Updating the PORTS cataloged procedure
The PORTS procedure starts the NDB Port Manager. Update the PORTS cataloged
procedure by copying the sample in hlq.SEZAINST(PORTSPRC) to your system or
recognized PROCLIB and modifying it to suit your local installation. Change the DD
statements, as required. Refer to z/OS Communications Server: IP Configuration
Reference for the PORTS procedure.

Note: You must start PORTS before you start PORTC.

Step 5: Updating the PORTC cataloged procedure
The PORTC procedure starts the NDB Port Client and the NDB Servers. Update
the PORTC cataloged procedure by copying the sample in
hlq.SEZAINST(PORTCPRC) to your system or recognized PROCLIB and modifying
it to suit your local installation. Refer to the z/OS Communications Server: IP
Configuration Reference for a copy of PORTC.

Running multiple PORTC procedures
Currently the NDB Port Manager is able to manage up to 100 NDB Servers. Each
PORTC procedure is able to start up to 20 NDB servers. The number of NDB
Servers that can be started in a single address space depends on a number of
factors, such as how large a region size can be specified and the size of the
catalog work area. These factors may limit the number of NDB Servers able to start
in a single address space to less than the maximum of 20.

In order to reach the desired number of NDB Servers, you can run multiple PORTC
procedures. When starting a PORTC procedure, one of the parameters specified is
DB2SSID. See z/OS Communications Server: IP Configuration Reference for more
information on the DBSSID parameter. This parameter indicates which DB2
subsystem all NDB servers running in that address space will access. Each started
PORTC procedure may contain a different value for the DBSSID parameter; that is,
when starting multiple PORTC procedures, each procedure may point to the same
or different DB2 subsystems. To do this:

1. Copy your customized PORTC cataloged procedure to another data set or PDS
member.

2. Change the name in the first statement (PROC statement). For example if your
original PORTC procedure starts with //PORTC PROC, use //PORTC1 PROC
and //PORTC2 PROC for the other procedures.

3. Ensure that:
v HOMEID parameter settings are the same for all PORTC procedures.
v When the NUMSRV parameter settings for all the PORTC procedures are

added together, the total does not exceed 100.
v The NUMSRV value for any given PORTC does not exceed 20.

4. Start the new PORTC procedures.

Step 6: Creating the NDB clients
z/OS CS provides NDB sample client code that can be compiled and run in a
variety of environments. NDB clients can be created on VM, MVS, or on DOS,

662 z/OS V1R4.0 CS: IP Configuration Guide

OS/2, AIX on RS/6000, or SUN UNIX workstations. You can find the NDB client
source code in the hlq.SEZAINST data set, unless otherwise noted. They are
written in the C language.

The process to create a client is similar in each case. Instructions for creating a
client in each of the supported environments are specified. The MVS client code
shipped with TCP/IP is ready to use without modification but you can modify it, if
necessary, to suit your environment.

Note: To build an NDB client, you need access to the C runtime libraries and the
TCP/IP RPC libraries. The TCP/IP products for the client platforms must be
installed on those platforms before you build the NDB clients. In addition, for
the DOS and OS/2 platforms, you must also install the TCP/IP Programmer’s
Toolkit.

Creating an NDB client in the AIX environment
1. Bring the following C source programs down to your workstation:

Program Rename to
NDBCC ndbc.c
NDBCLTC ndbclt.c
NDBMAINC ndbmain.c
NDBOUTC ndbout.c
NDBPCLTC ndbpclt.c
NDBXC ndbx.c

2. Bring the following H (header) files down to your workstation:

Program Rename to
NDBCLTH ndbclt.h
NDBGLOBH ndbglob.h
NDBH ndb.h
NDBOUTH ndbout.h
NDBPCLTH ndbpclt.h
NDBRPCFH ndbrpcf.h

3. Issue the command:
cc -o ndbclnt ndbmain.c ndbc.c ndbclt.c ndbout.c ndbpclt.c ndbx.c

Notes:

1. This version of the NDB sample client code was produced and tested on AIX
Version 3 Release 2 for RISC System/6000.

2. The file NDBRPCFC (ndbrpcf.c) is not necessary unless the level of RPC being
used does not support the RPC clnt_create function.

3. If the NDBH (ndb.h) file, an output of the RPCGEN process, is erased or
corrupted and cannot be retrieved from the MVS TCP/IP library, do the following
to generate a new copy before compiling the NDB sample client code.

a. Bring the following X (RPC input) file down to your workstation:

Program Rename to
NDBXX ndb.x

b. Issue the command:
rpcgen -h -o ndb.h ndb.x

See TCP/IP AIX Programmer’s Reference for more information on the RPCGEN
process.

Chapter 16. Remote procedure calls 663

Creating an NDB client in the SUN UNIX environment
1. Bring the following C source programs down to your workstation:

Program Rename to
NDBCC ndbc.c
NDBCLTC ndbclt.c
NDBMAINC ndbmain.c
NDBOUTC ndbout.c
NDBPCLTC ndbpclt.c
NDBXC ndbx.c

2. Bring the following H (header) files down to your workstation:

Program Rename to
NDBCLTH ndbclt.h
NDBGLOBH ndbglob.h
NDBH ndb.h
NDBOUTH ndbout.h
NDBPCLTH ndbpclt.h
NDBRPCFH ndbrpcf.h

3. Issue the command:
cc -o ndbclnt -DNOPROTO ndbmain.c ndbc.c ndbclt.c ndbout.c ndbx.c

ndbpclt.c

Notes:

1. This version of the NDB sample client code was produced and tested on SUN
OS Version 4 Release 1 Modification 1.

2. The file NDBRPCFC (ndbrpcf.c) is not necessary unless the level of RPC being
used does not support the RPC clnt_create function.

3. If the NDBH (ndb.h) file, an output of the RPCGEN process, is erased or
corrupted and cannot be retrieved from the MVS TCP/IP library, do the following
to generate a new copy before compiling the NDB sample client code.

a. Bring the following X (RPC input) file down to your workstation:

Program Rename to
NDBXX ndb.x

b. Issue the command:
rpcgen -h -o ndb.h ndb.x

Refer to SUN Network Programming for more information.

Creating an NDB client in the OS/2 environment
1. Bring the following C source programs down to your workstation:

Program Rename to
NDBCC ndbc.c
NDBCLTC ndbclt.c
NDBMAINC ndbmain.c
NDBOUTC ndbout.c
NDBPCLTC ndbpclt.c
NDBRPCFC ndbrpcf.c
NDBXC ndbx.c

2. Bring the following H (header) files down to your workstation:

Program Rename to
NDBGLOBH ndbglob.h
NDBH ndb.h
NDBCLTH ndbclt.h

664 z/OS V1R4.0 CS: IP Configuration Guide

NDBOUTH ndbout.h
NDBPCLTH ndbpclt.h
NDBRPCFH ndbrpcf.h

3. Bring the following OS/2 files down to your workstation:

Program Rename to
NDBCLDEF ndbclnt.def
NDBOS2M ndbos2.mak

NDBOS2M has been stored as a binary file on MVS and, as such, cannot be
read on the MVS host. When using FTP to move this file from MVS to OS/2,
make sure the transfer type used is BINARY. The OS/2 makefile (NDBOS2M) is
in the SEZAXLD2 data set.

4. Issue the command:
nmake -f ndbos2.mak

Notes:

1. This version of the NDB sample client code was produced and tested on OS/2
Warp Version 3.0, TCP/IP for OS/2 Version 3.0, including the TCP/IP for OS/2
Programmer’s Toolkit, and IBM C Set ++ Version 2.0.

2. If the NDBH (ndb.h) file, an output of the RPCGEN process, is erased or
corrupted and cannot be retrieved from the z/OS TCP/IP library, do the following
to generate a new one before compiling the NDB sample client code.

a. Bring the following X (RPC input) file down to your workstation:

Program Rename to
NDBXX ndb.x

b. Issue the command:
rpcgen -h -o ndb.h ndb.x

See z/OS Communications Server: IP Programmer’s Reference and CICS
Communicating with CICS OS/2 for more information.

Creating an NDB client in the DOS environment
1. Bring the following C source programs down to your workstation

Program Rename to
NDBCC ndbc.c
NDBCLTC ndbclt.c
NDBMAINC ndbmain.c
NDBOUTC ndbout.c
NDBPCLTC ndbpclt.c
NDBRPCFC ndbrpcf.c
NDBXC ndbx.c

When using FTP to move these files from MVS to DOS, make sure the transfer
type used is ASCII.

2. Bring the following H (header) files down to your workstation:

Program Rename to
NDBCLTH ndbclt.h
NDBGLOBH ndbglob.h
NDBH ndb.h
NDBOUTH ndbout.h
NDBPCLTH ndbpclt.h
NDBRPCFH ndbrpcf.h

Chapter 16. Remote procedure calls 665

When using FTP to move these files from MVS to DOS, make sure the transfer
type used is ASCII.

3. Bring the following DOS makefile down to your workstation:

Program Rename to
NDBDOSM ndbdos.mak

NDBDOSM has been stored as an binary file on MVS and, as such, cannot be
read on the MVS host. When using FTP to move this file from MVS to DOS,
make sure the transfer type used is BINARY. The DOS makefile (NDBDOSM) is
in the SEZAXLD2 data set.

4. Issue the command:
nmake -f ndbdos.mak

Notes:

1. This version of the NDB sample client code was produced and tested on IBM
DOS Version 6.0, TCP/IP for DOS Version 2.1.1.4, including the TCP/IP for
DOS Programmer’s Toolkit 2, Microsoft Windows Version 3.1 and Microsoft
C/C++ Version 7.0.

The TCP/IP for DOS Programmer’s Toolkit Version 2.1.1.4 contains a fix to the
RPC library required to run the NDB DOS client.

2. TCP/IP for DOS does not support RPC server functions because it does not
have a PORTMAPPER. Therefore, if the NDBH (ndb.h) file, an output of the
RPCGEN process, is erased or corrupted and cannot be retrieved from the
z/OS TCP/IP library, do the following to generate a new one on a workstation or
mainframe that does support RPC server functions before compiling the NDB
sample client code.

a. Bring the following X (RPC input) file down to your workstation or
mainframe:

Program Rename to
NDBXX ndb.x

b. Issue the command:
rpcgen -h -o ndb.h ndb.x

c. Transfer the resulting NDB.H file to your DOS workstation

See TCP/IP DOS Programmer’s Reference, and the programmer’s reference
manuals for the workstation or the mainframe being used for RPCGEN for more
information.

Creating an NDB client in the VM environment
1. Bring the following C source programs to your VM user ID:

Program Rename to
NDBCC NDBC C
NDBCLTC NDBCLT C
NDBMAINC NDBMAIN C
NDBOUTC NDBOUT C
NDBPCLTC NDBPCLT C
NDBXC NDBX C

2. Bring the following H (header) files to your VM user ID:

Program Rename to

2. The TCP/IP for DOS Programmer’s Toolkit Version 2.1.1.4 contains a fix to the RPC library that is needed for the NDB DOS client
to run.

666 z/OS V1R4.0 CS: IP Configuration Guide

NDBCLTH NDBCLT H
NDBGLOBH NDBGLOB H
NDBH NDB H
NDBOUTH NDBOUT H
NDBPCLTH NDBPCLT H
NDBRPCFH NDBRPCF H

3. Bring the following Assembler file to your VM user ID:

Program Rename to
NDBVMPWA NDBVMPW ASSEMBLE

4. Bring the following VM REXX EXEC to your VM user ID:

Program Rename to
NDBCLBD NDBCLBD EXEC

5. Execute the EXEC by entering:
ndbclbd

Notes:

1. This version of the NDB Sample Client code was produced and tested on
VM/ESA® Version 1 Release 2 using CMS Level 9, running in XA mode and in
ESA mode.

2. The file NDBRPCFC (NDBRPCF C) is not necessary unless the level of RPC
being used does not support the RPC clnt_create function.

3. If the NDBH (NDB H) file, an output of the RPCGEN process, should be erased
or corrupted and cannot be retrieved from the MVS TCP/IP library, you will need
to generate a new one before you can successfully compile the NDB sample
client code. To do this:

a. Bring the following X (RPC input) file to your VM user ID:

Program Rename to
NDBXX NDB X

b. Issue the command:
rpcgen -h -o ndb h ndb x

See TCP/IP for VM Programmer’s Reference for further information.

Creating an NDB client in the MVS environment
1. Copy the following C source programs to a PDS:

Program Rename to
NDBCC NDBC
NDBCLTC NDBCLT
NDBMAINC NDBMAIN
NDBOUTC NDBOUT
NDBPCLTC NDBPCLT
NDBXC NDBX

2. Copy the following H (header) files to a PDS:

Program Rename to
NDBCLTH NDBCLT
NDBGLOBH NDBGLOB
NDBH NDB
NDBOUTH NDBOUT
NDBPCLTH NDBPCLT
NDBRPCFH NDBRPCF

Chapter 16. Remote procedure calls 667

3. Copy the following sample JCL to a data set or PDS and customize it following
the instructions found in the sample:

NDBCLMVS

4. Execute the JCL.

Notes:

1. This version of the NDB Sample Client code was produced and tested on
MVS/ESA Version 4 Release 2 Modification 2.

2. The file NDBRPCFC (NDBRPCF C) is not necessary unless the level of RPC
being used does not support the RPC clnt_create function.

3. If the NDBH (NDB H) file, an output of the RPCGEN process, should be erased
or corrupted and cannot be retrieved from the MVS TCP/IP library, you will need
to generate a new one before you can successfully build the NDB sample client.
To do this:

a. Copy the following X (RPC input) file to a data set:

Program Rename to
NDBXX NDB.X

b. Issue the command:
rpcgen -h -o ndb.h ndb.x

See the z/OS Communications Server: IP Programmer’s Reference for further
information.

Starting NDB
Follow these steps to start NDB:

1. Ensure that the Portmapper is up and running. For more information, see
“Configuring the PORTMAP address space” on page 653.

2. Run the PORTSPRC procedure to start the NDB Port Manager.

3. After PORTSPRC has started, run the PORTCPRC procedure to start the NDB
Port Client and NDB Servers. Specify the start parameters as required.

4. Ensure that the required DB2 subsystem is running.

5. Invoke the NDB client.

668 z/OS V1R4.0 CS: IP Configuration Guide

Chapter 17. Mail servers

Configuring the SMTP server
Before you configure...

Read “Understanding search orders of configuration information” on page 18. It
covers important information about data set naming and search sequences.

Note: Before configuring the SMTP server, it is assumed that the necessary
SYS1.PARMLIB changes have been made. Consult the Program Directory
for current information about the storage estimates for this version. The
Program Directory also contains information about customization of certain
SYS1.PARMLIB members, which must be completed before the initial
program load (IPL) for the MVS image.

This chapter describes how to configure the Simple Mail Transfer Protocol (SMTP)
server. There is also a section about operating the SMTP server.

The (SMTP or LPD) server uses the Pascal socket API, so VMCF must be started
for the server to successfully initialize. If VMCF is not started, message EZY1980E
will be issued and the server will terminate.

If you have specified PROFILE NOINTERCOM in your TSO user ID’s profile, then
there are some SMTP server messages that you will not receive.

Checklist for working within the SMTP environment
1. SMTP needs to interface with JES utilities to create, read, write and purge data

from the JES spool. JES exit programs might interfere with SMTP functioning
properly.

2. JES initialization parameters must be set up correctly so mail can be sent to
SMTP and so that local mail can be placed on the JES spool for local users.

3. Because SMTP needs authority to create, read, write and purge data on the
JES spool, any security programs such as RACF, protecting JES spool access,
must have the SMTP started task name in their definitions of authorized users.

4. DASD management is important to have SMTP run properly, it is recommended
that SMTP have its own dedicated volumes. The MAILFILEVOLUME statement
may be used to specify a particular volume where newly allocated SMTP data
sets reside. Refer to the z/OS Communications Server: IP Configuration
Reference for more information on this parameter.

5. SMTP is a heavy user of data set I/O functions. It creates data sets for every
piece of mail it processes. There are two data sets associated with each piece
of mail:

a. SMTPhlq.*.ADDRBLOK (control file)

b. SMTPhlq.*.NOTE (message content)

The SMTP high level qualifier (SMTPhlq) is configured in the SMTP
configuration data set using the MAILFILEDSPREFIX statement. When SMTP is
executing, SMTP must have exclusive access to the data sets it has created to
work properly.

To avoid contention, applications that manage DASD should only be run when
SMTP is NOT active or exclude the SMTP data sets or exclude the volume(s)

© Copyright IBM Corp. 2000, 2002 669

on which they resided from their processing. If contention occurs you may see
EZA5335E messages repeating. Also the SMTP high level qualifier can be used
to exclude the SMTP data sets if necessary.

Configuration process
Steps to configure SMTP:

1. Specify AUTOLOG and PORT statements in the hlq.PROFILE.TCPIP data set.

2. Update the SMTP cataloged procedure hlq.SEZAINST(SMTPPROC).

3. Customize the SMTPNOTE CLIST and modify PARMLIB members.

4. Customize the SMTP mail headers (optional).

5. Set up a TCP-to-NJE mail gateway (optional).

6. Specify configuration statements in the SMTP configuration data set.

7. Create an SMTP security table (optional).

8. Enable SMTP domain name resolution.

9. Enable sending messages to SMTP users and users on an IP Network.

10. Optionally, design SMTP exit to inspect and filter unwanted mail (spam)

Step 1: Specify AUTOLOG and PORT statements in
hlq.PROFILE.TCPIP
If you want the SMTP server to start automatically when the TCPIP address space
is started, include the name of the member containing the SMTP cataloged
procedure in the AUTOLOG statement of the hlq.PROFILE.TCPIP data set.
AUTOLOG

SMTP
ENDAUTOLOG

To ensure that port TCP 25 is reserved for SMTP, verify that the name of the
member containing the SMTP cataloged procedure has been added to the PORT
statement in hlq.PROFILE.TCPIP.
PORT

25 TCP SMTP

For more information on the AUTOLOG and PORT statements, see z/OS
Communications Server: IP Configuration Reference.

HOME statement in the hlq.PROFILE.TCPIP data set consideration: SMTP allows a
maximum of 255 entries on the HOME statement.

Step 2: Update the SMTP cataloged procedure
Update the SMTP cataloged procedure by copying the sample in
hlq.SEZAINST(SMTPPROC) to your system or recognized PROCLIB. Specify
SMTP parameters, and change the data set as required to suit your local
configuration. Refer to z/OS Communications Server: IP Configuration Reference for
more detailed information about the procedure.

Note: SMTP does not support HFS files.

Step 3: Customize the system CLIST and modify PARMLIB data
sets
You must copy and customize the SMTPNOTE CLIST on every system where users
will be able to send mail with the SMTPNOTE command. This includes TCP/IP
nodes and each NJE node that sends mail through SMTP on a remote gateway
node. SMTPNOTE uses the TSO transmit (XMIT) command to interface with SMTP.

670 z/OS V1R4.0 CS: IP Configuration Guide

Copy the SMTPNOTE member of the hlq.SEZAINST data set into the system
CLIST data set. Since the hlq.SEZAINST data set is in a fixed format, the
SMTPNOTE member may be truncated if your system CLIST library is not in a fixed
format.

You should customize the following variables in the SMTPNOTE CLIST:

DDNAME
The DDNAME that SMTPNOTE will use to allocate the input data set. The
allocation is done to allow shared access to the data set. The default value
is set to EZBSMTPN and should only be changed if this value will cause a
conflict on your system.

HOSTNAME
The name of the system on which this CLIST is installed. Typically, the
name is the NJE node name of this system.

SMTPNODE
The NJE node on which the SMTP server runs. Typically, HOSTNAME and
SMTPNODE have the same value. When SMTPNODE is used on an NJE
network in conjunction with a TCP-to-NJE gateway, the value of this
parameter is the NJE node name of that gateway.

SMTPJOB
The name of the address space in which SMTP runs at SMTPNODE.
Usually this is SMTP.

TEMPDSN
The name of the temporary data set used to store the contents of the note
being created. This can be any arbitrary data set name that ends with the
low-level qualifier, TEXT. Do not use a fully qualified name. If you do not
fully qualify the name (no quotes), the data set name will be prefixed by the
userid. If you enclose the name in single quotes, several users can use this
temporary data set.

TIMEZONE
The time zone for your system. This will appear in the ″Date:″ stamp of the
RFC 822 header. See RFC 822 for valid time zone formats.

ATSIGN
Some foreign languages need to use a different character to represent the
@ symbol. This input symbol is a single byte representation of the @
symbol in their national language code page.

You should also modify the following PARMLIB members:

IEFSSNxx
The IEFSSNxx member may be modified in one of the following two ways:

v The following lines may be included:
TNF,MVPTSSI
VMCF,MVPXSSI, nodename

where nodename is the NJE node name. The NJE node name,
nodename, must be the same as the hostname and the smtpnode in the
SMTPNOTE CLIST.

v If you are using restartable VMCF, you must make changes to IEFSSxx
members in the SYS1.PARMLIB data set.

For introductory information on restartable VMCF, refer to “Step 3:
Configure VMCF and TNF” on page 72. For the MVS system changes

Chapter 17. Mail servers 671

|
|
|
|
|

required for restartable VMCF, refer to the TCP/IP for MVS Program
Directory. For information on VMCF commands, refer to z/OS
Communications Server: IP Diagnosis.

Note: You should define the SystemName in the IEFSSNxx PARMLIB
member to be the same as your JES2 or JES3 (NJE) nodename.
This is required for correct delivery of SMTP mail. For example, if
the following line is coded in your TCPIP.DATA data set:
HOSTNAME P390

you need to code NAME=P390 in your IEFSSNxx PARMLIB
member. As an alternative, instead of using the IEFSSNxx parmlib
member to specify the JES node, you can use the keyword
NJENODENAME within your SMTP configuration to a valid NJE
node. For more information, see NJENODENAME.

IKJTSOxx
The TRANSREC statement must contain the correct nodename.

Step 4: Customize the SMTP mail headers (Optional)
Electronic mail has a standardized syntax for text messages that are sent across
networks. The standard syntax is described in RFC 822. Messages have an
envelope and contents. Envelopes contain all necessary information to accomplish
transmission and delivery of the message content. The fields within the envelope
are in a standard format.

In most cases, the mail header defaults are adequate. If it is necessary for you to
change them, you can use the REWRITE822HEADER statement in the SMTP
configuration data set to control the way SMTP performs a rewrite of the RFC 822
mail headers. Mail headers are passed from the local system, or NJE network, to
the TCP network. Mail headers passing from the TCP network to the local system
or NJE network are not affected. Only the addresses under certain RFC 822 header
fields can be subject to the header rewriting rules.

The header fields affected by the REWRITE822HEADER statement are:

Field Description

From The identity of the person sending the message.

Resent-From
Indicates the person that forwarded the message.

Reply-To
Provides a mechanism for indicating any mailboxes to which responses are
to be sent.

Resent-Reply-To
Indicates the person to whom you should forward the reply.

Return-Path
This field is added by the mail transport service at the time of final delivery.
It contains definitive information about the address and route back to the
originator of the message.

Sender
The authenticated identity of the agent that sent the message. An agent can
be a person, system, or process.

Resent-Sender
The authenticated identity of the agent that has resent the message.

672 z/OS V1R4.0 CS: IP Configuration Guide

To Contains the identity of the primary recipient of the message.

Cc Contains the identity of the secondary (informational) recipients of the
message.

Bcc Contains the identity of additional recipients of the message. The contents
of this field are not included in copies sent to the primary and secondary
recipients of the message but are included in the author’s copy.

The SMTP rules data set: You can override the default rules for header
addresses by creating an SMTP rules data set. This allows you to customize the
address transformations to the needs of a particular site. If you are customizing
SMTP mail headers, this task is required.

The SMTP rules data set is pointed to by the //SMTPRULE DD statement in the
SMTP cataloged procedure. The SMTP rules data set consists of:

Field definition
Contains the names of all header fields whose addresses are to be
rewritten.

Rules definition
Contains the rewrite rules for the header fields.

Statement syntax: In creating the SMTP rules data set you must use the following
syntax conventions:

v The data set statements are free-format. Tokens can be separated by an
arbitrary number of spaces, and statements can span an arbitrary number of
lines. However, you must end every statement with a semicolon (;).

v A character string appearing within single quotation marks ('...') is not
case-sensitive. For example, 'abc' represents 'abc', 'Abc', 'ABC', and so forth. The
use of character strings is illustrated in the following sections.

v A character string appearing within double quotation marks ("...") is
case-sensitive. For example, "abc" only represents "abc". It does not represent
"Abc", "ABC", and so forth.

Special characters, such as @ and % are treated the same whether enclosed by
single quotation marks or double quotation marks.

v Double-hyphens ("--") are used to begin a comment. The comment extends to
the end of the line.

The following sections describe the components of the SMTP rules data set.
v Format of the field definition section
v Format of the rules definition section

Format of the field definition section: The field definition section is the first section
in any SMTP rules data set. It defines any applicable alias fields, and it is
introduced by the following heading:
Field Definition Section

This section allows similar fields to be grouped under an alias or common name.
This name, or alias, is used to represent the field list. You can define an arbitrary
number of aliases representing a set of field lists.

An alias name can be any alphanumeric sequence of characters that is not a
predefined keyword within the SMTP rules (see the following). However, the alias
name DefaultFields is treated specially by the SMTP configuration interpreter. If

Chapter 17. Mail servers 673

DefaultFields is defined, and if a rule is written that does not specify an associated
field alias, the rules interpreter assumes that DefaultFields is the associated field
alias.

The alias definition within this section is of the following form:
alias_name = alias_definition; optional comment

where alias_name is the name of the alias and alias_definition is an expression
describing which fields are to be grouped under this alias. This expression can be
as simple as a single field name. For example:
MyAlias = ’To’;

The aliases can be a list or set of field names. The field names To, From, Cc, and
Bcc, in the following example are part of a set of field names referenced by the
alias MyAlias.
MyAlias = ’To’ ’From’ ’Cc’ ’Bcc’ ; -- first list of fields

You can combine field names and previously defined aliases to create a new alias.
In the following example, the set of field names defined as MyAlias and the field
names in the new alias YourAlias are combined to form a third set. The new alias
TheirAlias is the union of both aliases and contains the fields of MyAlias and
YourAlias.
MyAlias = ’To’ ’From’ ’Cc’ ’Bcc’;
YourAlias = ’Errors-To’ ’Warnings-To’;
TheirAlias = MyAlias YourAlias;

In the previous example, TheirAlias is an alias that represents the following fields:
TheirAlias: ’To’ ’From’ ’Cc’ ’Bcc’ ’Errors-To’ ’Warnings-To’

You can perform the following operations on set members of the alias to create a
subset of the initial alias:
v Union operations
v Difference operations
v Intersection operations

Union and difference operations: Certain field names can be added to or omitted
from a new alias of field names by using a minus sign to omit set members and an
optional plus sign to include another field name. In the mathematics of sets, when
you add together 2 or more sets, they form a union. When set members are
omitted, the remaining set is created by the difference operation. In the following
example HerAlias and HisAlias are defined. The alias HisAlias is created from the
union of TheirAlias, HerAlias, and the omission of Warning-To and Bcc from the
sets:
HerAlias = ’Reply-To’ ’Sender’;
HisAlias = TheirAlias - ’Warnings-To’ - ’Bcc’ + HerAlias;

In the previous example, HisAlias is an alias that represents the following fields:
HisAlias: ’To’ ’From’ ’Cc’ ’Errors-To’ ’Reply-To’ ’Sender’

Intersection operations: A field definition can include an intersection operation.
When the intersection operation is applied to two field expressions, the resulting set
contains the fields common to both. In the following example, MyAlias and
YourAlias are defined. The alias OurAlias is created from the intersection of
MyAlias and YourAlias. The asterisk (*) is the intersection operator.

674 z/OS V1R4.0 CS: IP Configuration Guide

MyAlias = ’Bcc’ ’Cc’ ’From’ ’Reply-To’;
YourAlias = ’Resent-From’ ’Cc’ ’Sender’ ’To’ ’Bcc’;
OurAlias = MyAlias * YourAlias; -- the intersection

In the previous example, OurAlias represents the following fields:
OurAlias: ’Bcc’ ’Cc’

In the following complex example TheirAlias is created from the intersection of
YourAlias with the sum of MyAlias plus Resent-From:
TheirAlias = (MyAlias + ’Resent-From’) * YourAlias;

In the previous example, TheirAlias represents the following fields:
TheirAlias: ’Bcc’ ’Cc’ ’Resent-From’

The parentheses within the definition of TheirAlias perform the same functions as
in algebra. Field expressions are evaluated from left to right, but the intersection
operation has greater priority than union and difference operations. If parentheses
were not used in the definition of TheirAlias, the result would be:
TheirAlias: ’Bcc’ ’Cc’ ’From’ ’Reply-To’ ’Resent-From’

Format of the rule definition section: The rule definition section is the next section
in any SMTP RULES data set. It contains the header rewriting rules that define the
intended address transformations, and it is introduced by the following heading:
Rule Definition Section

The basic form of a rewrite rule is:
alias :before-address-pattern => after-address-pattern;

where the alias name alias is an optional name representing the fields for which the
rule is applicable. If the alias name alias : is omitted from this part of the rules, then
DefaultFields is assumed.

The sequence of tokens that define how a particular type of address is to be
recognized is the before-address-pattern portion of the rules definition. The
sequence of tokens that define how the address is to appear after the address has
been rewritten is the after-address-pattern portion of the rules definition. The
following example is the rule for converting host names:
A ’@’ NJEHostName => A ’@’ TCPHostName; -- convert host names

In the previous example, A ’@’ NJEHostName is the before-address-pattern portion of
this rule, and A ’@’ TCPHostName is the after-address-pattern portion. This rule
specifies that the address to be rewritten has an arbitrary local name (A), an at sign
(@), and the NJE host name (NJEHostName) of the current site. The rule also
specifies that the rewritten address must contain the same arbitrary local name (A),
an at sign, and the current site’s TCP host name TCPHostName.

SMTP rules syntax conventions: Use the following syntax convention when writing
SMTP rules:

v Some keywords have special meaning to the rules interpreter. For example,
NJEHostName keyword means the NJE host name of the present system, and
TCPHostName keyword means the TCP host name of the present system. For
more information about valid keywords see “Predefined keywords within the
SMTP rules” on page 677. Some keywords, such as TCPHostName, have single
values. Other keywords, such as AltTCPHostName and AnyDomainName, can have
many possible values. To avoid ambiguity, any keyword that can have multiple

Chapter 17. Mail servers 675

values, and is used in the after-address-pattern of a given rule, must appear
exactly once within the before-address-pattern of that rule. The following rule
example shows a valid syntax:

A ’@’ AltTCPHostName ’.’ AltTCPHostName =>
A ’%’ TCPHostName ’@’ TCPHostName;

The following two rules have incorrect syntax because the first keyword
AltTCPHostName must be rewritten to a keyword with specific values. The
AltTCPHostName is attempting to be rewritten to the same AltTCPHostName but
with unknown values, which is not valid.

A ’@’ AltTCPHostName ’.’ AltTCPHostName =>
A ’%’ AltTCPHostName ’@’ TCPHostName;

A ’@’ TCPHostName => A ’@’ AltTCPHostName;

Any rule whose before-address-pattern includes a keyword that has a null value
is ignored during the header rewriting. Thus, if there is no AltNJEDomain defined
in the system configuration data set, no rule that includes AltNJEDomain in the
before-address-pattern is considered during the header rewriting.

v Alphanumeric identifiers that are not within single or double quotation marks, and
that are not predefined keywords, are considered wildcards in the rule statement.
Wildcards represent an arbitrary (non-null) sequence of characters. The identifier
A, in the previous rule example, is a wildcard. Thus, if host were the NJE host
name for the current site, and if tcphost were the TCP host name for the current
site, the previous rule example recognizes abc@host and d@host as candidates
for address rewriting, and rewrites them as abc@tcphost and d@tcphost
respectively. To avoid ambiguity, within the before-address-pattern of a given rule,
no two wildcards are allowed in a row, and the same wildcard cannot be used
more than once. The following rules have valid syntax:

A ’@’ B TCPHostName => A ’%’ B ’@’ TCPHostName;
A ’%’ B ’@’ NJEHostName => A B ’@’ TCPHostName;

The following rules have incorrect syntax because the first rule has 2 wildcards in
a row A and B. The second rule has the same wildcard A repeated:

A B ’@’ TCPHostName => A A ’%’ B ’@’ TCPHostName;
A ’%’ A ’@’ NJEHostName => A ’@’ TCPHostName;

v A character string appearing within single or double quotation marks tells the
rules interpreter where a particular string is to appear within a header address. In
the previous rule example, the ’@’ string in the before-address-pattern tells the
rules interpreter that an at-sign (@) must appear between the arbitrary character
string and the NJE host name. The ’@’ string in the after-address-pattern tells
the rules interpreter that the address must be rewritten so an at-sign appears
between the arbitrary string and the TCP host name. As previously mentioned,
single quotation marks denote strings that are not case-sensitive, and double
quotation marks denote case-sensitive strings.

v The character sequence "=>", with no spaces between the characters, separates
the before-address-pattern from the after-address-pattern.

v The order in which the rules are specified is important; the first rule encountered
whose before-address-pattern matches the current address is the rule to dictate
the address transformation. Once a matching rule has been found for an
address, no other rule is considered.

676 z/OS V1R4.0 CS: IP Configuration Guide

In addition to the rules themselves, there is the capability for some simple logic to
decide at system configuration time which rules within the data set should become
active. These conditions are specified in the form of an IF-THEN-ELSE statement,
as shown in the following example:

IF cond THEN
statement list

ELSE
statement list

ENDIF

A statement list can consist of any number of rules or nested IF statements, or
both. Each IF statement, regardless of whether it is nested, must be ended by an
ENDIF keyword. As with IF statements in other programming languages, the ELSE
clause is optional.

There are only two conditions recognized by an IF statement:
1. IF predefined keyword = 'character string' THEN ... ENDIF
2. IF predefined keyword CONTAINS 'character string' THEN ... ENDIF

The conditional operators = and CONTAINS can be prefixed by the word NOT to
invert the conditions.

The predefined keyword must be a keyword that resolves to a single value at
system configuration time. The character string in the first condition can be null. A
character string cannot span more than one line.

The following example shows the use of IF statements.
IF NJEDomain = " THEN

A ’@’ AnyNJEHostName => A ’%’ AnyNJEHostName ’@’ TCPHostName;
ELSE

A ’@’ NJEHostName ’.’ NJEDomain => A ’@’ TCPHostName;
A ’@’ NJEHostName ’.’ AltNJEDomain => A ’@’ TCPHostName;
IF NJEDomain CONTAINS ’.’ THEN

A ’@’ AnyNJEHostName =>
A ’@’ AnyNJEHostName ’.’ NJEDomain;

A ’@’ AnyNJEHostName ’.’ NJEDomain =>
A ’@’ AnyNJEHostName ’.’ NJEDomain;

A ’@’ AnyNJEHostName ’.’ AltNJEDomain =>
A ’@’ AnyNJEHostName ’.’ NJEDomain;

ELSE
A ’@’ AnyNJEHostName =>

A ’%’ AnyNJEHostName ’.’ NJEDomain ’@’ TCPHostName;
A ’@’ AnyNJEHostName ’.’ NJEDomain =>

A ’%’ AnyNJEHostName ’.’ NJEDomain ’@’ TCPHostName;
A ’@’ AnyNJEHostName ’.’ AltNJEDomain =>

A ’%’ AnyNJEHostName ’.’ NJEDomain ’@’ TCPHostName;
ENDIF

ENDIF

Predefined keywords within the SMTP rules: The following predefined keywords
can be used to define the header rewriting rules:

AltNJEDomain
Matches the alternative domain name of the NJE network as defined by the
ALTNJEDOMAIN statement in the SMTP configuration data set.

AltTCPHostName
Matches any alternative TCP host name of the system, as defined by
ALTTCPHOSTNAME statements in the SMTP configuration data set.

Chapter 17. Mail servers 677

|

AnyDomainName
Matches any fully qualified domain name. Any host name with a period (.) is
considered to be a fully qualified domain name.

AnyNJEHostName
Matches any (unqualified) NJE host name defined in the
SMTPNJE.HOSTINFO data set.

NJEDomain
Matches the domain name of the NJE network as defined by the
NJEDOMAIN statement in the SMTP configuration data set.

NJEHostName
Matches the NJE host name of the system.

SecureNickAddr
Matches an address of the form NJE_user_id@NJE_node_id, where
NJE_user_id, and NJE_node_id are defined with a nickname in the SMTP
security data set.

Note: This only matches user and node IDs that are defined with
nicknames.

When SecureNickAddr is specified in the before-address-pattern of a rule,
SMTP automatically associates the keyword SecureNickName with the
corresponding nickname. This allows SecureNickName to be specified in
the after-address-pattern.

SecureNickName
Matches a nickname defined in the SMTP security data set. When
SecureNickName is specified in the before-address-pattern of a rule, SMTP
automatically associates the keyword SecureNickAddr with the
corresponding NJE_user_id@NJE_node_id. This allows SecureNickAddr to
be specified in the after-address-pattern.

ShortTCPHostName
Matches the first portion of the TCP host name of the system, as defined by
the HOSTNAME statement in the TCPIP.DATA data set. For example, if the
TCP host name was mvs1.acme.com, the value of ShortTCPHostName is
mvs1.

TCPHostName
Matches the TCP host name of the system as defined by the concatenation
of the HOSTNAME and DOMAINORIGIN statements in the TCPIP.DATA
data set.

TCPHostNameDomain
Matches the domain portion of the TCP host name of the system as defined
by the DOMAINORIGIN statement in the TCPIP.DATA data set. For
example, if the TCP host name was mvs1.acme.com, the value of
TCPHostNameDomain is acme.com.

The predefined keywords can consist of any combination of uppercase and
lowercase characters; the rules interpreter does not distinguish between them.

The secure keywords are only valid when SMTP is configured to be a secure
gateway.

678 z/OS V1R4.0 CS: IP Configuration Guide

Default SMTP rules: If the //SMTPRULE DD statement is not found, SMTP uses
a default set of rules. The default set used depends on whether SMTP is configured
as a secure gateway.

SMTP nonsecure gateway configuration defaults: If SMTP is not configured as a
secure gateway, SMTP uses the following defaults:
FIELD DEFINITION SECTION
DEFAULTFIELDS = ’BCC’ ’CC’ ’FROM’ ’REPLY-TO’ ’RESENT-FROM’

’RESENT-REPLY-TO’ ’RESENT-SENDER’ ’RETURN-PATH’
’SENDER’ ’TO’;

RULE DEFINITION SECTION

A ’@’ NJEHOSTNAME => A ’@’ TCPHOSTNAME;

IF NJEDOMAIN = ’’ THEN
A ’@’ ANYNJEHOSTNAME => A ’%’ ANYNJEHOSTNAME ’@’ TCPHOSTNAME;

ELSE
A ’@’ NJEHOSTNAME ’.’ NJEDOMAIN =>’@’ TCPHOSTNAME;
A ’@’ NJEHOSTNAME ’.’ ALTNJEDOMAIN =>’@’ TCPHOSTNAME;
IF NJEDOMAIN CONTAINS ’.’ THEN

A ’@’ ANYNJEHOSTNAME =>
A ’@’ ANYNJEHOSTNAME ’.’ NJEDOMAIN;

A ’@’ ANYNJEHOSTNAME ’.’ NJEDOMAIN =>
A ’@’ ANYNJEHOSTNAME ’.’ NJEDOMAIN;

A ’@’ ANYNJEHOSTNAME ’.’ ALTNJEDOMAIN =>
A ’@’ ANYNJEHOSTNAME ’.’ NJEDOMAIN;

ELSE
A ’@’ ANYNJEHOSTNAME =>

A ’%’ ANYNJEHOSTNAME ’.’ NJEDOMAIN ’@’ TCPHOSTNAME;
A ’@’ ANYNJEHOSTNAME ’.’ NJEDOMAIN =>

A ’%’ ANYNJEHOSTNAME ’.’ NJEDOMAIN ’@’ TCPHOSTNAME;
A ’@’ ANYNJEHOSTNAME ’.’ ALTNJEDOMAIN =>

A ’%’ ANYNJEHOSTNAME ’.’ NJEDOMAIN ’@’ TCPHOSTNAME;
ENDIF

ENDIF

A ’@’ TCPHOSTNAME => A ’@’ TCPHOSTNAME;
A ’@’ SHORTTCPHOSTNAME => A ’@’ TCPHOSTNAME;
A ’@’ ALTTCPHOSTNAME => A ’@’ TCPHOSTNAME;
A ’@’ ANYDOMAINNAME => A ’@’ ANYDOMAINNAME;
A ’@’ B => A ’@’ B ’.’ TCPHOSTNAMEDOMAIN;

SMTP secure gateway configuration defaults: If SMTP is configured as a secure
gateway, SMTP uses the following defaults:
FIELD DEFINITION SECTION
DEFAULTFIELDS = ’BCC’ ’CC’ ’FROM’ ’REPLY-TO’ ’RESENT-FROM’

’RESENT-REPLY-TO’ ’RESENT-SENDER’ ’RETURN-PATH’
’SENDER’ ’TO’;

RULE DEFINITION SECTION

SECURENICKADDR => SECURENICKNAME ’@’ TCPHOSTNAME;
A ’@’ NJEHOSTNAME => A ’@’ TCPHOSTNAME;

IF NJEDOMAIN NOT = ’’ THEN
SECURENICKADDR ’.’ NJEDOMAIN => SECURENICKNAME ’@’ TCPHOSTNAME;
SECURENICKADDR ’.’ ALTNJEDOMAIN => SECURENICKNAME ’@’ TCPHOSTNAME;
A ’@’ NJEHOSTNAME ’.’ NJEDOMAIN =>’@’ TCPHOSTNAME;
A ’@’ NJEHOSTNAME ’.’ ALTNJEDOMAIN =>’@’ TCPHOSTNAME;
IF NJEDOMAIN CONTAINS ’.’ THEN

A ’@’ ANYNJEHOSTNAME =>
A ’@’ ANYNJEHOSTNAME ’.’ NJEDOMAIN;

A ’@’ ANYNJEHOSTNAME ’.’ NJEDOMAIN =>
A ’@’ ANYNJEHOSTNAME ’.’ NJEDOMAIN;

Chapter 17. Mail servers 679

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

A ’@’ ANYNJEHOSTNAME ’.’ ALTNJEDOMAIN =>
A ’@’ ANYNJEHOSTNAME ’.’ NJEDOMAIN;

ELSE
A ’@’ ANYNJEHOSTNAME =>

A ’%’ ANYNJEHOSTNAME ’.’ NJEDOMAIN ’@’ TCPHOSTNAME;
A ’@’ ANYNJEHOSTNAME ’.’ NJEDOMAIN =>

A ’%’ ANYNJEHOSTNAME ’.’ NJEDOMAIN ’@’ TCPHOSTNAME;
A ’@’ ANYNJEHOSTNAME ’.’ ALTNJEDOMAIN =>

A ’%’ ANYNJEHOSTNAME ’.’ NJEDOMAIN ’@’ TCPHOSTNAME;
ENDIF

ENDIF
A ’@’ TCPHOSTNAME => A ’@’ TCPHOSTNAME;
A ’@’ SHORTTCPHOSTTNAME => A ’@’ TCPHOSTNAME;
A ’@’ ALTTCPHOSTNAME => A ’@’ TCPHOSTNAME;
A ’@’ ANYDOMAINNAME => A ’@’ ANYDOMAINNAME;
A ’@’ B => A ’@’ B ’

Examples of header rewrite rules: The following examples show how the header
rewriting rules affect an SMTP mail header. The example site is not a secure
gateway and is configured as follows:

TCPHostName = mvs1.acme.com
ShortTCPHostName = mvs1
AltTCPHostName = seeds.acme.com
NJEHostName = mvs1
NJEDomain = acmenet
AltNJEDomain = centralnet

Note that the above keywords are configured according to the definitions found in
“Predefined keywords within the SMTP rules” on page 677 (for example, from
TCPIP.DATA). In addition, assume that the following are known to be other NJE
hosts:

bird
iron

Then the following header:
From: abc@mvs1 (Brendan Beeper)
To: Jenny Bird <def@bird>
Cc: ghi@iron.acmenet, j@mvs1,
k@seeds.acme.com,
Mailing List <owner@acmenet>,
lmno@iron.centralnet
Subject: New Ore

is rewritten by the default header rewriting rules as:
From: abc@mvs1.acme.com (Brendan Beeper)
To: Jenny Bird <def%bird.acmenet@mvs1.acme.com>
Cc: ghi%iron.acmenet@mvs1.acme.com, j@mvs1.acme.com,
k@mvs1.acme.com,
Mailing List <owner%acmenet@mvs.acme.com>,
lmno%iron.acmenet@mvs1.acme.com
Subject: New Ore

The next example deviates from the defaults listed in “Default SMTP rules” on
page 679. On the configuration for nonsecure gateways, if you change the rule
before the 2 ENDIFs to:

A ’@’ AnyNJEHostName ’.’ AltNJEDomain =>
’<@’ TCPHostName ’:’ A ’@’ AnyNJEHostName ’.’ NJEDomain ’>’;

then the last address in the Cc: field within our header is rewritten as:
Cc: <@mvs1.acme.com:lmno@iron.acmenet>

680 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Note: Do not make the change shown in the previous example; it is intended only
as a demonstration of the capabilities of the pattern-matching language.

Step 5: Set up a TCP-to-NJE mail gateway (Optional)
You can configure the SMTP server to run as a mail gateway between TCP network
users and users located on a NJE network attached to the local host. This way NJE
users can send mail or data sets to users on TCP hosts using SMTPNOTE. See
z/OS Communications Server: IP User’s Guide and Commands for more information
about SMTPNOTE. For JES2, see MVS/ESA JES2 Initialization and Tuning,
SC28-1038-1. For JES3, see MVS/ESA JES3 Initialization and Tuning,
SC23-0073-2.

Follow these steps to set up your TCP-to-NJE mail gateway:

1. Add the GATEWAY statement to the SMTP configuration data set. Add other
related statements, such as ALTDOMAIN, NJECLASS, NJEDOMAIN, and
NJEFORMAT, as required by your configuration.

2. Issue the SMTPNJE command.

\\ SMTPNJE data_set_name(member)
JES2

(JES3

\^

data_set_name(member)
The name of the input data set for SMTPNJE. It specifies the initialization
data set of the JES2 or JES3 subsystem that is scanned for NJE nodes by
SMTPNJE. The data set name is the same name as defined on ddname
HASPPARM in your JES2 procedure or in the JES3IN ddname in your JES3
procedure.

member is the JES2PARM member that contains the NODE and DESTID
entries for your installation.

(Required delimiter.

JES2 or JES3
Denotes whether the initialization data set being pointed to is for JES2 or
JES3. If omitted, the default is JES2. For JES2, the SMTPNJE program
scans for the keywords NODE and DESTID from which it extracts the
information. For JES3, the keyword scanned for is NJERMT.

The SMTPNJE program creates the NJE host table data set called
user_id.SMTPNJE.HOSTINFO. You can rename this data set and include the
name of the data set on the SMTPNJE DD statement in the SMTP cataloged
procedure. The //SMTPNJE DD statement is required.

3. Install the SMTP server (along with the TCPIP address space) on the gateway
node. Use the GATEWAY, NJEDOMAIN, and NJEFORMAT statements in the
configuration data set. Optionally, you can use either the RESTRICT or the
SECURE statements to limit which users can use the gateway.

Step 6: Specify configuration statements in SMTP configuration
data set
Copy the member hlq.SEZAINST(SMTPCONF) to your own SMTP configuration
data set and modify it for your site using the SMTP configuration statements.

Note: If the SMTP configuration data set is a sequential data set, you cannot edit
the data set while SMTP is running. If the data set is a PDS member, it can
be edited while SMTP is running.

Chapter 17. Mail servers 681

Summary of SMTP configuration statements: The SMTP configuration
statements are summarized in Table 23.

Note: Refer to z/OS Communications Server: IP Configuration Reference for more
information about these statements.

Table 23. Summary of SMTP configuration statements

Statement Description

ALTNJEDOMAIN Specifies an alternative domain name of the NJE network, if SMTP is running
as a mail gateway.

ALTTCPHOSTNAME Specifies an additional host name for the local host. Mail received for this host
name is accepted and delivered locally.

ATSIGN Enables SMTP to replace the @ symbol used in addressing strings.

BADSPOOLFILEID Specifies the user ID on the local system where SMTP transfers unreadable
spool files and looping mail.

CHECKSPOOLSIZE Enables SMTP to check the size of the JES spool file prior to writing the data
to the hlq.TEMP.NOTE file.

DBCS Specifies that DBCS code conversion be performed on the mail.

DEBUG Records all SMTP commands and replies.

FINISHOPEN Specifies the SMTP wait time for connection.

GATEWAY Specifies operation of SMTP as a gateway.

INACTIVE Specifies the SMTP wait time before closing an inactive connection.

IPMAILERADDRESS Specifies the IP address of an SMTP server that can resolve network
addresses of unknown hosts.

LISTENONADDRESS Allows you to restrict which IP address is used to receive mail on a
multihomed system.

LOCALCLASS Specifies the spool data set class for local mail delivery.

LOCALFORMAT Specifies the spool data set format for local host mail delivery.

LOG Directs SMTP to log all SMTP traffic.

MAILER Specifies the address of the batch SMTP server that receives mail.

MAILFILEDSPREFIX Specifies the prefix to add to mail data sets.

MAILFILESUNIT Specifies the unit where SMTP mail data sets reside.

MAILFILEVOLUME Specifies the volume where newly allocated SMTP data sets reside.

MAXMAILBYTES Specifies the maximum size of mail that is accepted over a TCP connection.

NJECLASS Specifies the spool data set class for mail delivered on an NJE network.

NJEDOMAIN Specifies the domain name of the NJE network if SMTP functions as a
gateway.

NJEFORMAT Specifies the spool data set format for mail delivered on the NJE network.

NJENODENAME Specifies the node name of the local JES2 or JES3 node for mail delivered on
the NJE network.

NOLOG Turns off the logging of mail transactions.

NOSOURCEROUTE Enables SMTP to not generate source routing addressing strings on certain
RFC 821 SMTP commands.

OUTBOUNDOPENLIMIT Specifies a limit on the maximum number of simultaneous TCP connections
over which SMTP actively delivers mail.

PORT Specifies an alternative port number for the SMTP server during testing.

682 z/OS V1R4.0 CS: IP Configuration Guide

||
|

Table 23. Summary of SMTP configuration statements (continued)

Statement Description

POSTMASTER Specifies the address (or addresses) for mail addressed to the postmaster at
the local host.

RCPTRESPONSEDELAY Specifies how long the SMTP server delays responding to the RCPT
commands.

RESOLVERRETRYINT Specifies the number of minutes SMTP waits between attempts to resolve
domain names.

RESOLVERUSAGE Specifies whether SMTP will send queries to the domain name servers if they
are configured in the TCPIP.DATA file.

RESTRICT Specifies addresses of users who are not allowed to use SMTP mail services.

RETRYAGE Specifies the number of days after which mail is returned as undeliverable.

RETRYINT Specifies the number of minutes between attempts to send mail to an inactive
TCP host.

REWRITE822HEADER Prevents SMTP from rewriting RFC 822 headers with source routing.

SECURE Specifies that SMTP operates as a secure mail gateway between TCP
network sites and NJE network sites.

SMSGAUTHLIST Specifies the addresses of users authorized to issue privileged SMTP SMSG
commands.

SPOOLPOLLINTERVAL Specifies the interval for SMTP to check the spool for incoming batch data
sets.

TEMPERRORRETRIES Specifies the number of times SMTP tries to redeliver mail to a host with a
temporary problem.

TIMEZONE Sets the printable name of the local time zone.

WARNINGAGE Specifies the number of days after which a copy of the mail is returned to the
sender, indicating that the mail has so far been undeliverable and that SMTP
will continue to retry delivery for RETRYAGE days.

Sample SMTP configuration data set (SMTPCONF): The sample SMTP
Configuration data set can be found in hlq.SEZAINST(SMTPCONF). Refer to the
z/OS Communications Server: IP Configuration Reference for more information on
configuration data set parameters.

Step 7: Create an SMTP security table (Optional)
If you want to set up a secure TCP-to-NJE gateway, you need to:

v Include the SECURE statement in the SMTP configuration data set.

v Create a security data set that contains a list of NJE users who are authorized to
use the gateway.

v Create a mailfiledsprefix.SECURITY.MEMO data set. The contents data set are
sent to unauthorized NJE users whose mail is rejected. In this section, see
“Rejected mail examples” on page 685 for sample contents of this data set. This
data set must be defined as LRECL=255 and RECFM=VB. It will be dynamically
allocated by SMTP when needed.

The SMTP security data set is pointed to by //SECTABLE DD statement. The
security table data set must be allocated with LRECL=255 and RECFM=VB.
Records whose first nonblank character is an asterisk (*) are treated as comments
and are ignored.

Use the following format when creating the list of NJE users:

Chapter 17. Mail servers 683

\\ NJE_userid NJE_nodeid
nickname primary_nick? primary_mbox?

\^

NJE_userid
The NJE user ID of the authorized user.

NJE_nodeid
The NJE node ID of the authorized user.

nickname
The name by which this user is known on the TCP side of the gateway. This
name must not contain any special characters, such as < > () [] \ . , ; : @ and
".

primary_nick?
Either Y or N. If Y is specified, then mail addressed to nickname@smtp-gateway
is automatically forwarded to NJE_userid at NJE_nodeid. Each nickname can
have only one primary_nick? record set to Y.

primary_mbox?
Either Y or N. If Y is specified, then mail from NJE_userid at NJE_nodeid is
converted to nickname@smtp-gateway before it is sent to the TCP recipient.
Each NJE_userid, NJE_nodeid pair can only have one primary_mbox? record.

SMTP security data set examples: The following example shows an SMTP
security data set:
* Records for Jane Doe, within IBM
JDOE ALMADEN
JDOE AUSTIN
* Records for John Smith, within IBM
SMITH RALEIGH JOHNNY Y N
SMITH YORKTOWN JOHNNY N Y
SMITH DALLAS JOHNNY N N
SMITH RALEIGH JSMITH Y Y

For example, mail sent from the following NJE network addresses through the
SMTP gateway is rewritten to the following TCP network addresses. Assume the
host name of the gateway is SMTP-GATEWAY.IBM.COM.

NJE Address TCP Address

JDOE at ALMADEN JDOE%ALMADEN@SMTP-GATEWAY.IBM.COM
JDOE at AUSTIN JDOE%AUSTIN@SMTP-GATEWAY.IBM.COM
SMITH at RALEIGH JSMITH@SMTP-GATEWAY.IBM.COM
SMITH at YORKTOWN JOHNNY@SMTP-GATEWAY.IBM.COM
SMITH at DALLAS JOHNNY%DALLAS@SMTP-GATEWAY.IBM.COM

Mail sent from the TCP network to the following TCP network addresses is
forwarded to the following NJE network addresses. Assume the host name of the
gateway is SMTP-GATEWAY.IBM.COM.

TCP Address NJE Address

JDOE%ALMADEN@SMTP-GATEWAY.IBM.COM JDOE at ALMADEN
JDOE%AUSTIN@SMTP-GATEWAY.IBM.COM JDOE at AUSTIN
JSMITH@SMTP-GATEWAY.IBM.COM SMITH at RALEIGH
JOHNNY@SMTP-GATEWAY.IBM.COM SMITH at RALEIGH
SMITH%DALLAS@SMTP-GATEWAY.IBM.COM SMITH at DALLAS

684 z/OS V1R4.0 CS: IP Configuration Guide

Rejected mail examples: SMTP rejects mail to or from an unauthorized NJE
user. If the mail is from the TCP network, SMTP rejects the RCPT TO command
with the error:
550 User is not a registered gateway user

If the mail is from the NJE network, SMTP rejects the MAIL FROM command with
the error:
550 User is not a registered gateway user

and includes the mailfiledsprefix.SECURITY.MEMO data set as an explanation.

The following example shows a sample mailfiledsprefix.SECURITY.MEMO data set:
The mail you sent to this SMTP gateway cannot be delivered because
you are not a registered user of this gateway. Contact your local
administrator for instructions on how to be authorized to use this
SMTP gateway.

The following is an example of rejected mail that was sent to an unregistered NJE
user:
Date: Fri, 5 Jul 91 10:55:59 EST
From: SMTP@MVS1.ACME.COM
To: DANIEL@MVS1
Subject: Undeliverable Mail

MVS1.ACME.COM unable to deliver following mail to recipient(s):
<MATT@SMTP-GATEWAY.IBM.COM>

MVS1.ACME.COM received negative reply from host:
SMTP-GATEWAY

550 User ’MATT@SMTP-GATEWAY’ is not a registered gateway user

** Text of Mail follows **
Date: Fri, 5 Jul 91 10:55:56 EDT
From: <DANIEL@MVS1.ACME.COM>
To: <MATT@SMTP-GATEWAY.IBM.COM>
Subject: Lunch
Matt,

Do you have time to meet for lunch next week? I want to discuss the
shipment of ACME iron birdseed.
Daniel

The following is an example of rejected mail that was sent from an unregistered
NJE user:
Date: Fri, 5 Jul 91 11:35:18 EST
From: <SMTP@SMTP-GATEWAY.IBM.COM>
To: <MATT@SMTP-GATEWAY.IBM.COM>
Subject: Undeliverable Mail
Unable to deliver mail to some/all recipients.
050 MAIL FROM:<MATT@SMTP-GATEWAY.IBM.COM>
550-User ’MATT@SMTP-GATEWAY’ is not a registered gateway user.
550-
550-The mail you sent to this SMTP gateway cannot be delivered because
550-you are not a registered user of this gateway. Contact your local
550-administrator for instructions on how to be authorized to use this
550 SMTP gateway.

** Text of Mail follows **
HELO SMTP-GATEWAY.IBM.COM
MAIL FROM:<MATT@SMTP-GATEWAY.IBM.COM>
RCPT TO:<DANIEL@MVS1.ACME.COM>
DATA
Date: Fri, 5 Jul 91 11:34:17 EST
From: <MATT@SMTP-GATEWAY.IBM.COM>

Chapter 17. Mail servers 685

To: <DANIEL@MVS1.ACME.COM>
Subject: Awaiting your message
Daniel,
When are you going to contact me about the iron birdseed and giant
electromagnet that I ordered? I would like to meet with you soon.
Matt

·
QUIT

Step 8: Enable SMTP domain name resolution
The SMTP server’s RESOLVERUSAGE statement indicates if domain name
resolution is to be used or not. If name resolution is not desired,
RESOLVERUSAGE NO should be specified. See “Step 9: Enable sending of
non-local messages to other mail servers” on page 687.

If the RESOLVERUSAGE statement is not specified or is specified as
RESOLVERUSAGE YES, the SMTP server will resolve domain names. Resolver
TCPIP.DATA statements must be configured before you can use domain name
resolution for SMTP. For a description of how TCPIP.DATA statements can be
specified, see “Understanding resolvers” on page 12.

For more information on the SMTP RESOLVERUSAGE statement and the
TCPIP.DATA resolver statements, refer to z/OS Communications Server: IP
Configuration Reference.

To use a domain name server, configure the TCPIP.DATA data set with the IP
address of one or more name servers. If the TCPIP.DATA data set does not point to
any name servers, the local site tables are used by SMTP. However, if the SMTP
server is configured to use name servers, SMTP does not use the site tables.

To determine which DSN the SMTP server is using, look for message number
EZA5231I in the output data set specified by the OUTPUT statement in the
hlq.SEZAINST(SMTPPROC).

When SMTP uses a domain name server, it asks the domain name server for the
MX records for the host to which it is trying to connect. If SMTP does not find MX
records for a host, it delivers mail only to the primary host listed in the A records.
The MX and A records are coded in the domain name server database.

The basic idea behind MX records is to send the mail as close as possible to the
final destination. The destination host may currently be inactive, for example,
because it is in another time zone. SMTP needs a synchronous connection to
deliver the mail, but due to the different time zones, two systems might never be
active at the same time and would never be able to exchange mail.

Using MX records would allow the SMTP server to deliver the mail to an alternate
host if the first one is unavailable. SMTP tries to deliver mail to the host with the
lowest MX record count. If the host is not currently available, it tries the host with
the next lowest count.

For example, if SMTP wants to send mail to USER@BASKET, it checks the name
server for MX records and finds the following:
MVS20 BASKET A

BASKET MX 0 MVS20
BASKET MX 5 MVS18
BASKET MX 10 VMQ

686 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|

|
|
|
|
|

|
|
|

|

SMTP delivers the mail to the BASKET with the lowest count on its MX record. If
MVS20 is unable to receive the mail, SMTP then tries to deliver it to MVS18. If MVS18
cannot receive the mail, it tries VMQ. If none of the hosts can receive the mail, SMTP
stores the mail and queues it for later delivery, at which time the process repeats.

For more information about how to add MX records to your name server, consult
RFC 974, “Mail Routing and the Domain System.”

To receive a detailed trace on how SMTP is resolving a particular host name, you
can issue the SMSG SMTP TRACE command at the console. You can also add the
TRACE RESOLVER statement when configuring the TCPIP.DATA data set, but this
will also trace the name resolution for all the other applications using the name
server. To prevent the console log from becoming too large, only use the TRACE
RESOLVER statement for debugging.

If changes to the domain name server requires you to resolve already queued mail
again, use the SMSG SMTP EXPIRE command as described in the z/OS
Communications Server: IP User’s Guide and Commands. You can also query
operating statistics, such as mail delivery queues of the SMTP server, by using the
SMSG SMTP command. This and other administrative tasks are discussed in more
detail in the z/OS Communications Server: IP User’s Guide and Commands.

Step 9: Enable sending of non-local messages to other mail
servers
The SMTP server can be configured to send all your non-local TCP/IP SMTP mail
to a specified mail server, or mail relay. You may need to do this if you have
installed a FIREWALL.

This is accomplished either by making the following changes to your
hlq.SMTP.CONFIG data set:

1. Inhibit SMTP from attempting to resolve non-local hostnames by specifying the
following statement in your SMTP.CONFIG data set:
RESOLVERUSAGE NO

2. Update the SMTP.CONFIG file to redirect mail to a specific server using the
IPMAILERADDRESS statement:
IPMAILERADDRESS ip_address

where ip_address is address of the mail server that can perform the hostname
resolution.

You can also forward any unknown mail to another mailer on the NJE network using
the ″MAILER ... UNKNOWN″ statement. For more information, refer to the z/OS
Communications Server: IP Configuration Reference. Note you cannot specify both
an IPMAILADDRESS and the ″MAILER ... UNKNOWN″ statements.

Step 10: Design SMTP exit to inspect and filter unwanted mail
(optional)
The SMTP exit facility allows an installation to better control the volume of
unwanted mail (spam) that is entering the installation. SMTP makes use of the
Dynamic Exit Facility (CSVDYNEX macro) provided by MVS. Refer to z/OS MVS
Programming: Authorized Assembler Services Guide, for more information. The exit
is provided by the customer to implement policies that they deem workable. Based
on user-defined (and implemented) criteria, individual mail items may be rejected
before they consume other resources. SMTPEXIT is provided as a programming
guide to aid in the implementation of the local policies. It can be found in

Chapter 17. Mail servers 687

hlq.SEZAINST. This exit must be REENTRANT and AMODE 31, in an authorized
library. In using the SMTP exit a name token (EZBTCPIPSMTPEXIT) needs to be
established in SYS1.PARMLIB(PROGxx).

If a user program is enabled, message EZA5549I is generated in the SMTP output
data set when the SMTPPROC program is started. This message indicates a user
exit is active.

This exit can be replaced dynamically without stopping the SMTPPROC program.
The procedure for doing this follows:

1. Issue a ″SMSG smtpprocname STOPEXIT″ TSO command. The TSO user ID
must be in the authorized list for SMTPPROC to issue this command. This will
cause SMTP to issue the termination call to the exit and then set a flag so that
the exit will not be called anymore. Processing of mail will continue as if there is
no exit.

2. Remove the exit via the SETPROG EXIT operator command or by updating
SYS1.PARMLIB(PROGxx) and issuing the refresh console command. Example
of updating SYS1.PARMLIB follows:

a. Include the following in SYS1.PARMLIB(PROGxx):
EXIT DELETE EXITNAME(EZBTCPIPSMTPEXIT) MODNAME(MYEXIT) FORCE(YES)

b. At the MVS console issue SET PROG=xx.

3. Replace with the desired new exit by adding the exit via the SETPROG EXIT
operator command or by updating SYS1.PARMLIB(PROGxx). Example of
updating SYS1.PARMLIB follows:

a. In SYS1.PARMLIB(PROGxx) have this line:
EXIT ADD EXITNAME(EZBTCPIPSMTPEXIT) MODNAME(NEWEXIT)

b. At the MVS console issue SET PROG=xx.

4. Issue a ″SMSG smtpprocname STARTEXIT″ TSO command. This will cause
SMTP to issue the initialization call to the exit. A flag is then set so the exit will
be called from then on for new mail connections. Processing of new mail will
continue with the exit being called. The first smtp command to be seen by a
reinstated exit will be HELO. The exit will not be called in the middle of a
currently processing exchange.

In designing the SMTP exit some of the following design points need to be
considered. It should be noted that a remote SMTP application will be connected to
the local SMTP while this exit is running. If too much time is spent in the exit,
timeout situations may occur and the remote SMTP application may terminate the
connection and then go into retry logic. This will seriously affect the performance of
the mail system. The exit must be coded as efficiently as possible and all efforts
should be taken to avoid excessive processing or waiting, e.g. I/O operations and
DNS resolver calls, while within the exit. Efforts to reject mail may be more efficient
if extensive scanning of the data portion of the message can be avoided. The exit
may allow processing to continue or reject the entire message and does not have
the ability to reject individual segments of a message. The message contents
cannot be changed in any way by the exit. The exit may accept a message at any
point and disable further exit calls for that message. Only commands that are
currently implemented by the SMTP program will be passed to the exit program.
RFC 2505 and RFC 2635 should be read and understood before undertaking such
a coding effort. Multiple connections can occur simultaneously and the exit must
take precautions to keep any desired state information on a connection basis. More
information on SMTP commands and standards are documented in RFCs 821 and
822.

688 z/OS V1R4.0 CS: IP Configuration Guide

Refer to the z/OS Communications Server: IP Configuration Reference for more
detailed information.

Configuring z/OS UNIX sendmail and popper
The following is intended to provide the administrator with specific information on
how to configure sendmail on the z/OS platform. Before using this chapter, become
familiar with the industry-accepted publication for sendmail, sendmail by O’Reilly &
Associates, Inc. (ISBN 1-56592-222-0). That publication is known throughout the
industry as simply the bat book, and this chapter consistently refers to the bat book
for further information.

Additional information about sendmail can also be found on the z/OS UNIX
application Web site, http://www.s390.ibm.com/unix, as well as in documents from
the sample directory that were received during the port of sendmail 8.8.7 from the
http://www.sendmail.org Web site. The Sendmail Installation and Operation Guide
document (sendmail.ps), for instance, is the generic guide from
http://www.sendmail.org, which might be helpful as a more thorough guide in a
slightly different format. The README.m4 document gives more details for building
a configuration file using the m4 preprocessor.

This chapter also provides information on how to configure popper on the z/OS
platform. The popper function requires very little configuration. For more information
on the protocol used by this UNIX application, see RFC 1939.

Overview
The simple mail architecture in which sendmail and popper fit includes a mail user
agent (MUA), a mail transfer agent (MTA), and a mail delivery agent (MDA). An
MUA is client software that a user invokes directly to send and receive e-mail.
Examples of MUAs include Eudora, Netscape Navigator, pine and elm. An MTA is
software that actually routes messages from a sender’s system to the receiver’s
system. sendmail is an MTA. It is worth noting, however, that sendmail relies on
other programs to implement non-SMTP based transport (for example,
UUCP-based transport as well as local delivery to a user’s mail spool file). An MDA
is server software that delivers received mail to a user’s MUA. Popper is an
example of an MDA using the POP3 protocol.

At the sender’s end of the mail delivery process, the sender’s MUA transmits the
message to be delivered to sendmail, as shown in Figure 73.

This can occur in one of two ways. If the MUA is running on the local host, the
message can be transmitted by executing a copy of sendmail and transmitting the
message to the standard input of that process via a UNIX pipe.

Alternatively (and more commonly), a copy of sendmail will be running as a
daemon, and the MUA (running on either the local host, or on a remote host) will
open an SMTP connection to the sendmail daemon, transmitting the message to be
delivered via that SMTP connection. In this case, sendmail is acting as an SMTP
server, while the MUA is acting as an SMTP client.

Figure 73. Sender MUA transmits the message to sendmail

Chapter 17. Mail servers 689

http://www.s390.ibm.com/unix
http://www.sendmail.org
http://www.sendmail.org

In the next step, for each recipient address, sendmail transmits the message to
some other SMTP server, to route the message to its final destination at the
recipient’s site. This is shown in Figure 74.

The receiving SMTP server, in this case, might be a local hub that handles all mail
at the sender’s site, a remote hub handling all mail at the recipient’s site, or an
SMTP server at the recipient’s host system.

In the next step, sendmail acts as an SMTP client, initiating an SMTP connection
with some SMTP server, and then transmitting the message to be delivered to that
server, via the SMTP connection.

At the receiver’s end of the mail delivery process, a sendmail daemon receives the
message from some SMTP client, as shown in Figure 75.

The sendmail daemon, acting as an SMTP server, accepts an incoming SMTP
connection, and receives a message to be delivered over that SMTP connection.
(This is identical to receipt of a message from an MUA, over an SMTP connection.)

Upon receiving the message, sendmail delivers it to the local recipient by
appending the message to the recipient’s mail spool file. To do this, sendmail
requires a local mailer program, as depicted in Figure 76.

In this step, sendmail executes a specified local mailer program, such as /bin/mail,
and transmits the message to be delivered to that mailer via a Unix pipe. The
mailer program appends the message to the recipient’s mail spool file. With this
sendmail’s role in delivery of mail is completed.

For the recipient to now read the received message, an MUA must be used. As
mentioned in the previous section, depending upon the MUA, this may or may not
require an additional MDA, such as popper. If the receiver’s MUA has direct access
to the mail spool file, the MUA may retrieve the mail directly from the spool file, as
depicted in Figure 77 on page 691.

Figure 74. sendmail transmits the message to an intermediate SMTP server

Figure 75. A sendmail daemon receives the message from an SMTP client

Figure 76. sendmail delivers the message to the local recipient

690 z/OS V1R4.0 CS: IP Configuration Guide

Alternatively (and more commonly), the MUA will establish a POP3 connection with
a popper daemon, and retrieve the message over that connection. This is shown in
Figure 78.

The popper daemon will also allow the receiver’s MUA to manage the mail spool
file, by allowing it to specify whether and which message should be deleted.

Configuring z/OS UNIX sendmail
This section contains information on the following:

v The sendmail samples directory

v Creating the configuration file

v Creating an aliases file

v Configuration hints and tips

The sendmail samples directory
Much of the sendmail samples directory is dedicated to the automated creation of
the configuration file. The /usr/lpp/tcpip/samples/sendmail/cf directory contains a
sample.mc file and the subsequent sample.cf configuration file that was created by
running the m4 macro preprocessor on the sample.mc file. If the
/usr/lpp/tcpip/samples/sendmail directory is examined, the following directory
structure can be found:
cd /usr/lpp/tcpip/samples/sendmail
ls
README.m4 feature mailer siteconfig
cf hack ostype sendmail.ps
domain m4 sh

cf
Both site-dependent and site-independent descriptions of hosts. Files
ending in .mc (Master Configuration) are the input descriptions. The output
is in the corresponding .cf file. The general structure of these files is
described below.

domain
Site-dependent subdomain descriptions. These are tied to the way your
organization wants to do addressing. These descriptions are referenced
using the DOMAIN m4 macro in the .mc file.

feature
Definitions of specific features that some particular host in your site might
want. These are referenced using the FEATURE m4 macro. An example
feature is use_cw_file, which tells z/OS UNIX sendmail to read an
/etc/sendmail.cw file on startup to find the set of local names.

Figure 77. Receiver’s MUA has direct access to the mail spool file

Figure 78. Receiver’s MUA retrieves the message over a POP3 connection with a popper
daemon

Chapter 17. Mail servers 691

|

hack
Local hacks, referenced using the HACK m4 macro. Avoid these.

m4
Site-independent m4(1) include files that have information common to all
configuration files. Think of this as a ″#include directory.

mailer
Definitions of mailers, referenced using the MAILER m4 macro. The mailer
types that are known in this distribution are fax, local, smtp, uucp, and
usenet. For example, to include support for the UUCP-based mailers, use
MAILER(uucp).

ostype
Definitions describing various operating system environments (such as the
location of support files). These are referenced using the OSTYPE m4
macro. This directory contains only the os390 definition.

README
Contains all the latest information regarding this latest version of sendmail
from the www.sendmail.org site.

sh
Shell files used by the m4 build process.

siteconfig
Local UUCP connectivity information. These normally contain lists of site
information, for example:

v SITE(contessa)

v SITE(hoptoad)

v SITE(nkainc)

v SITE(well)

These are referenced using the SITECONFIG macro:
SITECONFIG(site.config.file, name_of_site,X)

where X is the macro or class name to use. It can be U (indicating locally
connected hosts) or one of W, X, or Y for up to three remote UUCP hubs.
This directory has been supplanted by the mailer table feature. Any new
configurations should use that feature to do UUCP (and other) routing.

sendmail.ps
This is a postscript file of the Sendmail Installation and Operation Guide
provided by www.sendmail.org in this version of sendmail.

Creating the configuration file
The basic steps to create the configuration file are:

1. Retrieve the m4 preprocessor.

2. Create the .mc file.

3. Build the configuration file.

Retrieving the m4 preprocessor: Retrieve the m4 macro preprocessor from the
z/OS Toys and Tools Web page at http://www.s390.ibm.com/unix/bpxa1toy.html.

The m4 macro preprocessor can be given input that will generate a z/OS UNIX
sendmail configuration file. It takes as input a user-defined master configuration

692 z/OS V1R4.0 CS: IP Configuration Guide

http://www.s390.ibm.com/unix/bpxa1toy.html

source file (.mc file) that can define mail delivery mechanisms using files provided
in the samples directory. For more information on the .mc file, see “Creating the .mc
file”.

The m4 preprocessor is downloaded as m4_pax.Z. To unpax the file, issue the
following command:
pax -rzf m4_pax.Z

Creating the .mc file: The process of building a z/OS UNIX sendmail
configuration file begins by creating a file of m4 statements. The suffix for this file is
.mc.

The minimal mc file: Every .mc file must contain minimal information. This file
defines the mail delivery mechanisms understood at this site, how to access them,
how to forward e-mail to remote mail systems, and a number of tuning parameters.
The following table shows which items are required and also which items are
recommended. It is recommended that the starting point for these items be as
shown in the sample.mc file, and an investigation of all the m4 techniques that are
available to customize the .mc file for your mail server is encouraged [refer to
sendmail by O’Reilly & Associates, Inc. (ISBN 1-56592-222-0); this book is also
referred to as the bat book].

Table 24. Required and recommended m4 items

Item Bat book
reference

Required or
recommended

Description

OSTYPE() 19.3.1 Required Support for your operating system

MAILER() 19.3.2 Required Necessary delivery agent

DOMAIN() 19.3.3 Recommended Common domain wide information

FEATURE() 19.3.4 Recommended Solutions to special needs

Example files can be found in the /usr/lpp/tcpip/samples/sendmail directory. The
cf directory contains an example of an .mc file. Of special interest are the files that
begin with generic. These can serve as template statements in developing
customized .mc files. The following is an example of a simple .mc file.
divert (-1)
divert(0) dnl
VERSIONID(`OS/390 sample configuration 12/4/97’)
OSTYPE(os390)dnl
DOMAIN(generic)dnl
MAILER(local)dnl
MAILER(smtp)dnl

Following is a description of these common m4 items. For more information on
these items, refer to the bat book.

divert

v (-1) Ignore the lines following.

v (0) Stop diverting and output immediately.

VERSIONID
Used to insert an identifier into each .mc and .m4 file that will become your
header.

OSTYPE()

v Support for operating system (the only ostype provided in the
/usr/lpp/tcpip/samples/sendmail/ostype directory is os390.m4).

Chapter 17. Mail servers 693

v Required.

MAILER()

v Necessary delivery agent.

v Required.

v Known values include:

– fax

– local

– smtp

– uucp

– usenet

DOMAIN()
Common domain wide information.

FEATURE()
Solution to special needs.

Building the configuration file: To build the configuration file, go to the directory
containing the m4 executable and issue the following command:
m4 ../m4/cf.m4 yourmcfile.mc > yourcffile.cf

where yourmcfile is the name of your .mc file and yourcffile is the name you want to
give your .cf file.

The ../m4/cf.m4 specifies the master prototype configuration file cf.m4 in the m4
directory of the samples/sendmail directory. This is the path to the
samples/sendmail directory structure from the location of your m4 executable. This
can also be specified in your .mc file using include as follows:
include(’../m4/cf.m4’)

Creating the aliases file
Aliasing is the process of converting one recipient name into another; a generic
name (such as root) into a real user name, or one name into a list of names (that
is, a mailing list). Define the location of your aliases file using the AliasFile option in
your sendmail.cf file. For example:
AliasFile=/etc/aliases

For sendmail to work, aliases are required for MAILER-DAEMON and postmaster.
Every aliases file must include these required aliases.

The alias for postmaster must expand to the name of a real user, based on the
requirement that every site has to be able to accept mail addressed to a user
named postmaster. Unless a site has real user account named postmaster, an alias
is required in the aliases file. The postmaster receives mail about mail problems
sent by mail-related programs and by users that are having trouble sending mail.

When mail is bounced (returned because it could not be delivered), it is sent from
MAILER-DAEMON but it is shown as being the original sender who sent the mail.
This alias is defined because users often inadvertently reply to the bounced mail.

Following is an example of an aliases file. Lines that begin with # are comments.
Empty lines are ignored. For more information on the different forms of aliases,
refer to the bat book.

694 z/OS V1R4.0 CS: IP Configuration Guide

Alias for mailer daemon
MAILER-DAEMON:IBMUSER

Following alias is required by the new mail protocol, RFC 822
postmaster:IBMUSER

Alias to handle mail to msgs and news
nobody: /dev/null

Note: After the aliases file is created and before the sendmail daemon is brought
up for the first time, the aliases file must be loaded by running sendmail
using the newaliases command or with the -bi command-line switch.

For more information on the aliases file, refer to the bat book.

Configuration hints and tips
This section contains other required or useful information for configuring sendmail.
For further information on these topics, refer to the bat book.

v SuperUser status is needed to start the sendmail daemon.

v The QueueDirectory option defined in the config file tells sendmail where to
queue messages that are temporarily undeliverable. This directory must exist
before sendmail is started.

v Sendmail is highly dependent on the Domain Name Server (DNS); it is important
that the resolver be set up correctly to avoid unnecessary searching for a user.
For more information on DNS, see Chapter 10, “Domain Name System (DNS)”
on page 417.

v Table 25 shows the expected file permissions of files that sendmail might use.

Table 25. Sendmail permission table

Path Type Owner Mode Bat book
reference

/ Directory root 0755 drwxr-xr-x 22.1

/usr Directory root 0755 drwxr-xr-x 18.8.34

/usr/sbin/sendmail File root 06511 -r-s--s--x Entire Book

/etc Directory root 0755 drwxr-xr-x 18.8.34

/etc/sendmail.cf File root 0644 or 0640 Chapter 27

/etc/sendmail.st File root 0644 -rw-r--r-- 26.6

/etc/sendmail.hf File root 0444 -r--r--r-- 34.8.28

/etc/aliases File root 0644 -rw-r--r-- Chapter 24

/etc/aliases.pag File root 0644 -rw-r--r-- 24.5

/etc/aliases.dir File root 0644 -rw-r--r-- 24.5

/etc/aliases.db File root 0644 -rw-r--r-- 24.5

If a system has thousands of users defined in the Users list, the administrator
might consider enabling the UNIXMAP class. This increases the speed of the
security checks performed by sendmail. APAR OW30858 provides details about
what is needed to enable the UNIXMAP class.

For additional information about enabling the UNIX map class, refer to z/OS
Security Server RACF Migration.

Chapter 17. Mail servers 695

sendmail as a daemon
Just as sendmail can transport a mail message over a TCP/IP-based network, it
can also receive mail that is sent to it over the network. To do this, it must be run in
daemon mode. A daemon is a program that runs in the background independent of
terminal control.

As a daemon, sendmail is run once, usually when your machine is booted.
Whenever an e–mail message is sent to your machine, the sending machine talks
to the sendmail daemon that is listening on your machine.

The -bd command-line switch tells sendmail to run in daemon mode. The -q1h
command-line switch tells sendmail to wake up once per hour and process the
queue. Command-line switches are described in z/OS Communications Server: IP
User’s Guide and Commands.

Configuring popper
Popper must be invoked by INETD upon the initiation of a TCP connection to the
POP3 port 110 (or any other specifically-configured port defined in /etc/services -
port 110 is the well-known port for POP3 protocols). Therefore, you must add the
following command lines to your /etc/inetd.conf file:

pop3 stream tcp nowait bpxroot /usr/sbin/popper popper -d

The above must be added to your /etc/inetd.conf file and INETD must be started
with this configuration file. For more information on inetd, see z/OS
Communications Server: IP Configuration Reference.

POP3 resides on port 110. You can define additional ports if there is a need for
additional command-line options for popper. For information on the options that
might be suitable for your site, see the z/OS Communications Server: IP User’s
Guide and Commands.

z/OS UNIX popper will most likely be used by those whose local mailer requires a
POP3 server. Typically their administrator will provide them with the address or
name of the z/OS running the POP3 server, with instructions on where this
information should be used.

696 z/OS V1R4.0 CS: IP Configuration Guide

Popper command—administering received mail

If the receiver’s MUA does not have direct access to the mail spool file, use Popper
to access the mail spool on the local host. z/OS Popper will be used when a POP3
server is needed.

Syntax:

\\ popper - b <directory name>
- d
- n <message count>
- s
- t <file name>
- T <timeout>
- u

\^

Parameters: The following command line options can be used when invoking
Popper.

-b <directory name>
Specifies the name of the directory in which bulletins are found. If not specified,
/usr/mail/bulletins is used as the default.

-d Requests additional debugging messages be turned on.

-n <message count>
Specifies the number of old bulletins to be delivered to new users. If not
specified, no bulletins are delivered.

-s Requests statistics logging be turned on.

-t <file name>
Specifies a trace file for all message logging. If not specified, messages are
logged via the syslog facility.

-T <timeout>
Specifies the time, in seconds, before an idle POP3 connection is terminated.
RFC 1939 specifies a minimum timeout of 600 seconds, but in practice such a
long timeout does not work well. (When a connection gets aborted, the user is
locked out of his mailbox for the timeout period.) If not specified, 120 seconds is
used as the default timeout period.

-u Requests the user’s mailbox be updated on abort. RFC 1939 specifies that
mailboxes should not be updated (that is, no messages should be deleted) if a
connection is aborted abnormally. This option forces an update to occur despite
the aborted connection. If not specified, no update will occur on aborted
connections.

Chapter 17. Mail servers 697

|

|

698 z/OS V1R4.0 CS: IP Configuration Guide

Chapter 18. TIMED daemon

TIMED is a TCP/IP daemon that is used to provide the time. TIMED gives the time
in seconds since midnight January 1, 1900. You can start TIMED from the z/OS
shell or as a started procedure. TCP/IP must be started prior to starting TIMED.

Starting TIMED from z/OS shell
TIMED is installed in the /usr/lpp/tcpip/sbin/ directory.

To start the TIMED server from the command line, type the timed command.

timed [-l] [-p port]

Following are the parameters used for the timed command:

-l Logs all the incoming requests and responses to the system log. Logged
information includes the IP address of the requestor.

-p port
The TIMED server usually receives requests on well-known port 37. TIMED
uses UDP only. You can specify the port in which requests are to be
received.

Starting TIMED as a procedure
The following sample shows how to start TIMED as a procedure.
//TIMED PROC
//*
//* 5694-A01 (C) Copyright IBM Corp. 1997, 2002
//* Licensed Materials - Property of IBM
//* This product contains "Restricted Materials of IBM"
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions.
//*
//* Function: Time server start procedure
//* SMP/E distribution name: EZATTMDP
//*
//TIMED EXEC PGM=TIMED,REGION=0K,TIME=NOLIMIT,
// PARM=’POSIX(ON),ALL31(ON),TRAP(OFF)/’
//*STEPLIB DD DISP=SHR,DSN=TCP.SEZALOAD,
//* VOL=SER=,UNIT=
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//CEEDUMP DD SYSOUT=*
//SYSABEND DD SYSOUT=*
// PEND

© Copyright IBM Corp. 2000, 2002 699

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

700 z/OS V1R4.0 CS: IP Configuration Guide

Chapter 19. SNTPD daemon

SNTPD is a TCP/IP daemon that is used to synchronize time between a client and
a server. Simple Network Time Protocol (SNTP) is a protocol for synchronizing
clocks across a WAN or LAN through a specific formatted message. An External
Time Reference (ETR), named stratum 0, is chosen as the highest timer reference
used for synchronization. A stratum 1 server is attached to and receives the time
from the stratum 0 timer. For example, the z/OS sysplex timer could be a stratum 0
timer, and z/OS Communications Server would be a stratum 1 server. A client
attached to the stratum 1 server can also be a stratum 2 server, receiving the time
from the stratum 1 server, and so on. SNTP uses UDP packets for data transfer
with the well-known port number 123. RFC 2030 (Mills 1996) describes SNTP. You
can start SNTPD from the z/OS shell or as a started procedure. Each of these
methods is described below. TCP/IP must be started prior to starting SNTPD.

Steps for starting SNTPD from the z/OS shell
Before you begin: Ensure the existence of the following files. The HFS files used
by z/OS UNIX SNTPD and their locations in the HFS are as follows:

/etc/services
The ports for each application are defined here.

/etc/syslog.conf
The configuration parameters for usage of syslogd are defined in this file.

/usr/lpp/tcpip/sbin/sntpd
This is a symbolic link to /usr/lpp/tcpip/sbin/sntpd, which is a sticky-bit file.
The SNTPD member of hlq.SEZALOAD contains the executable code for
the SNTP server.

/usr/lib/nls/msg/C/sntpdmsg.cat
The message catalog used by the z/OS UNIX SNTPD server.

When restricting low port usage, the port used by SNTPD (default value of 123)
should either:

v Be reserved for the name of the SNTPD start procedure

v Use the SAF parameter on the PORT statement to restict access to the SNTPD
port

Note: There is no configuration file specifically for SNTPD.

Perform the following step to start SNTPD from the z/OS shell:

1. Type sntpd & on the command line. This will start sntpd and send it to the
background.

Following are the optional parameters used for the sntpd command:

-d Enable debugging and activity logging. Activity logging and debugging
messages are written to stdout.

-df HFS-pathname
Enable debugging and activity logging, and write debugging and activity
logging messages to the specified HFS file. For example:
-df /var/sntpd.debug

-pf HFS-pathname
HFS path for pid file. For example:

© Copyright IBM Corp. 2000, 2002 701

|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|

|
|

|

|

|
|

|

||
|

|
|
|

|

|
|

-pf /var

-m nnnnn
Act in multicast mode. Send multicast updates (TTL=1) on all interfaces
every nnnnn seconds. Listen for requests and respond with unicast
replies. The valid range for nnnnn is 1 to 16284.

-b nnnnn
Act in broadcast mode. Send local broadcasts on all interfaces every
nnnnn seconds. Listen for requests and respond with unicast replies.
The valid range for nnnnn is 1 to 16284.

-? Display the syntax of the command usage and options.

You know that SNTPD has started when the following message appears in the z/OS
UNIX shell:
EZZ9600I SNTP server is ready.

Steps for starting SNTPD as a procedure
Before you begin: Obtain a copy of this sample procedure from SEZAINST and
store it in one of your PROCLIB concatenation data sets.

Perform the following step to start SNTPD as a procedure:

1. Invoke the procedure using the system operator start command. The following
sample [shipped as hlq.SEZAINST(SNTPD)] shows how to start SNTPD as a
procedure:
//SNTPD PROC

//*
//* Communications Server IP
//* SMP/E DISTRIBUTION NAME: EZASNPRO
//*
//* 5694-A01 (C) COPYRIGHT IBM CORP. 2002.
//* LICENSED MATERIALS - PROPERTY OF IBM
//* THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM"
//* ALL RIGHTS RESERVED.
//* US GOVERNMENT USERS RESTRICTED RIGHTS -
//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY
//* GSA ADP SCHEDULE CONTRACT WITH IBM CORP.
//* SEE IBM COPYRIGHT INSTRUCTIONS.
//*
//* FUNCTION: SNTP DAEMON START PROCEDURE
//*
//SNTPD EXEC PGM=SNTPD,REGION=4096K,TIME=NOLIMIT,
// PARM=’POSIX(ON),ALL31(ON),TRAP(OFF)/ -d’
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//CEEDUMP DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//*

You know that SNTPD has started when the following message appears on the
console:
EZZ9600I SNTP server is ready.

702 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|
|

|
|
|
|

||

|

|
|

|

|
|

|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

Stack affinity
If you are running in a multiple stack environment and want SNTPD to use only a
single stack, the environment variable _BPXK_SETIBMOPT_TRANSPORT can be
used.

Chapter 19. SNTPD daemon 703

|
|

|
|
|

704 z/OS V1R4.0 CS: IP Configuration Guide

Chapter 20. Remote Execution

This chapter describes how to configure and operate both the Remote Execution
server and the UNIX Remote Execution server. z/OS Communications Server
supports remote execution daemons in both the UNIX and TSO environments. To
execute commands under the UNIX shell, use the UNIX REXEC or UNIX RSH
server. To execute commands under TSO, use the TSO REXEC and RSH servers.
The main difference between using REXEC versus RSH is that RSH gives you the
option of allowing the command execution without having to specify a password.

UNIX REXEC
The UNIX Remote Execution Protocol Daemon (REXECD) is the server for the
REXEC routine. REXECD allows execution of z/OS UNIX commands with
authentication based on user names and passwords.

The Remote Shell Server (RSHD) is the server for the remote shell (RSH) client.
The server provides remote execution facilities with authentication based on
privileged port numbers, user IDs, and passwords.

See “Configuring the z/OS UNIX Remote Execution servers” on page 708 for more
information about configuring this server.

TSO REXEC
The TSO Remote Execution server allows execution of a TSO command that has
been received at a remote host. This server runs the Remote EXEcution Command
Daemon (REXECD) which supports both the Remote Execution (REXEC) and
Remote Shell (RSH) protocols.

This chapter describes how to configure and operate the Remote Execution server.

Configuring the TSO Remote Execution server
Steps to configure the TSO Remote Execution server:

1. Update the Remote Execution cataloged procedure.

2. Update AUTOLOG and PORT statements in the PROFILE.TCPIP data set.

3. Determine whether the Remote Execution client will send a Remote Execution
(REXEC) command or Remote Shell (RSH) command.

4. Permit remote users to access MVS resources. (Required only if the client is not
sending a password.)

5. Create a user exit routine (optional).

Step 1: Configuring PROFILE.TCPIP for TSO Remote Execution server
If you want the Remote Execution server to start automatically when the TCPIP
address space is started, include the name of the member containing the
RXSERVE cataloged procedure in the AUTOLOG statement in the
hlq.PROFILE.TCPIP data set.
AUTOLOG

RXSERVE
ENDAUTOLOG

© Copyright IBM Corp. 2000, 2002 705

|
|
|
|
|
|

|

|

To ensure that port 512 is reserved for the Remote Execution protocol and port 514
for the Remote Shell protocol, add the name of the member containing the Remote
Execution cataloged procedure to the PORT statement in hlq.PROFILE.TCPIP:
PORT

512 TCP RXSERVE
514 TCP RXSERVE

Refer to z/OS Communications Server: IP Configuration Reference for more
information about the AUTOLOG and PORT statements.

Step 2: Determine whether Remote Execution client will send REXEC
or RSH commands

The Remote Execution client can send commands to the TSO Remote Execution
server by the following methods:

1. Sending the Remote Execution (REXEC) command

2. Sending the Remote Shell (RSH) command with a user ID and password
separated by a slash (/) character with the -l option on the RSH command

3. Sending the Remote Shell (RSH) command without a password

With methods 1 and 2, the TSO Remote Execution server executes the request and
passes the password to MVS for verification. (REXEC commands require a
password.) When these methods are used, skip Step 3.

With method 3, to enable an RSH client to send RSH commands to the TSO
Remote Execution server without specifying a password, Step 3 is required.

Step 3: Permit remote users to access MVS resources (optional)
This step is necessary only if your installation allows users to issue remote
execution commands without the requirement of specifying a password on the
remote execution client.

Use the following steps to ensure that the server can correctly access necessary
MVS resources. You can use z/OS Security Server (RACF) or an equivalent
security program.

1. Verify that your system has been configured for allowing surrogate job
submission as described in z/OS Security Server RACF Security Administrator’s
Guide (SC28-1915) or by using an equivalent security program.

2. Authorize the TSO Remote Execution server to submit jobs for the MVS user ID
specified with the -l option of the RSH command. This can be done with the
RACF facility as described in z/OS Security Server RACF General User’s Guide
(SC28-1917), or by using an equivalent security program.

3. Define an mvs_userid.RHOSTS.DATA data set and authorize the TSO Remote
Execution server userid permission to read this data set. This can be done with
the RACF facility as described in z/OS Security Server RACF General User’s
Guide (SC28-1917), or by using an equivalent security program.

Note: This is the userid used to start the RXSERVE address space.

This data set identifies the Remote Execution clients that can execute MVS
commands remotely by sending an RSH command.

When a Remote Execution client sends an RSH request to the TSO Remote
Execution server, the request includes the local user ID of the client user

706 z/OS V1R4.0 CS: IP Configuration Guide

|

|

|

|

|

|

(local_userID) and, if the client user specified the -l option of the RSH
command, the request also contains the user ID to use on the remote host
(mvs_userid). If the client does not specify the -l option, the user ID to be used
on the remote host is assumed to be the same as the local_userID.

When the TSO Remote Execution server receives an RSH command without a
password, the server looks for a data set called mvs_userid.RHOSTS.DATA.
The mvs_userid.RHOST.DATA data set contains one or more entries. Each
entry consists of two parts, a fully qualified name of the client user’s host and a
local_userID associated with that host. The local_userID is case sensitive. If the
data set exists, the server reads it and looks for an entry with a host name that
matches the client user’s host. If the user ID specified on this entry in the
RHOSTS.DATA data set matches the local_userID passed on the RSH
command, the RSH command continues processing. If the entry does not exist,
the server responds to the client with message EZA4386E Permission denied.

In the following example of an RHOSTS.DATA data set, the MVS client user
mvsuser is allowed to issue the RSH command without a password from host
rs60007 with a local AIX user ID of mvsuser.

Example of mvsuser.RHOSTS.DATA data set:
rs60007.itso.ral.ibm.com mvsuser

4. Users may be authenticated using Kerberos or GSS. If the username in the
Kerberos or GSS credentials matches the local user ID (local_userID) of the
client supplied by the RSH client, then no password is required.

Step 4: Update the TSO Remote Execution cataloged procedure
Update the TSO Remote Execution cataloged procedure by copying the sample
provided in hlq.SEZAINST(RXPROC) to your system or recognized PROCLIB and
modifying it to suit your local conditions. Specify the TSO Remote Execution server
parameters and modify the JCL as required for your installation.

You can update the TSO Remote Execution server operating parameters during
execution with the MODIFY command. All but MAXCONN can be changed.

Step 5: Create a user exit routine (optional)
Optionally, you can provide a user exit routine. This routine can be used to alter the
JOB and EXEC statement parameters to meet installation-specific requirements
such as which system should process the job and/or environment unique
accounting information prior to submission of the TSO batch job.

The user exit should have the AMODE(31) and RMODE(24) attributes to provide
addressability to the input parameters.

On entry to the user exit, register 1 points to the following parameter list:

Offset Description
0 A pointer to a mixed INET address
4 A pointer to JOB statement parameters
8 A pointer to EXEC statement parameters
12 A pointer to an optional JES control statement

The INET address consists of the following fields:

Offset Description
0 2 bytes (AF_INET or 2)

Chapter 20. Remote Execution 707

|

|
|
|

|

|

|

|
|

2 2 bytes (server port)
4 4 bytes (client INET address)

The JOB statement parameters can be up to 1024 characters in length and are
ended by X'00'. You can modify the parameters with the exit routine. Upon entry,
the parameters are set to:
v user_ID
v USER=user_id
v PASSWORD=password
v MSGCLASS=msgclass

MSGCLASS is as specified in the Remote Execution cataloged procedure. userid
and PASSWORD are as received from the requesting client.

For RSH commands without passwords, note that the PASSWORD= parameter is
not present. The userid in the first positional parameter can be processed by an
installation-written JES exit.

The EXEC statement parameters can be up to 256 bytes in length and are ended
by X'00'. These parameters can be modified by the exit routine. On entry, it contains
the EXEC statement for the procedure specified in the TSOPROC parameter of the
Remote Execution server or the default IKJACCNT procedure if TSOPROC is not
specified.

The JES control statement parameter can be up to 256 bytes in length and is
ended by X'00'. Upon entry, the parameter field is set to X'00'. Any JES control
statement added by the user exit will be put between the JOB and the EXEC
statement.

The modified JOB and EXEC statements are submitted as a TSO batch job.

The user exit is shipped as a sample in the RXUEXIT member of the SEZAINST
data set. Refer to the REXEC chapter in z/OS Communications Server: IP
Configuration Reference for more information about this sample.

Configuring the z/OS UNIX Remote Execution servers

Installation information
This section describes the HFS files used by z/OS UNIX REXECD and RSHD.

HFS files for z/OS UNIX REXECD

Note: The userid associated with the daemon in /etc/inetd.conf requires superuser
authority. Refer to z/OS UNIX System Services Planning for a description of
the kinds of authority defined for daemons.

The HFS files used by z/OS UNIX REXECD and their locations in the HFS are as
follows:

/etc/services
The ports for each application are defined here.

/etc/syslog.conf
The configuration parameters for usage of syslogd are defined in this file.

708 z/OS V1R4.0 CS: IP Configuration Guide

/etc/inetd.conf
The configuration parameters for all applications started by inetd are
defined in this file.

/usr/sbin/orexecd
The server.

If BPX.DAEMON is specified, then the sticky bit must be set on, and
/usr/sbin/orexecd, and orexecd can reside in an authorized MVS data set.

/usr/lib/nls/msg/C/rexdmsg.cat
The message catalog used by the z/OS UNIX REXECD server.

Note: This is not an actual member at this location, but it is a symbolic link
to the part in /usr/lpp/tcpip/nls/msg/C/*.

Where the server looks for the message catalog (rexdmsg.cat) depends on
the value of NLSPATH and LANG environment variables. If you want to
store the msg.cats elsewhere, you need to change the NLSPATH or the
LANG environment variables. If rexdmsg.cat does not exist, the software
will default to the messages hard-coded within the software. These
messages duplicate the English message catalog that is shipped with the
product.

HFS files for z/OS UNIX RSHD
The HFS files used by z/OS UNIX RSHD and their locations in the HFS are as
follows:

/etc/services
The ports for each application are defined here.

/etc/syslog.conf
The configuration parameters for usage of syslogd are defined in this file.

/etc/inetd.conf
The configuration parameters for all applications started by inetd are
defined in this file.

/usr/sbin/orshd
The server.

If BPX.DAEMON is specified, the sticky bit must be set on, and
/usr/sbin/orshd, and orshd can reside in an authorized MVS data set.

/usr/sbin/ruserok
An optional user exit that will authenticate users logging into the z/OS UNIX
RSHD server with a null password. See “Setting up the z/OS UNIX RSHD
installation exit” on page 710 below for more information.

Note: This exit is required to allow support for null passwords with RSH.

/usr/lib/nls/msg/C/rshdmsg.cat
The message catalog associated with the z/OS UNIX RSHD client is stored
here. If this file does not exist, the software will default to the messages
hard-coded within the software. These messages duplicate the English
message catalog that is shipped with the product.

Note: The message catalog is not actually stored here. This is a symbolic
link, and the actual member is in /usr/lpp/tcpip/nls/msg/C/*.

Chapter 20. Remote Execution 709

Setting up the z/OS UNIX RSHD installation exit
When the -r option is enabled, if there is no password specified on the RSH
command from the client, z/OS UNIX RSHD will drive the installation exit. When the
installation exit is driven, RSHD looks for a program in /usr/sbin named ruserok.
This is the only name that it will look for. If /usr/sbin/ruserok is not found, the
request will fail.

When the z/OS UNIX RSHD server invokes /user/sbin/ruserok, it will pass
parameters in the following order:

1. Host name or the host IP address

2. Local user’s UID

3. Remote userid

4. Local userid

If z/OS UNIX RSHD receives a return code of zero from the installation exit, z/OS
UNIX RSHD continues. Any nonzero return code from the installation exit will cause
RSHD to issue message EZYRS25E to the client and terminate all connections.
The following code fragment can be used as an example to begin building a
working ruserok installation exit:
int main(argc, argv)

int argc;
char *argv[];

char *rhost1; /* "hostname" or "hostname.domain" of client
obtained by caller:
gethostbyaddr(getpeername()) or the host
ip address used by the gethostbyaddr if
it failed to return a "hostname" */

int locuid; /* uid of the user name on local system */
char *cliuname; /* user name on client’s system */
char *servuname; /* user name on this (server’s) system */
int rc = 4;

rhost1 = argv[1];
locuid = atoi(argv[2]);
cliuname = argv[3];
servuname = argv[4];
.
<authenticate user and set rc=0 if valid>
.
return(rc);

Configuring TSO and z/OS UNIX Remote Execution servers to use the
same port

Since the remote execution servers are generic servers, they attempt to bind to
INADDR_ANY when they are started. This allows them to listen on all defined IP
addresses. However, this prevents both the TSO and z/OS UNIX Remote Execution
servers from listening on the same port, and one of the servers would have to use
a nonstandard port. Using the BIND parameter on the PORT reservation statement
in the TCPIP profile data set allows both the TSO and z/OS UNIX Remote
Execution servers to bind to the same ports using different IP addresses. The
following steps illustrate how this can be done. For more information on the PORT
reservation statement, see z/OS Communications Server: IP Configuration
Reference.

1. Define a VIPA address to the TCPIP profile data set. This example shows a
static VIPA address, but either a static or dynamic VIPA can be used.

710 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|

|
|

DEVICE VIPAD1 VIRTUAL 0
LINK VIPA1 VIRTUAL 0 VIPAD1

HOME
134.134.134.36 VIPA1

2. Add PORT statements to the TCPIP profile for both the TSO and z/OS UNIX
Remote Execution servers. One of the servers will bind to the VIPA address.
The other can bind to INADDR_ANY by not specifying the BIND parameter. In
this example, the z/OS UNIX Remote Execution servers will bind to the VIPA
address. Also update the /etc/services file so that exec uses 512 and shell uses
514.
512 TCP OMVS BIND 134.134.134.36 ; z/OS Unix REXECD
514 TCP OMVS BIND 134.134.134.36 ; z/OS Unix RSHD
512 TCP RXSERVE ; TSO REXECD
514 TCP RXSERVE ; TSO RSHD

It is important that the server with the BIND parameter is listed before the one
without the BIND parameter. This setup directs all requests to ports 512 or 514
with a destination IP address of 134.134.134.36 to the z/OS UNIX Remote
Execution servers. Requests to ports 512 or 514 with a local destination IP
address that is not 134.134.134.36 are directed to the TSO Remote Execution
server.

To verify this setup:

1. Start the stack with the TCPIP profile changes described above and start
RXSERVE and INETD.

Note: INETD listens for the REXEC and RSH servers under z/OS UNIX.

2. Issue NETSTAT and it should show that both the REXEC servers are listening
on port 512 and both RSH servers are listening on port 514. INETD, which
listens for the z/OS UNIX Remote Execution servers, only listens on the VIPA
address.
MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCPCS 21:34:41
User Id Conn Local Socket Foreign Socket State
------- ---- ------------ -------------- -----
INETDCS1 0000000D 134.134.134.36..514 0.0.0.0..0 Listen
INETDCS1 0000000E 134.134.134.36..512 0.0.0.0..0 Listen
RXSERVE 00000019 0.0.0.0..514 0.0.0.0..0 Listen
RXSERVE 00000018 0.0.0.0..512 0.0.0.0..0 Listen

Chapter 20. Remote Execution 711

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|

|

|
|
|
|

|
|
|
|
|
|
|

712 z/OS V1R4.0 CS: IP Configuration Guide

Chapter 21. Miscellaneous (MISC) server

The Miscellaneous (MISC) server is a server that can be used to test and debug
applications.

The MISC server supports the 3 protocols described in RFCs 862, 863, and 864:
v Discard
v Echo
v Character Generator

Discard protocol
The MISC server simply throws away any data it receives. A TCP-based server
listens for TCP connections on TCP port 9. If a connection is established, the data
is discarded and no response is sent. A UDP-based server listens for UDP
datagrams on UDP port 9. When a datagram is received, it is discarded and no
response is sent.

Echo protocol
The MISC server returns to the originating application any data that it receives. A
TCP-based server listens for TCP connections on TCP port 7. Once a connection is
established, any data that is received is sent back to the originating application. A
UDP-based server listens for UDP datagrams on UDP port 7. When a datagram is
received, the data it contained is sent back as an answering datagram.

Character generator protocol
The MISC server sends a repetitive stream of character data without regard to its
content. A TCP-based server listens for TCP connections on TCP port 19. When a
connection is established, a stream of data is sent to the connecting application.
Any data that is received is thrown away. A UDP-based server listens for UDP
datagrams on port 19. When a datagram is received, an answering datagram is
sent that contains a random number (between 0 and 512) of characters. The data
in the received datagram is ignored.

The data that is generated follows an ordered sequence. It repeats a pattern of 94
printable ASCII characters in a ring, so that character number 0 follows character
number 94.

Following is an example of the repeated pattern.

© Copyright IBM Corp. 2000, 2002 713

Configuring the MISC server
1. Specify AUTOLOG and PORT statements in hlq.PROFILE.TCPIP.

2. Update the MISC server cataloged procedure (MISCSERV).

Step 1: Configuring PROFILE.TCPIP for the MISC server
To allow the MISC server to start automatically when TCPIP is initialized, include
the member name of the MISC server cataloged procedure in the AUTOLOG
statement in the hlq.PROFILE.TCPIP.

AUTOLOG
MISCSERV

ENDAUTOLOG

The AUTOLOG entry in hlq.PROFILE.TCPIP is optional. You can choose to start the
MISC server manually, when it is needed, using the START command:

START MISCSERV

The MISC server requires ports 7, 9, and 19 for both TCP and UDP. To ensure that
these ports are reserved for the MISC server, verify that they are assigned to the
member containing the MISC server cataloged procedure in the PORT statement in
PROFILE.TCPIP.
PORT

7 UDP MISCSERV
7 TCP MISCSERV

!"#$%&’()*└,-./0123456789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefgh
"#$%&’()*└,-./0123456789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghi
#$%&’()*└,-./0123456789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghij
$%&’()*└,-./0123456789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijk
%&’()*└,-./0123456789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijkl
&’()*└,-./0123456789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklm
’()*└,-./0123456789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmn
()*└,-./0123456789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmno
)*└,-./0123456789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnop
*└,-./0123456789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopq
└,-./0123456789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqr,-
./0123456789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrs
-./0123456789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrst
./0123456789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstu
/0123456789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuv
0123456789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvw
123456789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvwx
23456789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvwxy
3456789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvwxyz
456789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvwxyz{
56789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvwxyz{│
6789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvwxyz{│}
789:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvwxyz{│}~
89:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvwxyz{│}~
9:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvwxyz{│}~ !
:;^=\?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvwxyz{│}~ !"

714 z/OS V1R4.0 CS: IP Configuration Guide

9 UDP MISCSERV
9 TCP MISCSERV
19 UDP MISCSERV
19 TCP MISCSERV

For more information on these statements, see the z/OS Communications Server:
IP Configuration Reference.

Step 2: Updating the MISC server cataloged procedure (MISCSERV)
Update the MISC server cataloged procedure by copying the sample in
hlq.SEZAINST(MISCSERV) to your system or recognized PROCLIB and modifying
the parameters and data set names to suit your local conditions.

MISC server cataloged procedure (MISCSERV)
//MISCSERV PROC MODULE=MISCSRV,PARMS=’’
//*
//* TCP/IP for MVS
//* SMP/E Distribution Name: SEZAINST(MISCSERV)
//*
//* Licensed Materials - Program Property of IBM.
//* "Restricted Materials of IBM"
//* 5694-A01 (C) COPYRIGHT IBM CORP. 1994, 2001
//* Status = CSV1R2
//* Distribution library SEZAINST(MISCSERV)
//*
//MISCSERV EXEC PGM=&MODULE,
// REGION=4096K,TIME=1440,
// PARM=’&PARMS’
//*
//* The C runtime libraries should be in the system’s link list
//* or add them to the STEPLIB definition here. If you add
//* them to STEPLIB, they must be APF authorized. Change
//* the name as appropriate for your installation.
//*
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSMDUMP DD SYSOUT=*
//*
//* MSMISCSR identifies an optional data set for NLS support.
//* It specifies the MISC server message repository.
//*
//*MSMISCSR DD DSN=TCPIP.SEZAINST(MSMISCSR),DISP=SHR
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR

Specifying the MISC server parameters
The MISC server generates periodic messages whenever a client sends data to
ports 7, 9, or 19. If this server runs continually for a long period of time,
considerable amounts of spool space can be consumed. Therefore, the MISC
server has all tracing turned off by default.

You can enable the trace options for any of the three MISC server protocols using
the PARMS= parameter on the PROC statement of the cataloged procedure. These
options will be in effect when the server starts.

Chapter 21. Miscellaneous (MISC) server 715

TRACE
Turns on tracing for any of the specified protocols and must be followed by one
or more of these three keywords:
ECho Specifies tracing for the echo protocol on port 7.
DIscard

Specifies tracing for the discard protocol on port 9.
CHargen

Specifies tracing for the character generator protocol on port 19.
DEbug

Specifies tracing for problem determination .

For example, the following statement turns tracing on for the echo and discard
protocols.
//MISCSERV PROC MODULE=MISCSRV,PARMS=’TRACE ECHO DISCARD’

716 z/OS V1R4.0 CS: IP Configuration Guide

Part 3. Appendixes

© Copyright IBM Corp. 2000, 2002 717

718 z/OS V1R4.0 CS: IP Configuration Guide

Appendix A. Setting up the inetd configuration file

inetd is a generic listener program used by such servers as z/OS UNIX telnet
server and z/OS UNIX rexec server. Other servers such as z/OS UNIX ftp server
have their own listener program and do not use inetd.

inetd.conf is an example of the user’s configuration file. It is stored in the /etc
directory. Ensure that the inetd services required on your system are enabled using
configuration statements like those in the following example:

If the rshd, rexecd, or otelnetd service is to support IPv6 clients, then tcp6 should
be specified instead of tcp. Kerberos is not supported for IPv6-enabled services,
such as z/OS UNIX Telnet, z/OS UNIX rsh, and z/OS UNIX rexec.

To establish a relationship between the servers defined in the /etc/inetd.conf file and
specific port numbers in the z/OS UNIX environment, insure that statements have
been added to ETC.SERVICES for each of these servers. See the sample
ETC.SERVICES installed in the /usr/lpp/tcpip/samples/services directory for how to
specify ETC.SERVICES statements for these servers.

The traces for both the z/OS UNIX rexec and rsh servers are enabled through
options in the inetd configuration file (/etc/inetd.conf):

The traces are turned on for both servers by passing a -d argument to the server
programs. �1� is the RSHD server and �2� is the REXECD server. All commands
executed after the debug flags have been turned on in the inetd configuration file
and the inetd server has reread the file will produce trace output.

The trace is written in formatted form to the syslogd facility name daemon with a
priority of debug. The trace data can be routed to a file in your Hierarchical File
System by specifying the following definition in your syslogd configuration file
(/etc/syslogd.conf):

#==
service | socket | protocol | wait/ | user | server | server program
name | type | | nowait| | program | arguments
#==
#
shell stream tcp nowait OMVSKERN /usr/sbin/orshd orshd -l
exec stream tcp nowait OMVSKERN /usr/sbin/orexecd orexecd -LV
otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -LV

Figure 79. Adding applications to /etc/inetd.conf

#==
service | socket | protocol | wait/ | user | server | server program
name | type | | nowait| | program | arguments
#==
#
shell stream tcp nowait OMVSKERN /usr/sbin/orshd orshd -d �1�
exec stream tcp nowait OMVSKERN /usr/sbin/orexecd orexecd -d �2�

Figure 80. Setting traces in /etc/inetd.conf

© Copyright IBM Corp. 2000, 2002 719

|
|
|

|

|

#
All ftp, rexecd, rshd
debug messages (and above
priority messages) go

to server.debug.a
#
daemon.debug /tmp/syslogd/server.debug.a

In this example, the trace data is written to /tmp/syslogd/server.debug.a in your
Hierarchical File System. For more information on syslogd, refer to “Logging of
system messages” on page 39.

For more information about inetd, refer to z/OS UNIX System Services Planning or
z/OS UNIX System Services Command Reference.

720 z/OS V1R4.0 CS: IP Configuration Guide

|

|
|

Appendix B. TLS/SSL security

This appendix is a TLS/SSL reference for the z/OS TN3270 Telnet server, the FTP
server and the Digital Certificate Access Server (DCAS). The gskkyman utility and
RACF are used as examples for certificate and keyring creation and management.
References to RACF apply to any other SAF-compliant security products which
contain the required support. Host On Demand V4 running on NT is used as a
sample Telnet client.

An overview of Secure Socket Layer (SSL) is given first, followed by the detailed
steps needed to perform authentication and encryption at the following levels:

v Using gskkyman

– Server Authentication only

– Client Authentication Level 1

v Using RACF

– Server Authentication only

– Client Authentication Level 1

– Client Authentication Level 2

– Client Authentication Level 3

Additional information about the concepts of cryptography and SSL can be found at
the following Web sites:

v http://home.netscape.com/eng/ssl3/

v http://www.verisign.com/repository/crptintr.html

Secure Socket Layer overview
SSL provides data privacy and integrity as well as server and client authentication
based upon a Public Key Infrastructure (PKI) method. PKI requires that the server
organization generate a public key/private key pair that can be used during
negotiations. PKI requires that data encrypted with the public key be decrypted by
only the private key and that data encrypted with the private key be decrypted by
only the public key. This is considered an asymmetric encryption method because
different keys are used at each end of the secure connection. The Server sends its
public key to the client when the client requests a connection.

The client and server encrypt SSL parameter negotiations using the PKI method of
encryption. One of the most important items negotiated is the encryption algorithm
to be used during data transmission. The algorithm chosen will be one that uses the
same key at each end of the secure connection. This is known as a symmetric
encryption method and is about 1000 times faster than the asymmetric PKI method
used during SSL parameter negotiation. The encryption key used by the symmetric
encryption method is created and exchanged during SSL negotiation protected by
the PKI encryption method.

Some client-server connections support negotiations to determine if the client wants
or supports SSL prior to beginning the SSL handshake. Most servers and clients
can be configured to immediately start the SSL handshake process or to negotiate
whether or not to perform the SSL handshake. Refer to the security information in
the appropriate server or client chapters for information on whether negotiated
TLS/SSL is supported and how it is implemented.

© Copyright IBM Corp. 2000, 2002 721

|
|

|

|

http://home.netscape.com/eng/ssl3/
http://www.verisign.com/repository/crptintr.html

The SSL protocol begins with the handshake. During the handshake:

v Server authentication is done by the client.

v Optional client authentication is done by the server.

v An encryption algorithm and single encryption key are chosen to encrypt and
decrypt session data between the client and server.

Server authentication
When using SSL to secure communications, the SSL authentication mechanism
known as Server Authentication is used. This is the minimum amount of security
provided by SSL and allows the client to validate that the Server is what it says it is.

To ensure that someone has not stolen the server’s private and public keys and is
pretending to be the server, the server sends additional information with the public
key so the client can confirm the identity of the server. The complete package of
information sent to the client is called a digital certificate which conforms to the
X.509 standard.

This X.509 digital certificate includes, among other things, the Distinguished Name
(DN) of the Server organization, the public key created by the server organization,
the Distinguished Name of the organization issuing the certificate, and the issuer’s
signature. The organization issuing the certificate may be a well-known Certificate
Authority (CA) or you may issue (create) your own certificate, called a self-signed
certificate.

To create a signature, the certificate issuer first generates a message digest from
the owner’s DN, the owner’s public key, and the issuer’s DN. The message digest is
the result of hashing this information down to a small size (usually 128 or 160 bits).
The message digest result is unique for that information based on the hashing
algorithm used. The message digest is encrypted with the issuer’s private key
creating the issuer’s signature.

When the client receives the server certificate, the client must have the public key
of the certificate signer. The public key is used to decrypt the message digest. The
server certificate also contains the hashing algorithm used to create the message
digest. The client uses the same algorithm to create another message digest using
the Distinguished Names and public key information in the received server
certificate. If this new message digest exactly matches the decrypted message
digest (issuer’s signature) created by the certificate issuer, the client can be assured
that the certificate has not been altered. This method of authentication is dependent
on the security of the private key that is used by the certificate issuer.

To conduct commercial business on the Internet, you should obtain a server
certificate signed by a well-known Certificate Authority. Server certificates issued by
a well-known CA gives the client high assurance that the server is authentic. Most
client keyrings have been primed with several well-known CA’s certificates. That
enables the client to authenticate a Server certificate signed by a well-known CA
without having to first obtain the issuer’s certificate which includes the public key.
For relatively small, private networks within your own enterprise you can create your
own self-signed server certificate. The only difference between a CA issued
certificate and a self-signed certificate is the issuer’s Distinguished Name and who’s
private key was used to encrypt the message digest. The client needs to use the
correct public key to decrypt the message digest. The CA certificate containing the
CA’s public key is probably already in the client’s keyring and it can be used to
decrypt the CA signature (message digest). The self-signed certificate containing
the organization’s public key needs to be added to the client’s list of signer

722 z/OS V1R4.0 CS: IP Configuration Guide

certificates so the client can decrypt the signature (message digest) created when
the self-signed certificate was created. Some client products allow the client to add
the server certificate to its list of signer certificates when the server certificate is
received during SSL negotiation. If the client is confident the certificate really came
from the correct server, this is an easy way to add the certificate rather than getting
a copy and adding it manually.

For server authentication to work, the server must have a private key and
associated server certificate in the server key database file. The gskkyman utility or
RACF Common Keyring support can be used to manage the keys and certificates
needed for SSL support. If the gskkyman utility was used to create the keyring, a
password stash file is also required.

SSL requires a server certificate as part of its server authentication process. The
server certificate and the Certificate Authority certificates are stored in a keyring
(also referred to as a key database). The server’s keyring can be created using the
gskkyman utility provided by the System Secure Socket Layer (System SSL)
element of z/OS or by using RACF’s certificate management support. The keyring is
associated with a server or client using server or client specific statements.

Note: Global step-up type certificates are not supported by the Telnet TN3270
server if the client application sends the handshake complete message to
the server before completing the second handshake.

Client authentication
Client authentication provides additional authentication and access control by
checking client certificates at the server. This support prevents a client from
obtaining a connection without an installation approved certificate.

The server authenticates the client by receiving the client’s certificate during the
SSL handshake and verifying the certificate is valid. Validation is done by the server
the same way the client validates the server’s certificate. The client sends a signed
certificate to the server. System SSL at the server decrypts the signature (message
digest) using the public key of the client certificate issuer found in the server key
database file. The server then creates a new message digest using the certificate’s
Distinguished Names and public key and compares the new message digest with
the decrypted one. If they match, the server can be assured the client is authentic.
Depending on where the client certificate is stored, up to three different levels of
client authentication are available. Refer to the security information in the
appropriate server or client chapters for setup details.

Level 1 authentication is performed by system SSL. The client passes an X.509
certificate to the Server as part of the SSL Handshake. To pass authentication, the
Certificate Authority (CA) that signed the client certificate must be considered
trusted by the server. That is, the certificate for the CA must be in the keyring used
by the Server and designated as trusted. Note that the value of this option alone is
based on which CAs are considered trusted. If the CA is a public CA and the
certificate is in an easily obtained class, anyone can obtain such a certificate. In this
case passing level 1 SSL Client Authentication does not provide much additional
security unless coupled with the level 2 RACF support described below. If the CA is
controlled by the enterprise, some level of access control is provided because the
client that possesses such a certificate is at least known to the organization.

Level 2 authentication requires that the client certificate be registered with RACF
(or other SAF compliant security product) and mapped to a user ID. This is in

Appendix B. TLS/SSL security 723

|

|

|

|
|
|

addition to the checking done with the first level of client authentication support. The
client certificate received during the SSL handshake is used to query the security
product to verify that the certificate maps to a user ID known to the system prior to
connection negotiation. This level of support provides additional access control at
the server and ensures that the end user is known to have a valid user ID on the
server host. Each server uses the returned user ID in a different way. Refer to the
security information in the appropriate server or client chapters to see how the user
ID is used for a particular server. Level 1 authentication is performed prior to level 2
authentication.

Level 3 authentication provides, in addition to level 1 and level 2 support, the
capability to restrict access to the server based on the user ID returned from RACF.
In some cases a certificate may be valid and mapped to a user ID but should be
valid for only one of several servers. The third level of control uses the SERVAUTH
RACF class to restrict access to the server based on client user ID. If the
SERVAUTH class is not active or the SERVAUTH profile for the server is not
defined, it is assumed level 3 authentication is not requested. If the SERVAUTH
class is active and the server profile is defined, a connection is accepted only if the
requestor’s user ID associated with the client certificate is in the profile. Otherwise,
the connection is dropped. Refer to “Add user IDs to the SERVAUTH profile access
list” on page 737 for RACF setup details.

To enable Client Authentication for each server, use the following server-specific
statements:

SERVER TYPE FTP TN3270 DCAS

STATEMENT SECURE_LOGIN CLIENTAUTH CLIENTAUTH

AUTH LEVEL 1 REQUIRED SSLCERT LOCAL 1

AUTH LEVEL 2 VERIFY_USER SAFCERT LOCAL 2

AUTH LEVEL 3 VERIFY_USER SAFCERT LOCAL 3

Level 1 client authentication is done by SSL using a gskkyman keyring or a RACF
keyring. If the client certificate was issued by a well-known Certificate Authority, it is
likely the CA certificate is already primed in the gskkyman keyring. The CA
certificate is probably also in RACF. However, all CA certificates in RACF initially
have a status of NOTRUST. The CA certificate must be set to TRUST and
connected to the appropriate RACF keyring. Refer to “Update CA certificates to
TRUST status” on page 735 for detailed information. If the certificate issuer (a CA or
self-signed) is not part of the list of well-known CAs, the keyring must be primed
with the signer certificate of the CA or the self-signed client certificate.

Once Level 1 authentication is done by SSL using either keyring, the certificate is
passed to the server which accesses the RACF database for Level 2 and Level 3
authentication.

Encryption algorithms
Once authentication is done, the client and server must agree on a symmetric
encryption method and generate a single encryption key to use for data encryption.
The agreed-on key is exchanged using the PKI method of encryption. Once the
symmetric encryption algorithm (such as DES) and a single encryption key are
chosen, all data exchanges use this algorithm and key instead of the PKI method of
encryption.

724 z/OS V1R4.0 CS: IP Configuration Guide

|

|

In an SSL-encrypted session, all data is encrypted using the symmetric encryption
algorithm immediately before it is sent to the client. Data from the client is
decrypted immediately after it is received. The encryption algorithm that is used for
the connection depends on a combination of the encryption algorithm list the SSL
subsystem supports, the list the server wants to use, and the encryption algorithms
the client requests. During the SSL handshake the client sends a list of encryption
algorithms it is willing to use. The server submits its list and the SSL subsystem
picks an algorithm all parties support giving preference to the order specified by the
server. If the server does not support any of the encryption algorithms requested by
the client, the connection is closed. The Telnet, FTP and DCAS servers and the
FTP client use the SSL support provided by the System Secure Sockets Layer
(System SSL) element of z/OS. The encryption algorithms supported by the servers
and client are therefore dependent on the level of System SSL installed. The
following encryption algorithms are supported by the base level of System SSL:
NULL, RC2 export, RC4 export, DES. The System SSL Level 3 feature is required
for Triple DES and RC4 non-export (128 bit) encryption algorithms. The encryption
algorithm list can be customized for the servers and client to a subset of the
System SSL list. Refer to the security information in the appropriate server or client
chapters for specific server and client statements used for encryption list creation.

Encryption is provided either by BSafe software shipped with System SSL or by
hardware. There is no TCP profile definition that controls whether the cryptographic
hardware will be used for secure connections. When SSL initialization has
completed, System SSL checks if ICSF is installed and active and if the hardware is
enabled and loaded with the necessary Master Keys. If the hardware is not
available at that time, all subsequent encryption is performed using software. If
hardware is valid and ICSF is active at that time, the public key functions required
during the SSL handshake and requests for encryption using DES and Triple-DES
algorithms will be sent to the hardware. Otherwise, all cryptographic functions will
be performed by software. Encryption requests using RC2 or RC4 algorithms are
always performed by software. Also note that if ICSF subsequently becomes
unavailable, System SSL will assume the hardware encryption is still wanted and
encryption processing using DES or Triple-DES algorithms will fail until access to
the hardware is restored. If subsequent session handshakes are attempted, they
will also fail. Completion of SSL initialization is different for each server and client.
Refer to the the security information in the appropriate server or client chapters to
understand when SSL initialization is complete and how to refresh SSL.

If hardware encryption is to be used, be sure that the RACF user ID associated with
the server has read access to the RACF CSFSERV class resources. If ICSF is
available but the server has not been given access to these resources, the SSL
initialization may fail. The reason code is likely to be 4 (bad password) because
System SSL will attempt to use the hardware encryption during processing of the
keyring.

Enable CSFSERV resources
If hardware encryption and ICSF are installed, system SSL verifies that the user ID
associated with the server is permitted to use CSFSERV resources. The RACF
administrator should permit the RACF user ID to use the CSFSERV resources
described here.
PERMIT service-name CLASS(CSFSERV) ID(serverid) ACCESS(READ)

The following CSFSERV resources (service-names) are accessed by System SSL.

1. CSFCKI Clear Key Import

2. CSFCKM Clear Key Import Multiple

Appendix B. TLS/SSL security 725

3. CSFDEC DES and TripleDES Decipher

4. CSFENC DES and TripleDES Encipher

5. CSFOWH MD5 and SHA1 Hashing

6. CSFRNG Random Number Generate

7. CSFPKB RSA Key Token Build

8. CSFPKX RSA Public Key Extrace

9. CSFPKE RSA Public Key Encipher

10. CSFPKD RSA Private Key Decipher

11. CSFPKI RSA Key Import

12. CSFDSG Digital Signature Generate

13. CSFDSV Digital Signature Verify

The MAXLEN installation option for hardware cryptographic determines the
maximum length that can be used to encrypt and decrypt data using ICSF/MVS.
Set the MAXLEN ICSF/MVS installation option to 65527 or greater because this is
the maximum TCP/IP packet size.

The System SSL GSKSRVR server provides the capability to determine whether
cryptographic hardware is being used through its DISPLAY CRYPTO operator
command (for example, f gsksrvr,d crypto). The System SSL GSKSRVR server is
not automatically started. For additional information on setting up and using the
GSKSRVR server, refer to z/OS System Secure Sockets Layer Programming.

Refer to z/OS ICSF Administrator’s Guide for additional information on controlling
who can use cryptographic keys and services.

Creating and managing keys and certificates at the server

Overview
The gskkyman utility or RACF Common Keyring support can be used to manage
the keys and certificates needed for SSL support.

The following table describes the steps necessary to implement the different levels
of SSL security for each keyring management product.

Keyring management product

SSL function Steps gskkyman RACF

Server Auth 1. Create a keyring file

2. Create a server certificate

If server certificate is self-signed

3. Extract server certificate from
server keyring

4. Add server certificate to client
keyring

1. Page 729

2. Page 730

3. Page 733

4. Page 744

1. Page 735

2. Page 736

3. Page 736

4. Page 744

Client Auth
Level 1

1. Set up server authentication

If client certificate is self-signed

2. Extract client certificate from client
keyring

3. Add client certificate to server
keyring

1. See above

2. Page 741

3. Page 733

1. See above

2. Page 741

3. Page 733

726 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|

|

|

Keyring management product

SSL function Steps gskkyman RACF

Client Auth
Level 2

1. Set up server authentication

2. Set up level 1 authentication

3. Associate certificate to RACF User
ID

1. See above

2. See above

3. Page 737

1. See above

2. See above

3. Page 737

Client Auth
Level 3

1. Set up server authentication

2. Set up Level 1 authentication

3. Set up Level 2 authentication

4. Add User IDs to the server’s
SERVAUTH profile access list

1. See above

2. See above

3. See above

4. Page 737

1. See above

2. See above

3. See above

4. Page 737

Express Logon
Feature

1. Set up server authentication

2. Set up level 1 authentication
(optional for DCAS)

3. Set up Level 2 authentication
(optional for DCAS)

4. Define passticket profiles

1. See above

2. See above

3. See above

4. Page 738

1. See above

2. See above

3. See above

4. Page 738

Certificate file types
The following sections mention several certificate formats. Below is a high level
summary of the differences.

v PKCS12 files are used to move the server certificate to another server keyring.
Because this format contains the private key, the file is usually password
protected. IBM recommends only using this format when required.

– Commonly used file extension is .p12

– Contains private key, public key and certificate

– Created by

- HOD export function

When the HOD client specifies a client certificate to send to the server
during SSL processing, it must be in this format. The private key portion is
not sent to the server.

- Netscape export function

- gskkyman ″Export keys to a PKCS12 file″ function

v Certificate files are normally needed when a self-signed certificate is used. In this
case, each self-signed certificate appears to be signed by a unique CA.
Therefore, the client’s keyring (if this is a self-signed server certificate) or server’s
keyring (if this is a self-signed client certificate) must be primed to recognize the
issuer of the self-signed certificate. This format can be used to prime a keyring
with the issuer’s CA certificate. This format can also be used when registering a
client certificate with RACF.

– Commonly used file extensions are .crt and .der

– Contains public key and certificate

– Created by

- HOD extract function

- gskkyman’s ″Create a self-signed certificate″ function

Common terminology
The following variable names are used throughout the appendix:

Appendix B. TLS/SSL security 727

|

|

|

tnserverid
The user ID defined to RACF given superuser status that represents the
TCPIP stack and the TN3270 Server.

dcasserverid
The user ID defined to RACF given superuser status that represents the
Digital Certificate Access Server.

ftpserverid
The user ID defined to RACF given superuser status that represents the
FTP daemon and all spawned FTP Servers.

serverid
The user ID defined to RACF given superuser status that represents any of
the servers above.

userid The user ID that is associated with a client certificate in the RACF keyring
database. Or the TSO user ID that requires authority to issue certain RACF
commands.

Copying HFS files to MVS data sets
Certificate and database files are often stored in HFS file formats and sometimes
need to be copied into MVS file formats. MVS files can be created from HFS files
by using the TSO OGET command with the BINARY option and can be protected
using RACF. For example:
OGET ’/tmp/telnet/mvs180.kdb’ ’TCPCS6.MVS180.KDB’ BINARY
OGET ’/tmp/telnet/mvs180.sth’ ’TCPCS6.MVS180.STH’ BINARY

It is recommended that the MVS dsnames be the HFS filenames prefixed by one or
more high-level qualifiers. The same high-level qualifier(s) must be used for both
the keyring and the stash file. This ensures that the name relation used to generate
the stash file from the keyring file is unchanged. Refer to z/OS UNIX System
Services Command Reference for more information on the use of the OGET
command.

Using the gskkyman utility
This section gives examples of how to use the gskkyman utility to:

v Create keyrings

v Create a server self-signed certificate

v Extract a server certificate

v Add client certificates into a keyring

The gskkyman utility is a command-line utility. It prompts you for the information you
need to perform a task. If you make an error, it issues a message and prompts you
again for the information.

The gskkyman utility is documented in z/OS System Secure Sockets Layer
Programming. It is recommended that you read the gskkyman topics in this
document before starting to use the gskkyman.

Additional information and examples can also be found in the following Redbooks:

v SecureWay Communications Server for OS/390 V2R8 TCP/IP: Guide to
Enhancements

v IBM SecureWay Host On-Demand: Enterprise Communications in the Era of
Network Computing

728 z/OS V1R4.0 CS: IP Configuration Guide

|

|

|
|
|

To run gskkyman, you must have access to the z/OS Cryptographic Services
message catalogs and DLLs. The C DLL Library (that is, SYS1.SCLBDLL) must be
available and APF authorized to avoid possible abends caused by trying to access
a nonexisting or non-APF authorized system. For example, if the z/OS
Cryptographic Service DLL library is not part of the linklist concatenation, an ″export
STEPLIB=hlq.SGSKLOAD″ command might be needed. For additional information,
refer to z/OS System Secure Sockets Layer Programming.

The gskkyman utility is shipped with z/OS in System SSL as a part of the
Cryptographic Services Base element of z/OS. It supports the generation of key
sizes of 1024 or 2048 bits. Note that if you have existing keys with a size of 512,
these keys are still usable. The gskkyman utility runs under the z/OS shell and can
create several types of HFS files. System SSL requires the following files:

v A keyring file (also known as a key database).

v A password file (also known as a stash file) which contains the password
associated with the keyring file.

The keyring file and the stash file are used by the server to obtain the server’s
certificate and the public/private key pair used during SSL handshake processing.
The server uses the stash file as the mechanism to obtain the keyring password
rather than using a configuration parameter which might be accessible to a larger
number of people. The stash file is created by using gskkyman’s ’Store encrypted
database password’ function on the main menu.

Security of these files is an installation responsibility. It is recommended to restrict
the file access to users with superuser authority.

The server must have read and write access to the key database and read access
to the password file.

Note: The gskkyman utility accepts only the HFS files.

The gskkyman utility allows you to enter the fully qualified path and file name when
it prompts you for a keyring, certificate request, or certificate file name. However,
you should change to the path where the file will be stored before you start
gskkyman.

Create a keyring file
Before starting gskkyman, we suggest that you start in the directory where the
keyring is to be created. Otherwise, be sure to include the full file name when
specifying the keyring name.

1. Start gskkyman. This will display the Database Menu. Select Create new
database (option 1).

2. Specify the key database name, password, and expiration information as
requested.

3. Create a password file (also known as a stash file) by selecting Store database
password (option 10) from the Key Management Menu.

Following is a sample of the gskkyman output for creating a key database. Sample
user replies are shown in bold characters.

1. The Database Menu that starts the process for creating a key database is
shown below. Select the Create new database option.

Appendix B. TLS/SSL security 729

|
|

|
|
|
|

|

|

|

|

|

|
|

|
|

|
|

|
|

|
|

Database Menu

1 - Create new database
2 - Open database
3 - Change database password
4 - Change database record length
5 - Delete database

0 - Exit program

Enter option number: 1

2. Specify the key database name, password, and expiration information as
requested.

Enter key database name (press ENTER to return to menu): server.kdb
Enter database password (press ENTER to return to menu):
Re-enter database password:
Enter password expiration in days (press ENTER for no expiration): 365
Enter database record length (press ENTER to use 2500):

Key database /SYSTEM/usr/keyring/server.kdb created.

Press ENTER to continue.

3. Pressing enter brings up the Key Management Menu as follows. Create the
password file by selecting the Store database password option.

Key Management Menu

Database: /SYSTEM/usr/keyring/server.kdb

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive certificate issued for your request
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key

10 - Store database password
11 - Show database record length

0 - Exit program

Enter option number (press ENTER to return to previous menu): 10
Database password stored in /SYSTEM/usr/keyring/server.sth.

Press ENTER to continue.

Pressing enter returns you to the Key Management Menu. You can proceed to
create your server certificate or exit.

Create a server self-signed certificate
Refer to gskkyman documentation for the steps necessary to create a CA-signed
server certificate. With gskkyman, you can create your own self-signed certificate
for testing:

1. From the Database Menu, open your keyring file (Option 2–Open database).
From the Key Management Menu, select Create a self-signed certificate (option
6).

730 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
||

|
|

|
|
|
|
|
|
|
|
|
||

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|

|
|

|
|
|

2. Specify the certificate type to be created from one of the end user certificate
options. The type of end user certificate created depends on the security
requirements of your installation.

3. Specify the label, subject name, and length of time the certificate is valid as
requested.

4. After the certificate is created, set the certificate as the default by selecting
Manage keys and certificates (option 1), selecting the certificate you created,
followed by selecting Set key as default (option 3).

The following is a sample of the gskkyman output for creating a self-signed
certificate. Sample user replies are shown in bold characters.

1. The Key Management Menu that starts the process for creating a self-signed
certificate is shown below. Select Create a self-signed certificate (option 6).

Key Management Menu

Database: /SYSTEM/usr/keyring/server.kdb

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive certificate issued for your request
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key

10 - Store database password
11 - Show database record length

0 - Exit program

Enter option number (press ENTER to return to previous menu): 6

2. The Certificate Type menu will be displayed. Select one of the end user
certificate types (options 4, 5, or 6).

Certificate Type

1 - CA certificate with 1024-bit RSA key
2 - CA certificate with 2048-bit RSA key
3 - CA certificate with 1024-bit DSA key
4 - End user certificate with 1024-bit RSA key
5 - End user certificate with 2048-bit RSA key
6 - End user certificate with 1024-bit DSA key

Select certificate type (press ENTER to return to menu): 4

3. You will then be asked for the certificate data and the certificate will be created.

Appendix B. TLS/SSL security 731

|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|

|
|
|
|
|
|
|
|
|
|
||

|

Enter label (press ENTER to return to menu): selfsignedcert
Enter subject name for certificate
Common name (required): test server certificate
Organizational unit (optional): dev
Organization (required): dev
City/Locality (optional):
State/Province (optional):
Country/Region (2 characters - required): US

Enter number of days certificate will be valid (default 365): 5000

Please wait

Certificate created.

Press ENTER to continue.

4. Make the self-signed certificate the default server certificate. Pressing enter
returns you to the Key Management Menu shown in step 1 above. Select
Manage keys and certificates (option 1). This will bring up the Key and
Certificate List menu shown below. Select the number that corresponds to the
self-signed certificate just created.

Key and Certificate List

Database: /SYSTEM/usr/keyring/server.kdb

1 - selfsignedcert

0 - Return to selection menu

Enter label number (ENTER to return to selection menu, p for previous list): 1

This will bring up the Key and Certificate Menu. Select Set key as default
(option 3).

Key and Certificate Menu

Label: selfsignedcert

1 - Show certificate information
2 - Show key information
3 - Set key as default
4 - Set certificate trust status
5 - Copy certificate and key to another database
6 - Export certificate to a file
7 - Export certificate and key to a file
8 - Delete certificate and key
9 - Change label

0 - Exit program

Enter option number (press ENTER to return to previous menu): 3

Default key set.

To use the new default server certificate, the server must reinitialize its SSL
environment. Refer to the security information in the appropriate server or client
chapters for SSL initialization details. The self-signed server certificate will need to
be added to the client’s key database as a CA. For additional information, see
“Extract the server certificate from the keyring” on page 733.

732 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|
|
|

|
|
|
|
|
|
|
|
|
||

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|
|
|

Extract the server certificate from the keyring
If using a self-signed server certificate, the server certificate must be added to the
client’s key database as a CA certificate. Some clients provide the capability to
extract the server’s certificate when the client connects to the server. For some
clients, however, this process must be done manually by exporting the server’s
certificate to a file, sending the server’s certificate file to the client, and adding the
server’s certificate to the client’s key database.

The server certificate can be exported to a file from the Key and Certificate Menu. If
you have just opened your keyring file and are at the Key Management Menu,
select Manage keys and certificates (option 1) and select the certificate you want to
export from the list. You will then see the Key and Certificate Menu.

1. Select Export certificate to a file (option 6).

2. Specify the desired format and file name.

The following is a sample of the gskkyman output for exporting a certificate. Sample
user replies are shown in bold characters.

1. The Key and Certificate Menu that starts the export process follows. Select
Export certificate to a file (option 6).

Key and Certificate Menu

Label: selfsignedcert

1 - Show certificate information
2 - Show key information
3 - Set key as default
4 - Set certificate trust status
5 - Copy certificate and key to another database
6 - Export certificate to a file
7 - Export certificate and key to a file
8 - Delete certificate and key
9 - Change label

0 - Exit program

Enter option number (press ENTER to return to previous menu): 6

2. The Export File Format menu is displayed, and you will be asked to select the
export format and to enter a file name.

Export File Format

1 - Binary ASN.1 DER
2 - Base64 ASN.1 DER
3 - Binary PKCS #7
4 - Base64 PKCS #7

Select export format (press ENTER to return to menu): 1
Enter export file name (press ENTER to return to menu): binservercert.der

Certificate exported.

If using ftp to send the export file to the client, remember to send in binary
format if the file format chosen above was binary.

Add client certificates to the server keyring
If using a client self-signed certificate, the certificate must be added to the server
keyring as a CA certificate. Send the client certificate to the MVS host using FTP

Appendix B. TLS/SSL security 733

|
|
|
|
|
|

|
|
|
|

|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|

|
|
|
|
|
|
|
|
|
|
|
||

|
|

(with the BINARY send option if the certificate was extracted in binary format). The
client may be the DCAR, FTP client, or TN3270 client. Use gskkyman’s ’Store a CA
certificate’ option to obtain the client CA from the binary DER file. If the client
certificate was issued by a well-know CA, only the signer’s certificate needs to be in
the keyring. The gskkyman utility primes its keyrings with several well-known CAs.

Using RACF’s common keyring support
This section gives examples of how to use RACF common keyring support to:

v Create keyrings

v Create a server self-signed certificate

v Extract a server certificate

v Add client certificates into a keyring

RACF can be used to manage the keys and certificates normally stored in the key
database. All the functions that the gskkyman utility provides, are also available in
the RACF support. However, because RACF can manage multiple keyrings,
certificates and keyrings are added independently. A certificate is then connected to
one or more keyrings.

All the server keyrings and certificates are stored in the RACF database. There are
no separate key database or stash files.

Refer to z/OS Security Server RACF Security Administrator’s Guide for information
about how to use RACF to manage your key database information.

For detailed information on the RACDCERT command and other commands that
might be useful in managing your RACF keyring data, refer to z/OS Security Server
RACF Command Language Reference for the full syntax and description of these
commands.

RACF keyring names, labels, and so on are case-sensitive. When adding the
keyring name to the server profile, be sure that the correct case is used.

Before using RACF to store your key database information:

1. Ensure that RACDCERT is defined as an authorized TSO command in the
IKJTSOxx member.

2. The well-known CA certificates are initially marked as NOTRUST in the RACF
database and you will have to update the CA certificates that you plan to
support to TRUST status.

3. Refresh the applicable RACF class after making changes.

4. There are various ways to register the client certificate with RACF or set up a
RACF Certificate Name Filter. For a complete description of RACF management
of digital certificates and options available, see the z/OS Security Server RACF
Security Administrator’s Guide. If using RACF’s Certificate Name Filtering with
MultiID filters, TN3270 client authentication processing only matches filters that
specify generic (*) criteria.

5. Most tasks related to certificates are managed using the RACDCERT command.
The issuer of these commands must have appropriate RACF authority to the
IRR.DIGTCERT.function resource in the FACILITY class with UPDATE,
CONTROL, or READ ACCESS. Refer to the z/OS Security Server RACF
Security Administrator’s Guide for more information on controlling the use of the
RACDCERT command and for a complete description of functions needed for
keyring and certificate use.

734 z/OS V1R4.0 CS: IP Configuration Guide

|
|

|

|

6. Consider RACLISTing the DIGTCERT class for best performance.

RACF panels also support most of the certificate and keyring functions and can be
used to perform these actions, if desired.

Configuring RACF services for the servers
This section describes some commands needed for configuring RACF for the
servers. These commands are in EZARACF in the SEZAINST data set.

Update CA certificates to TRUST status: Several well-known CA certificates are
primed in the RACF database but are initially marked NOTRUST. To use the
certificate, it must be changed to TRUST status. As an example, the commands
below show how to change the Verisign Class 3 CA to trusted status and then
connect it to a keyring.
RACDCERT CERTAUTH ALTER(LABEL(’Verisign Class 3 Primary CA’)) TRUST

RACDCERT ID(TCPID) CONNECT (CERTAUTH RING(SERVERKeyring)
LABEL(’Verisign Class 3 Primary CA’) USAGE(CERTAUTH))

Activate the DIGTCERT, DIGTRING, and optional DIGTNMAP classes: The
DIGTCERT and DIGTRING classes must be active before defining certificates or
keyrings to RACF by using the SETROPTS commands. For example:
SETROPTS CLASSACT(DIGTCERT)
SETROPTS CLASSACT(DIGTRING)

If using Certificate Name Filtering, ensure that the DIGTNMAP class is active. For
example:
SETOPTS CLASSACT(DIGTNMAP)

Also be sure to do a refresh after any changes. For example :
SETROPTS RACLIST(DIGTCERT) REFRESH
SETROPTS RACLIST(DIGTRING) REFRESH
SETROPTS RACLIST(DIGTNMAP) REFRESH

Allow SSL keyring confirmation: System SSL verifies the server RACF user ID
does have access to the keyring. Therefore, if the server is started as an MVS
started procedure, you must permit the RACF user ID associated with the server to
have control access to the IRR.DIGTCERT.LISTRING. For example:
RDEFINE FACILITY (IRR.DIGTCERT.function) UACC(NONE)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(serverid) ACCESS(CONTROL)

If the DCAS is started from a TSO user ID under the z/OS UNIX shell, you must
also permit that ID. For example:
RDEFINE FACILITY (IRR.DIGTCERT.function) UACC(NONE)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(userid) ACCESS(CONTROL)

Create a keyring file
Use the following RACF command to add (create) a server keyring and associate it
with the server RACF user ID:
RACDCERT ID(serverid) ADDRING(SERVERRING)

To delete or list a keyring:
racdcert ID(serverid) delring(SERVERRING)
racdcert ID(serverid) listring(SERVERRING)

Appendix B. TLS/SSL security 735

Create a server self-signed certificate
Refer to the RACF documentation for the steps necessary to create a CA-signed
server certificate. To create a self-signed server certificate called XXXDN, for user
ID serverid, use the following command, where CN is the common name and OU is
the organization unit name. Additional options are available within SUBJECTSDSN.
RACDCERT ID(serverid) GENCERT SUBJECTSDSN(CN(’UNIT1’) OU(’TESTING’) C(’US’)) TRUST

WITHLABEL(’XXXDN’) SIZE(1024)

To connect the certificate to a keyring and make it the default certificate, use the
following command. This example assumes a keyring called serverRing has already
been created.
RACDCERT ID(serverid) CONNECT(ID(serverid) LABEL(’XXXDN’) RING(SERVERRING) DEFAULT)

Extract a server certificate from a server keyring
If using FTP to send the server self-signed certificate to the client, use RACDCERT
Export to export the server certificate to an MVS file in DER format. The server
self-signed certificate must be added to the client keyring to prime it for decrypting
the server certificate. EXPORT generally implies exporting both a certificate and
private key. However, the CERTDER format instructs the command to export only
the certificate in DER format, which is generally considered an EXTRACT. Use the
following RACF command:
RACDCERT ID(serverid) EXPORT(LABEL(’XXXDN’)) DSN(’dataset name’) FORMAT(CERTDER)

Add client certificates to the server keyring
If using a client self-signed certificate, the certificate must be added to the server
keyring as a CA certificate. Send the client certificate to the MVS host using FTP
(with the BINARY send option). The client may be the DCAR, FTP client, or TN3270
client. If the client certificate is issued by a well-known CA, only the signer’s
certificate needs to be in the keyring. The well-known CA certificates are initially
marked as NOTRUST and must be updated to TRUST status.

The client self-signed certificate must be registered into the RACF database before
the certificate can be associated with a keyring. Associate the certificate to a RACF
user ID to register the certificate into RACF. For example:
RACDCERT ID(USER2) ADD(’SSCLNTCERT.USER2.DER’) WITHLABEL(’CLNTCERT_USER2’) TRUST

This command requires that the certificate be defined in an MVS data set. If the
certificate is defined in the HFS, you can use the TSO OGET command (with the
BINARY send option) to move the certificate to an MVS data set.

Use the RACDCERT CONNECT command to connect the client certificate to the
RACF keyring as a CA certificate. In this example, the RACF user ID associated
with the server is serverid and the keyring name used by the server is serverRing:
RACDCERT ID(serverid) CONNECT (ID(USER2) RING(serverRing)

LABEL(’CLNTCERT_USER2’) USAGE(CERTAUTH))

Associate certificate with user ID
Use the RACDCERT ADD command to register the client’s certificate and associate
it with a user ID. In this example, the binary DER client certificate has been stored
in an MVS file named ’SSCLNTCERT.USER2.DER’, and is to be associated with
the RACF user ID USER2, and given a label ’CLNTCERT_USER2’:
RACDCERT ID(USER2) ADD(’SSCLNTCERT.USER2.DER’) WITHLABEL(’CLNTCERT_USER2’) TRUST

Be sure to refresh the DIGTCERT and DIGTRING class. For example:
SETROPTS RACLIST (DIGTRING) REFRESH
SETROPTS RACLIST (DIGTCERT) REFRESH

736 z/OS V1R4.0 CS: IP Configuration Guide

|
|

|
|

Reinitialize SSL: Reinitialize the server SSL to pick up the certificates that have
been added to the key database. Refer to the security information in the appropriate
server and client chapters to understand when SSL initialization is complete and
how to refresh SSL.

Add user IDs to the SERVAUTH profile access list
With level 3 authentication, you specify the user IDs that are allowed to connect into
a specific Telnet port, DCAS server, or FTP port by associating the user IDs to each
server’s RACF SERVAUTH profile. Refer to the security information in the
appropriate server and client chapters for level 3 setup. The user ID associated with
the client certificate can then be checked against the SERVAUTH class profile entry.
The use of this RACF class is optional. If the SERVAUTH RACF class is active and
a RACF profile for the port is defined, this level of RACF authorization will be
verified prior to connection negotiation. If the SERVAUTH class is not active or
there is no RACF profile, this indicates that this level of check is not required and
the client is allowed to connect to the server as long as the client certificate was
validated.

TN3270 server: The RACF profile name is:
EZB.TN3270.sysname.tcpname.PORTnnnnn

where nnnnn is the port number with leading zeros. The profile name can contain
wildcards to the extent that the security product allows. All security product rules
(for example wildcards, PROTECTALL, and so on) apply. For example, the profile
name for TCP stack TCPCS running on system MVSA for port 992 would be:
EZB.TN3270.MVSA.TCPCS.PORT00992

If all systems will use the same access list, and RACF generic profile checking is
active for the SERVAUTH class, the following profile name could be used:
EZB.TN3270.*.TCPCS.PORT00992

To protect all ports with a single profile, the following security product profile name
could be used:
EZB.TN3270.MVS.TCPCS.PORT*

To restrict access on a port basis, the following RACF setup is needed and must be
done by a user ID that has authority to issue the specified RACF commands:

v Activate the RACF SERVAUTH class, if not active:
SETROPTS CLASSACT(SERVAUTH)

v Define the profile for the Telnet port:
RDEFINE SERVAUTH EZB.TN3270.sysname.tcpname.PORTnnnnn UACC(NONE)

v Permit the user ID associated with TCP to the port profile:
PERMIT EZB.TN3270.sysname.tcpname.PORTnnnnn CL(SERVAUTH) ID(tcpuserid) ACCESS(READ)

v Ensure the SERVAUTH class is RACLISTed. If it is not, RACLIST it:
SETROPTS RACLIST(SERVAUTH)

v Refresh the SERVAUTH class before using:
SETROPTS RACLIST(SERVAUTH) REFRESH

DCAS: The RACF profile name is:
EZA.DCAS.cvtsysname

v Activate the RACF SERVAUTH class, if not active:
SETROPTS CLASSACT(SERVAUTH)

v Define the profile:

Appendix B. TLS/SSL security 737

|

RDEFINE SERVAUTH EZA.DCAS.cvtsysname UACC(NONE)

v Permit the user ID associated with TCP to the port profile:
PERMIT EZA.DCAS.cvtsysname CLASS(SERVAUTH) ACCESS(CONTROL) ID(dcasid)

v Ensure the SERVAUTH class is RACLISTed. If it is not, RACLIST it:
SETROPTS RACLIST(SERVAUTH)

v Refresh the SERVAUTH class before using:
SETROPTS RACLIST(SERVAUTH) REFRESH

Note: The RACF user ID associated with the certificate and the
EZA.DCAS.cvtsysname can be any valid user ID.

FTP server: The RACF profile name is:
EZB.FTP.sysname.ftpdaemonname.PORTnnnn

where nnnnn is the port number with leading zeros. The profile name can contain
wildcards to the extent that the security product allows. All security product rules
(for example wildcards, PROTECTALL, and so on) apply. For example, the profile
name for FTP daemon FTPD running on system MVSA for port 992 would be:
EZB.FTP.MVSA.FTPD.PORT00992

If all systems will use the same access list and RACF generic profile checking is
active for the SERVAUTH class, the following profile name could be used:
EZB.FTP.* .FTPD.PORT00992

To protect all ports with a single profile, the following security product profile name
could be used:
EZB.FTP.MVS.FTPD.PORT*

To restrict access on a port basis, the following RACF setup is needed and must be
done by a user ID that has authority to issue the specified RACF commands:

v Activate the RACF SERVAUTH class, if not active:
SETROPTS CLASSACT(SERVAUTH)

v Define the profile for the FTP port:
RDEFINE SERVAUTH EZB.FTP.sysname.ftpdaemonname.PORTxxxxx UACC(NONE)

v Permit the user ID associated with the FTP daemon to the port profile:
PERMIT EZB.FTP.sysname.ftpdaemonname.PORTnnnnn CL(SERVAUTH) ID(tcpuserid) ACCESS(READ)

v Ensure the SERVAUTH class is RACLISTed. If it is not, RACLIST it:
SETROPTS RACLIST(SERVAUTH)

v Refresh the SERVAUTH class before using:
SETROPTS RACLIST(SERVAUTH) REFRESH

Define PassTicket profiles to RACF
The following recommendations apply when defining PassTicket profiles to RACF:

v Use the SETROPTS CLASSACT(PTKTDATA) command to activate the
PTKTDATA class.

v Use the SETROPTS RACLIST (PTKTDATA) command to RACLIST the
PTKTDATA class.

v For each application to which users want to gain access with a PassTicket, you
must define a PTKTDATA class profile. For example, to give users access to
TSO, define a profile for TSO using the following command:

738 z/OS V1R4.0 CS: IP Configuration Guide

RDEFINE PTKTDATA TSO3050
SSIGNON(KEYMASKED())
UACC(NONE)

The DIGTNMAP and DIGTCRIT classes support profiles. The application ID used
for DIGTCRIT profiles must be the same as that used on the HOD V5 Application
ID popup window.

Defining profiles for applications such as TSO can be tricky because RACF has
special methods for naming profiles. For more information, refer to the z/OS
Security Server RACF Security Administrator’s Guide.

Add the client certificate to the RACF server keyring and associate the client
certificate with a user ID.

Define a PassTicket profile for each application accessed by Express Logon. The
application ID portion of the profile must match that configured on the HOD V5
workstation Application ID popup window.
SETR CLASSACT(PTKTDATA) //* Activate the PassTicket data class
SETROPTS RACLIST(PTKTDATA) //* Raclist the class
SETR RACLIST(PTKTDATA) REFRESH
RDEFINE PTKTDATA TSO3390 SSIGNON() UACC(NONE)

Migrating an existing gskkyman key database to RACF
To migrate from an existing key database (kdb) created by gskkyman, each
certificate that the customer has added must be individually exported and then
added to the RACF database. The RACF database is already primed with some
well-known Certificate Authorities (CA), so it is not necessary to migrate these CA
certificates to RACF. Note however, that the well-known CAs are initially marked as
NOTRUST in the RACF database and you will have to update the CA certificates
that you plan to support to TRUST status.

To migrate a server certificate from your kdb created by gskkyman to RACF:

1. Use gskkyman to export the certificate and key to a PKCS12 format file:

a. Open the key database file that you want to migrate.

b. Select ’List/Manage keys and certificates’.

c. Select the certificate to be exported.

d. Select ’Export the certificate and key to a file’, supply the name of the HFS
file where the certificate and key will be stored (in PKCS12 format) and
enter the password to protect the file when prompted.

2. Use the OGET command described in “Copying HFS files to MVS data sets” on
page 728 to create an MVS file.

3. Add the certificate and key to the RACF database and assign it to a user, if
applicable. If this is the server certificate, assign it to the user ID associated with
the server. For example:
RACDCERT ID(serverid) ADD(’Serverid.mycert.p12’) WITHLABEL(’ServerCert’)
PASSWORD(’mypw’) TRUST

You will also need to create a keyring for your server. For example:
RACDCERT ID(serverid) ADDRING(serverring)

Then connect the appropriate certificates to the keyring. For example, to connect
the default server certificate that was migrated above (’ServerCertificate’) to the
’serverring’ that we associated with serverid:

Appendix B. TLS/SSL security 739

|

|

|

|

RACDCERT ID(serverid) CONNECT(ID(serverid) LABEL(’ServerCert’)
RING(ServerRing) DEFAULT)

Creating and managing keys and certificates at the client
Normally, a client certificate should be obtained from a well-known Certificate
Authority (CA). The Certificate Authority’s root certificate needs to be included in the
server’s key data base as a trusted authority in order for the client’s certificate to
pass the SSL protocol’s client authentication process. If the client certificate has
been issued by a well-known CA, the client certificate need not reside in the
server’s key database. If an installation uses self-signed client certificates for testing
purposes, each certificate appears to be issued by a unique CA. Therefore, each
self-signed client certificate must be added to the server’s key database as a CA.

If you also want verification that the client certificate is registered with your security
product, the client certificate must reside in the server’s security product database
(using the RACDCERT command with the ADD option is one way to add the client
certificate to RACF). Refer to “Using RACF’s common keyring support” on page 734
for more information on using RACF to store certificates. If the installation is using
self-signed client certificates and requests verification that the client certificate is
registered with the security product, the client certificate must reside in both the
server’s key database (as a CA certificate) and in RACF.

Steps to create a self-signed client certificate vary depending on the source of the
client certificate. Refer to “Create a self-signed client certificate” for details on
creating a client certificate using HOD’s Certificate Management utility.

After the client certificate has been created and extracted as a DER data file at the
client, FTP the binary DER data file to the z/OS host using FTP’s binary option. If
using RACF for the keyring, level 2 client authentication, or level 3 client
authentication, an MVS file will need to be created. If FTP created an HFS file, use
the OGET command described in “Copying HFS files to MVS data sets” on
page 728 to create an MVS file.

Create a self-signed client certificate
See HOD’s online documentation for additional details. This sample uses a locally
installed HOD V4 client on an NT system using HODs Key Management Utility.

1. On the HOD client, go to HOD’s Certificate Management panels (go to Start,
Programs, Host On Demand, Administration, Certificate Management.) and open
up the key database by selecting the open icon. Usually a key database will
exist. If you have never used the key database, it might have a default
password (usually ncod - the help menu should contain help information that
specifies the default password for your system) or you can select the new
option. If new is selected, the correct path and file name will normally be filled in
by HOD. Do not change this file name. The HOD key database is normally in
HOD’s bin subdirectory and named HODClientKeyDb.kdb.

740 z/OS V1R4.0 CS: IP Configuration Guide

If Personal Certificates is not displayed, click the drop-down list arrow and
select Personal Certificates from the pull-down list.

2. Create a self-signed personal certificate by selecting the New Self-Signed
button. The Create New Self-Signed Certificate screen is displayed.

Fill in the requested information and then click OK. The new certificates will now
be in the personal certificates list.

Figure 81. IBM Keys Management

Figure 82. Create New Self-Signed Certificate

Appendix B. TLS/SSL security 741

3. Use the export function by selecting the Export/Import button to create a
PKCS12 file. This is the file that the HOD client will use.

Specify the path and file where the exported PKCS12 file will be stored and
click OK. Enter a password to protect the file when prompted.

4. Create the certificate file that will be used to prime the server’s keyring with the
CA for the self-signed client certificate.

Use the Extract Certificate function from the panel shown in Figure 83 to create
a binary DER data file. This file will have the format filename.der.

Figure 83. IBM Key Management

Figure 84. Export/Import Key

742 z/OS V1R4.0 CS: IP Configuration Guide

Specify the path and file where the exported binary DER file will be stored and
click on OK. This is the file you will FTP to the server host.

5. When you start a session from HOD to a port that requires a client certificate,
HOD will display a panel that requests the client certificate file and password.
The pkcs12 file created in step 3, should be specified.

Note: If using HOD and you are connecting to a port that requires a client
certificate, the security properties for the connection must indicate that a
certificate should be sent. The following example shows the HOD
Security properties screen.

Figure 85. Extract Certificate to a File

Figure 86. HOD connection using a client certificate

Appendix B. TLS/SSL security 743

Add server certificates to the client keyring
1. Get the server certificate information to the client machine.

v Extract the server certificate from the server keyring. FTP can be used to
ship the server certificate file to the client.

v Newer versions of HOD allow you to extract the server information directly
from the HOD client window during connection setup and eliminate the need
to FTP the server certificate to the clients. The following is an example of
using this method. Once the server side has been configured for the secure
port and the port is active:

– Setup your hod client to connect into the secure port and try the
connection.

– If the connection fails with a 662 (indicating the ’server presented a
certificate that was not trusted’), you do not have the certificate of the CA
that issued the server certificate in you client’s keyring.

Figure 87. HOD security properties

744 z/OS V1R4.0 CS: IP Configuration Guide

- From the client window, select communication from the action bar, then
select security. Information for the server certificate should be
displayed:

- Select extract and indicate binary format and where to store the
certificate, then click OK.

If the action was successful, the following is displayed, which indicates
that the server certificate information is on your client system.

Figure 88. Security Information

Figure 89. Extract a Certificate

Figure 90. Certificate was extracted

Appendix B. TLS/SSL security 745

2. Add the self-signed server certificate to HOD’s CustomizedCAs:

v On the HOD client, go to HOD’s Certificate Management panels. To do this,
select Start, Programs, IBM Host On-Demand, Administration, Certificate
Management.

v Open the CustomizedCAs.class file. If customized CA certificates have
previously been added to HOD, or if this is the first customized CA, create a
new class file by:

– Selecting File, then New.

– Click on the Key Database Type arrow and select SSLight key database
class. This automatically fills in the required filename and path

– Click OK. The Signed Certificates window is displayed.

– Add the server certificate information:

- Select ADD. The Add CA’s Certificate from a File window is displayed.

- Select data type ’Binary DER data’.

Figure 91. Creating a new CustomizedCAs.class

Figure 92. Default location displayed

Figure 93. Add CA’s Certificate From a File

746 z/OS V1R4.0 CS: IP Configuration Guide

– Specify the path and name of the binary certificate file that was FTPed
from the server or the file extracted using the HOD client window above.
Click on the OK button to complete the add.

– Close the CustomizedCAs.class after completing the ADD.

3. Restart HOD to pick up the updated CustomizedCAs.class.

Figure 94. Add CA’s Certificate From a File — continued

Appendix B. TLS/SSL security 747

748 z/OS V1R4.0 CS: IP Configuration Guide

Appendix C. Express Logon Feature (ELF)

Users accessing SNA applications using TN3270 clients such as Host On-Demand
(HOD) are generally required to know the user ID and password for the application
they want to access. The ID-and-password authentication process creates several
potential problems. For example, users may forget their IDs and passwords. If they
do forget, the passwords must be reset by a system administrator, a
time-consuming process. On the other hand, writing down the IDs and passwords
or sharing them with someone else creates a security risk, especially since
passwords are usually valid for relatively long periods of time.

IBM’s solution to these problems is the Express Logon Feature (ELF), a process
which allows a user on a workstation with a TN3270 client and an X.509 certificate
to log on to a SNA application without entering an ID or password. The Express
Logon Feature is supported on two-tier and three-tier network designs. The two-tier
design utilizes the z/OS TN3270 Telnet server. The three-tier design utilizes a
middle-tier TN3270 server and a Digital Certificate Access Server (DCAS).

Both network designs require a TN3270 client workstation that supports Secure
Sockets Layer (SSL) connections with client authentication and an X.509 certificate.
Using RACF services in z/OS, the client certificate must be associated with a valid
user ID. The only client-side product that supports the Express Logon Feature is the
IBM WebSphere Host On-Demand V5.0.

The two-tier design requires the z/OS TN3270 Telnet server with SSL, client
authentication, and Express Logon functions turned on. Refer to “Express Logon
Feature (ELF)” on page 361 for server setup information.

The three-tier design requires a middle-tier TN3270 Telnet server and a Digital
Certificate Access Server (DCAS). A middle-tier TN3270 server, so called because it
does not reside on the host, but rather between the TN3270 workstation client and
the host. This server includes a Digital Certificate Access Requester (DCAR). The
middle-tier IBM TN3270 servers supporting Express Logon are:

v CS2 6.1

v CS/NT 6.1.1 PTF

v CS/AIX 6.0.0.1 PTF

HOD (Host on Demand)
TN3270 SSl Client with x 509 certificate HOD

TN3270 Server
with Digital Certificate
Access Requester

TN3270 Server

Two-tier
Solution

Three-tier
Solution CS/NT

CS/AIX
CS/2

z/OS
- IBM Communications Server
- SAF/RACF
- SNA Applications

DCAS

TCP/IP
TCP/IP

TCP/IP

SNA

Figure 95. Express Logon network

© Copyright IBM Corp. 2000, 2002 749

Note: The term DCAR is used to describe the part of the TN3270 middle-tier
server that supports the Express Logon Feature and communicates as a
client with the DCAS. It is not separate from the TN3270 middle-tier server.
The term DCAR might not be used in other documents that describe ELF but
has been used here to simplify the description of this function.

A Digital Certificate Access Server (DCAS) resides on the host. DCAS uses RACF
services to obtain a user ID.

The host also provides RACF Secured Signon services, which the DCAS or the
MVS host Telnet server use to generate a PassTicket. A PassTicket is a RACF
token similar to a password except that it is valid only for ten minutes.

In a typical scenario, a Host On-Demand (HOD) client wants to log on to a TSO
application on the host.

v In the two-tier design, the user starts an SSL connection with level 2 client
authentication which passes the client certificate to the MVS host TN3270 server.
The MVS host TN3270 server uses RACF Secured Signon services to obtain a
user ID and PassTicket.

v In the three-tier design, the user starts the TN3270 connection to the middle-tier
server. The DCAS’s client is the middle-tier TN3270 server or DCAR, which
attempts to log on to an SNA application for the workstation client. The DCAS
receives a digital certificate from the DCAR and returns a user ID and
PassTicket. SSL communication is used between the DCAS and the DCAR. The
server recognizes that the client wants the Express Logon function and invokes
the DCAR, which opens an SSL connection with client authentication and passes
the workstation’s certificate and application name to the DCAS on the host. The
DCAS uses RACF Secured Signon services to obtain a user ID and PassTicket,
which the DCAS returns to the DCAR. The DCAR passes this information back
to the TN3270 server.

In both cases the ELF-enabled client and server now have enough information to
complete the logon to TSO. This occurs without the user ever having to enter a
user ID or password.

Note: You can use RACF or any other SAF-compliant security product that
supports PassTickets with Express Logon. RACF APAR OW44393 is
required when using the following:

v TSO with Generic Resources and PTKDATA Class profiles.

v Applications with shared user IDs that could access the application
simultaneously. RACF requires the PTKTDATA profile to specify APPLDATA(’NO
REPLAY PROTECTION.’)

For a final list of PTFs, refer to the HOD README file.

Configuring RACF services for Express Logon
At a minimum, you must register all workstation client certificates with RACF using
the RACDCERT command. This associates the certificates with the IDs of users
attempting to log on. In the two-tier solution, the certificate is passed from the client
to the TN3270 server. In the three-tier solution, the certificate is passed from the
client to the middle-tier TN3270 server, then to the DCAR, and then to the DCAS.

You must also create a RACF PTKTDATA profile for each application ID the end
user is attempting to access. The PTKTDATA profile allows the DCAS or z/OS

750 z/OS V1R4.0 CS: IP Configuration Guide

TN3270 server to obtain a PassTicket and user ID for the application. In the
three-tier solution, the DCAS must pass the passticket and user ID back to the
DCAR. For HOD V5, the application ID part of the profile name must be the same
as that configured in the HOD V5 Express Logon Application ID popup window. In
most cases, the application name with which the user logs on will match the
application ID portion of the RACF PTKTDATA class profile. However, for TSO and
some other applications, the names and IDs may not match:

v If VTAM generic resources are used for TSO, define the application name
portion on the RACF profile using the TCASGNAM defined in the TSOKEYxx,
SYS1.PARMLIB member.

v If VTAM generic resources are not used, define the application name on the
RACF profile as TSO.

v When configuring for TSO application logon, use the format TSO<SID> in the
PassTicket profile, where SID is the SMF system ID defined in the SMFPRMxx
member of SYS1.PARMLIB. (For example, if the SID is 3390, you would type
TSO3390 in the profile.) For details, refer to the z/OS Security Server RACF
Security Administrator’s Guide.

For applications that allow shared user IDs (multiple users request access to the
application simultaneously with the same user ID), you must specify the
APPLDATA(’NO REPLAY PROTECTION’) option on the RDEFINE command in the
PTKTDATA profile. This bypasses the default RACF protection against replay of
PassTickets.

Configuring the Express Logon components
The following describes, in general terms, how to set up and configure currently
supported Express Logon components:

v HOD V5 TN3270 client

v z/OS TN3270 server

v Middle-tier TN3270 server (CS/2 V6.1, CS/NT 6.1.1, and CS/AIX 6.0.0.1)

v DCAS

For details on configuring each product, refer to the appropriate documentation for
that product.

Configuring the HOD V5 TN3270 client
To setup and configure the HOD V5 client, follow these steps:

1. For each application to which the end user will log on, create a macro to record
the logon screen of the application.

The end user user plays this macro when displaying the logon screen on the
workstation.

2. Enter the application ID in the application ID popup window.

The application ID must be the same name specified on the z/OS for the
application ID portion of the PTKTDATA profile. The ID in the profile in most
cases must be the same as the application name.

3. Use the HOD key-management utility to:

a. Create a key database (keyring).

b. Create a certificate request or generate a self-signed certificate and
associate the certificate with the keyring.

c. Use FTP to transmit the middle-tier TN3270 certificate to the workstation and
store the server certificate in the key database of the client.

Appendix C. Express Logon Feature (ELF) 751

|
|
|
|
|

|
|

d. Use FTP to transmit the TN3270 HOD client certificate to the middle-tier
server and store in the SSL key database of the server.

4. Use FTP to transmit the workstation certificate to an MVS data set on the z/OS
host. Use the RACF Certificate Services RACDCERT command to associate the
certificate with a valid user ID.

Configuring the z/OS TN3270 server
Express Logon Feature requires SSL with level 2 client authentication functionality
at the server. Once that level of security is working, specify the EXPRESSLOGON
parameter statement to enable ELF in the z/OS TN3270 server.

Configuring the middle-tier TN3270 server (CS/2 example)
The middle-tier server is a TN3270 server, such as CS/2 V6.1, that communicates
with the HOD V5 client using an SSL connection with client authentication. The
middle-tier server DCAR also communicates with the DCAS on the host. The DCAS
and DCAR communicate over a TCP/IP connection using SSL with client
authentication.

To configure the TN3270 server, follow these steps:

1. Configure the NDF file for the Express Logon function and communication with
the DCAS using the following command:
DEFINE_EXPRESS_LOGON_SUPPORT

ENABLED(YES)
DCAS_ID(9.25.55.182)
DCAS_ID_TYPE(IP_ADDRESS)
DCAS_PORT(8990)

2. Use the local key management utility to store the workstation client certificate
and the DCAS certificate in the local keyring:

a. Create a key database file.

b. Create a certificate request or generate a self-signed certificate and
associate the certificate with the keyring.

c. Store the workstation client certificate and the DCAS certificate in the
keyring of the server.

3. Use FTP to transmit the DCAR certificate to the z/OS host and use gskkyman
or RACF Certificate Services to store the DCAR certificate in the DCAS keyring.

Configuring the Digital Certificate Access Server (DCAS)

Setting up DCAS
The DCAS must run from a user ID defined with a UID=0 and from an APF
authorized library. The shipped executable resides in /usr/lpp/tcpip/sbin with the
sticky bit on. The DCAS uses the z/OS SSL product, shipped with the z/OS base
element. The SSL library hlq.SGSKLOAD must be in the run-time STEPLIB.

The default port used by the DCAS is port 8990. If you want to ensure that no other
application uses the same port, use the following statement in the TCPIP profile
data set:
PORT

8990 TCP DCAS

If you choose to run the DCAS from the z/OS UNIX shell, use the following
statement:
PORT

8990 TCP OMVS

752 z/OS V1R4.0 CS: IP Configuration Guide

|

It is recommended that you use port access controls. For details on access
controls, refer to the z/OS Communications Server: IP Migration.

Create a configuration file for the DCAS taking into account the following:

v Define the port DCAS will listen on or use the default 8990.

v Define the KEYRING or SAFKEYRING for SSL communication.

v Decide the type of CLIENTAUTH needed.

For details on configuring the DCAS, see z/OS Communications Server: IP
Configuration Reference.

Define a user ID as superuser to OMVS services
The server requires the user ID from which it is started be defined to use OMVS
services as a superuser. The OMVS(UID(0)) could be put on the ADDUSER
command. However, if the user ID already exists the ADDUSER will fail and the
user ID will not be altered to superuser. ALTUSER will set the user ID to superuser
whether the user ID existed before or was just created by the ADDUSER command.
ADDUSER DCAS
ALTUSER DCAS DFLTGRP(OMVS) OMVS(UID(0)HOME(’/’))

Give the user ID access to operator commands
If the server is started from an MVS procedure, it is required that the user ID have
access to the appropriate server resources in the OPERCMDS class. Use the
following commands to provide access:
RDEFINE OPERCMDS(MVS.SERVMGR.DCAS) UACC(NONE)
PERMIT MVS.SERVMGR.DCAS CLASS(OPERCMDS) ACCESS(CONTROL) ID(DCAS)
SETROPTS RACLIST(OPERCMDS) REFRESH

Provide a RACF definition for MVS startup
If the server is started as an MVS procedure, use the following RACF definitions to
define the server to RACF:
RDEFINE STARTED DCAS.* STDATA(USER(DCAS))
SETROPTS RACLIST(STARTED) REFRESH

Starting, stopping, and toggling DCAS
DCAS can be started as either a generic server without stack affinity or as a server
with affinity to a specific TCP/IP stack.

1. Start the DCAS.

You can start the DCAS from the z/OS UNIX shell or with an MVS started
procedure using optional parameters for debugging, logging, and specifying the
configuration file. Refer to the z/OS Communications Server: IP Configuration
Reference for information on parameters used to start DCAS.

You can start the DCAS automatically when the TCP/IP address space is started or
from the z/OS UNIX shell:

v To start the DCAS automatically when the TCP/IP address space is started,
specify DCAS on the AUTOLOG statement in the TCPIP profile data set as
shown in the following example:
AUTOLOG

DCAS
ENDAUTOLOG

A sample start procedure for the DCAS is provided in
hlq.SEZAINST(EZADCASP).

Appendix C. Express Logon Feature (ELF) 753

v To start the DCAS from the UNIX shell, use the dcas command with optional
parameters. (Refer to z/OS Communications Server: IP Configuration Reference)
Note that the DCAS must run as a background job.

When DCAS is started, it stores its process ID (pid) in a Hierarchical File System
(HFS) file. The file name under which it is stored depends upon how you configure
DCAS:

v If you configure the DCAS with TCP/IP stack affinity, the pid file is named
/tmp/dcas.tcpipname.pid where tcpipname is the name of the TCP/IP stack for
which DCAS has affinity.

v If you configure the DCAS without stack affinity, the process ID file is named
/tmp/dcas.INET.pid.

You can stop the DCAS from the UNIX shell or from MVS:

v To stop DCAS from the UNIX shell, use the following command:
kill -s SIGTERM pid

v To stop the DCAS from MVS, use the following command:
P DCAS

If the DCAS was started without debugging, you can toggle it (turn it on and off):

v To toggle from the z/OS UNIX shell, use the following command:
kill -s SIGHUP pid

v To toggle for an MVS started procedure, use the MODIFY command:
F DCAS,x

where x is any valid character.

DCAS and system SSL
The DCAS and the DCAR use SSL V3 to communicate. The SSL protocol begins
with a handshake. Then, the DCAR authenticates the DCAS and vice versa. At this
time, the DCAS and the DCAR also agree on how to encrypt and decrypt the data.

You can specify the cipher level used for encryption and decryption for each
connection at the time DCAS is configured, using the V3CIPHER configuration
keyword. Alternatively, you can set the cipher level dynamically when DCAS starts,
based on the level of cipher installed on the system. To set the cipher level
dynamically, do not specify the V3CIPHER keyword.

Refer to Appendix B, “TLS/SSL security” on page 721 for information on creating
and managing keyrings and certificates using either:

v The gskkyman tool

v The RACDCERT command

Authenticating the DCAS and the DCAR: The type of security and
authentication required will determine the way certificates are created and
managed. The DCAS, in conjunction with SSL and RACF, supports several levels of
authentication.

Authenticating the DCAS: DCAS authentication is always performed by the DCAR.
Authentication requires that the DCAS has a private key and an associated X.509
digital certificate defined in a keyring.

Authenticating the DCAR: The DCAR is the client that interacts with the DCAS.
Authenticating the DCAR involves additional levels of control in which the client

754 z/OS V1R4.0 CS: IP Configuration Guide

must have a key database with a certificate. Depending on the control level, the
certificate is authenticated by SSL and the DCAS using RACF services.

There are three levels of client authentication from which to choose. Refer to
Appendix B, “TLS/SSL security” on page 721 for details.

To configure DCAS for level 1 authentication, specify the CLIENTAUTH LOCAL1
keyword and value in the DCAS configuration file. Use the KEYRING or the
SAFKEYRING keywords in the DCAS configuration file to specify the keyring used
by the DCAS.

To configure DCAS for level 2 authentication, specify the CLIENTAUTH LOCAL2
keyword and value in the DCAS configuration file.

If CLIENTAUTH LOCAL2 is coded in the DCAS configuration file, at a minimum,
you must use RACF to associate the DCAR certificate with a valid user ID. You can
do this using the RACDCERT ADD command. The user ID could be the one
associated with the DCAS itself or it could be any valid user ID. If you want
additional checking, you must activate the SERVAUTH class and define an
EZA.DCAS.cvtsysname profile with the user ID associated with the DCAR certificate
to access the profile.

Appendix C. Express Logon Feature (ELF) 755

756 z/OS V1R4.0 CS: IP Configuration Guide

Appendix D. Using HCD

The information in this chapter shows examples of panels that are used to define
IQD channels and devices for z/OS Communications Server using HCD.

1. Select processors

2. Select ’S’ Work with attached channel paths

Figure 96. Select processors

Figure 97. Work with attached channel paths

© Copyright IBM Corp. 2000, 2002 757

3. On the Channel Path List enter the Add command (or press F11) to initiate the
Define Channel Path dialog.

4. Fill in the Add Channel Path panel, then press Enter (Select SHR for Operation
mode to share IQD Chpids across LPARs).

5. For an IQD channel path, the Specify Maximum Frame Size panel pops up
with the default value of 16 KB.

Figure 98. Initiate the Define Channel Path dialog

Figure 99. Add channel path

758 z/OS V1R4.0 CS: IP Configuration Guide

Or change the frame size to desired size:

Table 26. Frame size specification

Maximum Frame Size TCP/IP MTU size

16K 8K

24K 16K

40K 32K

64K 56K

6. Define the channel path access list that each LPAR should have access to.

Figure 100. Specify Maximum Frame Size

Appendix D. Using HCD 759

7. Having pressed Enter, the Channel Path List is redisplayed with channel path
number FF defined.

8. As the next step, add the control unit(s) to the IQD channel path. Select the
defined channel path with action ″Work with attached control units″ (action
code ’S’).

Figure 101. Define the channel path access list

Figure 102. Channel path number FF defined

760 z/OS V1R4.0 CS: IP Configuration Guide

9. An empty control unit list is displayed. Enter the ’Add’ command or F11.

10. Define a control unit of type ’IQD’ for channel path FF.

Figure 103. Work with attached control units

Figure 104. Add the control unit(s)

Appendix D. Using HCD 761

11. Define it to the processor:

12. The processor settings are already preset. Pressing Enter, returns to the
Select Processor/Control unit panel. Pressing Enter again, returns to the
Control Unit List panel which shows the currently defined control unit.

Figure 105. Define a control unit

Figure 106. Define it to the processor

762 z/OS V1R4.0 CS: IP Configuration Guide

13. Next, define the devices. Successively, select a control unit and perform
action ″Work with attached Devices″.

14. This leads to an empty device list.

Figure 107. Currently defined control unit

Figure 108. Define the devices

Appendix D. Using HCD 763

15. Perform the Add action to define the devices for the control unit selected in the
previous step.

16. Add devices of type IQD to the selected control unit.

Figure 109. Empty device list

Figure 110. Define the devices for the control unit

764 z/OS V1R4.0 CS: IP Configuration Guide

17. If the number of devices has been left unspecified (as in this example), HCD
defines 10 devices.

18. Hit enter and the next panel displayed will be:

Figure 111. Add devices of type IQD

Figure 112. Define number of devices

Appendix D. Using HCD 765

19. Next, define the devices to the operating system by selecting an ’S’ on each
system you want to have them defined on.

20. The device parameters are shown with default values. Press Enter, to
complete the definition for each system.

Figure 113. Define device to operating system

Figure 114. Select systems

766 z/OS V1R4.0 CS: IP Configuration Guide

21. Press Enter until you return to the I/O device list panel, the definition for
channel path FF is complete.

The sample IOCP input for this example would be:
----+----1----+----2----+----3----+----4----+----5----+----6----+----7--

CHPID PATH=(FF),SHARED, *
PARTITION=((LPAR1,LPAR2,LPAR3),(LPAR1,LPAR2,LPAR3)), *
TYPE=IQD,OS=00

CNTLUNIT CUNUMBR=DD00,PATH=(FF),UNIT=IQD
IODEVICE ADDRESS=(DD00,010),CUNUMBR=(DD00),UNIT=IQD

Figure 115. Complete the definition

Figure 116. Definition completed

Appendix D. Using HCD 767

768 z/OS V1R4.0 CS: IP Configuration Guide

Appendix E. Configuring the OROUTED server

Before you configure...

Read and understand Chapter 1, “Configuration overview” on page 3. It covers
important information about data set naming and search sequences.

This appendix describes how to configure the OROUTED server. It explains
OROUTED’s use of the Routing Information Protocol to help you decide if this
server is suitable for your network.

Notes:

1. OMPROUTE, which was introduced in eNetwork Communications Server for
OS/390 V2R6 and enhanced in V2R7, is the recommended routing daemon.
OROUTED will eventually be removed; you will receive ample formal notice of
this change.

2. OROUTED does not support zero subnets.

3. OROUTED does not support equal-cost multipath routes to a destination
network or host. However, OROUTED can be used in conjunction with statically
defined equal-cost multipath routes in the GATEWAY statement of the TCP/IP
profile.

Understanding OROUTED
The route daemon is a server that implements the Routing Information Protocols
(RIP) described in RFC 1058 (RIP version 1) and in RFC 1723 (RIP version 2). It
provides an alternative to the static TCP/IP gateway definitions. When configured
properly the MVS host running with OROUTED becomes an active RIP router in a
TCP/IP network. The OROUTED server dynamically creates and maintainsthe
network routing tables using RIP. RIP allows gateways and routers to periodically
broadcast their routing tables to adjacent nodes. This enables the OROUTED
server to update the host routing table. For example, the OROUTED server can
determine if a new route has been created, if a route is temporarily unavailable, or if
a more efficient route exists. OROUTED has the following characteristics:

v Deletion of all RIP routes at startup. The -del start parameter might be used to
delete all dynamic routes from the routing table upon initialization of OROUTED.

v OROUTED is a z/OS UNIX application. It requires the Hierarchical File System
(HFS) to run.

v OROUTED can be started from an MVS procedure or from the z/OS shell
command line.

v OROUTED uses a standard message catalog. The message catalog must be in
the HFS. The directory location for the message catalog path is set by the
environment variables NLSPATH and LANG.

v All messages and trace information is sent to the syslogd, except for output from
the -d and -dp parameters, which is sent to STDOUT.

v A default mode of operation is for the program to close STDIN, STDOUT and
STDERR. This allows for userids to cleanly exit the z/OS shell after starting the
program in the background. As a consequence, the program printf statements are
also disabled. The parameter ″-ep″ enables printf’s. If this parameter is specified,
the program should not be run in the background, because the userid will not be
able to exit the shell until the background job has been killed.

v OROUTED and OMPROUTE cannot run on the same stack concurrently.

© Copyright IBM Corp. 2000, 2002 769

v OROUTED needs to be started by a RACF-authorized user ID.

Routing Information Protocol (RIP)
The Routing Information Protocol (RIP) is an Interior Gateway Protocol (IGP)
designed to manage a relatively small network. IGPs are used to manage the
routing information of a single autonomous system, or a single piece of the TCP/IP
network. RIP has many limitations and is not suited for every TCP/IP environment.
Before installing the OROUTED server, read RFCs 1058 and 1723 to decide if RIP
can be used to manage the routing tables of your network. See Appendix F,
“Related protocol specifications (RFCs)” on page 797 for more information about
RFC 1058 and RFC 1723.

RIP uses the number of hops, or hop count, to determine the best possible route to
a host or network. The term hop count is also referred to as the metric. A gateway
is defined as zero hops from directly connected networks, one hop from networks
that can be reached through one gateway, and so on. In RIP, a hop count of 16
means infinity, or that the destination cannot be reached. This limits the longest
path in the network that can be managed by RIP to 15 gateways.

The OROUTED server propagates routing information to the neighboring gateway’s
on gateway’s directly connected networks every 30 seconds. The server receives
updates from neighboring gateways periodically and uses this information to update
the routing tables. If an update has not been received from a gateway in 180
seconds (3 minutes), OROUTED assumes the gateway is down and sets all the
routes through that gateway to a metric of 16 (infinity). If an update has not been
received from a gateway in another 120 seconds (2 minutes), OROUTED deletes
all of the routes through that gateway.

During the intervals specified by the interface.scan.interval and interface.poll.interval
values on the OPTIONS statement, OROUTED checks to determine if a local
interface is up or down by scanning the TCP/IP interface tables. It also checks to
see if an interface has been added or reactivated.

For networks that are not point-to-point, such as Token-Ring and Ethernet,
OROUTED receives its own copy of broadcasted or multicasted RIP packets over
the interfaces, provided that the interfaces are active. Other networks, such as
point-to-point, can be managed by OROUTED as long as there are RIP services
managing the other end of point-to-point link(s). If the destination addresses are
defined for these point-to-point networks, the RIP packets are unicasted. Otherwise,
the RIP packets are broadcasted or multicasted. In networks where there are
adjacent routers or hosts not running RIP services, OROUTED will not be receiving
updates over the links and eventually will delete all of the routes to these networks.
To prevent the routes to these networks not running RIP services from being
deleted, passive routes may be coded in a OROUTED gateways data set. For more
information, see “OROUTED gateways” on page 773 and “OROUTED parameters”
on page 786

Because OROUTED requires link-level broadcasting or multicasting to send routing
updates, it requires routers that do not support link-level broadcasting or
multicasting (for example, HYPERchannel and ATM) to be active gateways. For
more information on how to manage networks without link-level broadcasting or
multicasting support, see “Active gateways” on page 773 and “Configuring an active
gateway” on page 791. By configuring active gateways, the RIP packets are
unicasted to the neighboring gateways.

770 z/OS V1R4.0 CS: IP Configuration Guide

RIP Version 2
RIP Version 2 is an extension of RIP Version 1 and provides the following features:

Route Tags to provide EGP-RIP and BGP-RIP interactions
The route tags are used to separate ″internal″ RIP routes (routes for
networks within the RIP routing domain) from ″external″ RIP routes, which
may have been imported from an EGP or another IGP. OROUTED will not
generate route tags, but will preserve them in received routes and
readvertise them when necessary.

Variable subnetting support
Variable-length subnet masks are being included in routing information so
that dynamically-added routes to destinations outside subnetworks or
networks can be reachable.

Immediate next hop for shorter paths
Next hop IP addresses, whenever applicable, are being included in the
routing information. Its purpose is to eliminate packets being routed through
extra hops in the network. OROUTED will not generate immediate next
hops, but will preserve them if they are included in the RIP packets.

Multicasting for RIPv2 packets to reduce load on hosts
An IP multicast address 224.0.0.9, reserved for RIPv2 packets, is used to
reduce unnecessary load on hosts which are not listening to RIPv2
messages. RIPv2 multicasting is dependent on interfaces that are
multicast-capable. By default, RIPv1 packets will be broadcast for interfaces
that are not multicast-capable.

Authentication of RIPv2 packets for routing update security
Authentication keys, consisting of passwords, can be configured to be
included in the outgoing RIPv2 packets for authentication by adjacent
routers as a routing update security protection. Likewise, incoming RIPv2
packets are checked against local authentication keys. Any outgoing or
incoming RIPv1 packets are not authenticated. For maximum security,
configure OROUTED such that it will supply and receive RIPv2 packets
only in addition to specification of authentication keys. The authentication
keys are configurable on a router-wide or per-interface basis.

Configuration switches for RIPv1 and RIPv2 packets
Configuration switches are provided to selectively control which versions of
RIP packets are to be sent or received over network interfaces. The
switches should be configured based upon the routing capabilities of the
network and are configurable on a router-wide or per-interface basis.

Supernetting support
The supernetting feature is part of Classless InterDomain Routing (CIDR)
function. Supernetting provides a way to combine multiple network routes
into fewer ’supernet’ routes. This means that the number of network routes
in the routing tables becomes smaller for advertisements. Supernet routes
are received and sent in RIPv2 messages. If local supernet routes are
defined for OROUTED, they will be advertised to adjacent routers. Local
supernet routes are generated by OROUTED for interfaces with subnet
masks that are less than the network class mask in value.

OROUTED miscellaneous features
OROUTED supports the following miscellaneous features:

v Multiple Network Attachments.

Appendix E. Configuring the OROUTED server 771

Multiple attachments and IP addresses on the same network are supported,
providing redundant paths to other hosts or routers on directly-attached networks.

v Virtual IP Addressing (VIPA).

If virtual IP addresses are configured on the z/OS server and there are multiple
network attachments, OROUTED can be used to advertise the VIPA routes to the
network, providing the necessary routing information to the adjacent routers or
hosts running RIP services. Using the VIPA routes, the adjacent routers or hosts
will be able to reach the VIPA addresses as the destinations and to route around
failures for fault tolerance support. For more information, see Chapter 5, “Virtual
IP Addressing” on page 209.

RIP input/output filters
The RIP input/output filters provide routing table manipulation and routing control.
The filters are provided by OROUTED and consist of:

1. Route Blocking (or NoReceiving)

2. Route Forwarding (Unconditional and Conditional)

3. Route Receiving (Unconditional and Conditional)

4. Route NoForwarding

5. Interface Supply Switch

6. Interface RIP On/Off Switch

7. Default Route Only Supply Switch

8. Virtual Route Only Supply Switch

9. Default and Virtual Routes Only Supply Switch

10. Local (directly-connected) Routes Only Supply Switch

11. Triggered Updates Only Supply Switch

12. Gateway NoReceiving

For more information on these RIP input/output filters, see the OROUTED
procedure parameters in “OROUTED parameters” on page 786 and the options
statement in “Step 6: Configure the gateways file or data set (optional)” on
page 779.

RIP routes
Dynamic routes are any routes created by the following dynamic routing
applications:

v OMPROUTE (OSPF/RIP)

v OROUTED (RIP)

v NCPROUTE (RIP)

v ICMP Redirects

v Other (created by customer application)

However, RIP routes are dynamic routes created only by RIP applications, like
OROUTED and OMPROUTE.

To help maintain the integrity of the routing table, at initialization, OROUTED
attempts to delete all RIP routes from the stack routing table and then adds RIP
routes based on BSDROUTINGPARMS and the optional gateways file. The -del
start parameter can be used to delete all dynamic routes from the routing table
upon initialization of OROUTED.

772 z/OS V1R4.0 CS: IP Configuration Guide

When OROUTED terminates, RIP routes are not deleted. If you want to remove all
RIP routes upon OROUTED termination, used the -kdr MODIFY option.

OROUTED gateways

Passive RIP routes
Passive RIP routes are known by both TCP/IP and OROUTED. Information about
passive routes is put in TCP/IP’s and OROUTED’s routing tables. A passive entry in
OROUTED’s routing table is used as a placeholder to prevent a route from being
propagated and from being overwritten by a competing RIP route. With the
exception of directly-connected passive routes, passive routes are not propagated;
they are known only by this router. Using passive routes can create routing loops,
so they need to be created carefully.

Defining passive routes such as these should be avoided:
A to C is via B.
B to C is via A.

Passive routes should be used when adding routes where the host/net is not
running RIP. Passive routes should also be used when adding a default route, since
this is the only way to prevent a route from timing out.

External RIP routes
External RIP routes are known by OROUTED, but not by TCP/IP. External routes,
such as the External Gateway Protocol (EGP), are managed by other protocols.
The OROUTED server needs to know not to interfere with these and not to delete
them.

An external entry exists in OROUTED’s routing tables as a place holder to prevent
a route from being overwritten by a competing RIP route. External routes are not
propagated. OROUTED does not manage external routes. Therefore, OROUTED
only knows that there is an existing route to host/net and one that is known to
TCP/IP.

External routes should be used when the local host is running with some type of
non-RIP routing protocol which dynamically changes the TCP/IP routing tables. The
foreign host does not need to run any routing protocol, since the only concern is
how to route traffic from the local host to the foreign host, and how to prevent
multiple routing protocols from interfering with each other.

Active gateways
Active gateways are treated as remote network interfaces. Active gateways are
routers which are running RIP, but are reached by a medium which does not allow
broadcasting or multicasting and is not point-to-point. OROUTED normally requires
that routers be reachable via broadcast for non-point-to-point links or via unicast
addresses for point-to-point links. If the interface is neither, then an active gateway
entry can add the gateway to OROUTED’s interface list. OROUTED will treat the
active gateway as a remote network interface. Note that the active gateway must be
directly connected.

Active gateways should be used when the foreign router is reachable over a
non-broadcast and non-point-to-point network, and is directly connected to the local
host.

Appendix E. Configuring the OROUTED server 773

OROUTED will communicate with active routers by unicast transmissions to the
gateway address. Routes are not added to either OROUTED or the TCP/IP routing
table immediately. They are added and propagated normally when route
advertisements arrive from an active gateway. The sole effect of an active gateway
statement is to bypass the requirement for broadcast or multicast communication on
non-point-to-point links. Interfaces which are not broadcast-capable or
multicast-capable, not point-to-point, and are not active gateways are assumed to
be loopback interfaces to the local host. Also, while a route to an active gateway
might time out, the interface entry is never removed. If transmissions resume, then
the new routes will still be available to the active gateways.

OROUTED gateways summary
Table 27 provides a summary of the OROUTED gateways and their characteristics.

Table 27. OROUTED gateways summary

Propagated?
Known by
TCP/IP?

Known by
OROUTED? Timeout?

Dynamic (1) Yes Yes Yes Yes

Passive No (2) Yes Yes No

External No No Yes No

Active Yes Yes Yes Yes

Dynamic routing provided by OROUTED.

Notes:

1. Except directly-connected passive routes.

2. Directly-connected passive routes are propagated to other network interfaces for network
reachability. A directly-connected passive route is one where the gateway address is one
of the local interfaces in the HOME list.

OROUTED configuration process
The steps to configure OROUTED are as follows:

1. Configure the OROUTED profile.

2. Update PORT, BSDROUTINGPARMS, GATEWAY, BEGINROUTES, and
IPCONFIG statements in the TCPIP profile.

3. Update the resolver configuration file.

4. Update the OROUTED cataloged procedure (optional).

5. Specify the OROUTED port number in the SERVICES file or data set.

6. Configure the gateways file or data set (optional).

Note: If a default route is to be defined to a destination gateway or router,
configure a default route in this gateways file or data set.

7. If not already started, configure and start syslogd.

8. RACF-authorize user IDs for starting OROUTED.

Step 1: Configure the OROUTED profile
OROUTED supports sending and receiving both RIP version 1 and RIP version 2
packets. A configuration file, the OROUTED profile, determines the mode of
operation. The following is the search order used to locate the OROUTED
configuration data set or file:

774 z/OS V1R4.0 CS: IP Configuration Guide

1. If the environment variable ROUTED_PROFILE has been defined, OROUTED
uses this value as the name of an MVS data set (//’mvs.dataset.name’) or HFS
file (/dir/subdir/file.name) to access the profile.

2. /etc/routed.profile

3. hlq.ROUTED.PROFILE

The following are the syntax rules for the OROUTED profile:

v Keywords can be specified in mixed case.

v Blanks and comments are supported in the OROUTED profile. Comments are
identified by a semicolon in any column.

v Profile statements may start in any column; however, wrapping to the next record
for continuation is not allowed.

v There should be no sequence numbers in the data set or file.

A sample profile is provided in hlq.SEZAINST(EZARTPRF).

The following are the options that can be included in the OROUTED profile:

\\] RIP2_AUTHENTICATION_KEY:

″authentication_key″
RIP_SUPPLY_CONTROL:

RIP1
RIP2
RIP2B
RIP2M
NONE

RIP_RECEIVE_CONTROL:
RIP1
RIP2
ANY
NONE

\^

RIP2_AUTHENTICATION_KEY:
A constant. The value that follows is the authentication key.

authentication key
Specifies a plain text password containing up to 16 characters. The
authentication key must be enclosed in double quotes. The key is used on a
server-wide basis and can contain mixed case and blank characters. The key
will be used to authenticate RIP Version 2 packets and be included in the RIP
responses for authentication by adjacent routers running RIP Version 2. A null
key (either no key is specified, or ″″ is specified) indicates that authentication is
disabled. For maximum security, set RIP_SUPPLY_CONTROL and
RIP_RECEIVE_CONTROL to RIP2. This will discard RIP1 and unauthenticated
RIP2 packets.

RIP_SUPPLY_CONTROL:
A constant. Specifies that the keyword following is to be used as the RIP supply
control for all interfaces. Possible supply controls are as follows:

RIP1 Unicast/Broadcast RIP Version 1 packets (Default)

RIP2 Unicast/Multicast RIP Version 2 packets

RIP2B Unicast/Broadcast RIP Version 2 packets (Not Recommended)

Appendix E. Configuring the OROUTED server 775

RIP2M
Unicast/Multicast/Broadcast RIP packets (Migration)

NONE Disable sending RIP packets

RIP_RECEIVE_CONTROL:
A constant. Specifies that the keyword following is to be used as the RIP
receive control for all interfaces. Possible receive controls are as follows:

RIP1 Receive RIP Version 1 packets

RIP2 Receive RIP Version 2 packets

ANY Receive any RIP Version 1 and 2 packets (Default)

NONE Disable receiving RIP packets

Figure 117 on page 777 is a sample OROUTED configuration file:

776 z/OS V1R4.0 CS: IP Configuration Guide

Step 2: Update configuration statements in PROFILE.TCPIP
To ensure that UDP port 520 is reserved for OROUTED, also add the name of the
member containing the OROUTED cataloged procedure to the PORT statement in
PROFILE.TCPIP:

; EZARTPRF
;
; COPYRIGHT = NONE.
;
; Sample OROUTED profile.
; See the "IP Configuration Guide for more information"
;
; --
; RIP_SUPPLY_CONTROL specifies one of the following options on a
; router-wide basis:
;
; 1) RIP1 - Unicast/Broadcast RIP Version 1 packets (Default)
; 2) RIP2B - Unicast/Broadcast RIP Version 2 packets (Not Recommended)
; 3) RIP2M - Unicast/Multicast/Broadcast RIP packets (Migration)
; 4) RIP2 - Unicast/Multicast RIP Version 2 packets
; 5) NONE - Disables sending RIP packets
;
; Note: If RIP2 is specified, the RIP Version 2 packets are multicast
; over multicast-capable interfaces only. No RIP packets are
; sent over multicast-incapable interfaces. For RIP2M, the RIP
; Version 2 packets are multicast over multicast-capable
; interfaces and RIP Version 1 packets are broadcast or unicast over
; multicast-incapable interfaces. For RIP2B, the RIP Version
; 2 packets are broadcast or unicast; this option is not recommended since
; host route misinterpretations by adjacent routers running RIP
; Version 1 can occur. For this reason, RIP2B may become
; obsolete in a future release. For point-to-point interfaces
; that are non-broadcast and multicast-incapable, the RIP
; Version 2 packets are unicast.

RIP_SUPPLY_CONTROL: RIP1

; RIP_RECEIVE_CONTROL specifies one of the following options on a
; router-wide basis:
;
; 1) RIP1 - Receive RIP Version 1 packets only
; 2) RIP2 - Receive RIP Version 2 packets only
; 3) ANY - Receive any RIP Version 1 and 2 packets (Default)
; 4) NONE - Disables receiving RIP packets

RIP_RECEIVE_CONTROL: ANY

; RIP2_AUTHENTICATION_KEY specifies a plain text password containing
; up to 16 characters. The authentication key must be enclosed in
; double quotes. The key is used on a server-wide basis and can
; contain mixed case and blank characters. The key will be used to
; authenticate RIP Version 2 packets and be included in the
; RIP responses for authentication by adjacent routers running RIP
; Version 2. A null key (either no key is specified or "" is
; specified) indicates that authentication is disabled. For
; maximum security, set RIP_SUPPLY_CONTROL and RIP_RECEIVE_CONTROL
; to RIP2. This will discard RIP1 and unauthenticated RIP2 packets.

RIP2_AUTHENTICATION_KEY:

Figure 117. Sample OROUTED configuration file

Appendix E. Configuring the OROUTED server 777

PORT
520 UDP OROUTED

In addition, configure the BSDROUTINGPARMS statements with your routing
information. The BEGINROUTES or GATEWAY statement is not used and should
be removed or commented from PROFILE.TCPIP.

If a static route must be coded in the GATEWAY statement in the TCP/IP Profile, a
corresponding external route must be coded in ORouteD’s /etc/gateways. This will
inform ORouteD that these routes are locally defined and are not to be changed; in
addition, by the external definition for a place holder in ORouteD’s routing table,
ORouteD will not attempt to delete or add equivalent routes from the RIP updates.

For multipath routes with common destination addresses reachable over multiple
interfaces and/or multiple gateways or nexthops, code a corresponding external
route from one of the multipath routes in /etc/gateways. Because ORouteD supports
only one route to a destination and because the nexthop or gateway address is
irrelevant in external route definitions, ORouteD will use the external route definition
to represent any static route sharing a common destination address and prevents
static route overrides from competing RIP routes.

Code the following on the IPCONFIG statement in PROFILE.TCPIP:
IPCONFIG IGNOREREDIRECT DATAGRAMFWD

Do not specify the no forwarding (NOFWD) option. To enable variable subnetting,
add the VARSUBNETTING option. If OROUTED is to be used to either send or
receive RIP version 2 packets, the VARSUBNETTING option must be specified in
the TCPIP profile. To enable outbound source VIPA, add the SOURCEVIPA option.

Refer to z/OS Communications Server: IP Configuration Reference for descriptions
and examples of these statements.

Note: If you want to be able to start OROUTED from the z/OS shell, use the
special name OMVS as follows:
PORT 520 UDP OMVS

This enables the entire “OMVS job group” (that is, all z/OS shell users). Only
RACF-authorized users can start OROUTED.

Step 3: Update the resolver configuration file
The resolver configuration file or data set contains keywords that are used by
OROUTED. Two important keywords in the resolver file are DATASETPREFIX and
TCPIPjobname. The value assigned to DATASETPREFIX will determine the
high-level qualifier (hlq). The hlq is then used in the search order for other
configuration files. If no DATASETPREFIX keyword is found in the resolver
configuration data set or file, a default of TCPIP is used. In a CINET environment,
the value assigned to TCPIPjobname will be used as the name of the stack with
which OROUTED attempts to establish a connection. In an INET environment, it is
not necessary to set TCPIPjobname, but if it is set, it must be set to ″INET″.

For a description of the search order used by the resolver to locate the resolver
configuration data set or file, see “Resolver configuration files” on page 27.

778 z/OS V1R4.0 CS: IP Configuration Guide

Step 4: Update the OROUTED cataloged procedure (optional)
If OROUTED is to be started by a procedure, update the cataloged procedure
OROUTED by copying the sample in hlq.SEZAINST(OROUTED) to your system or
recognized PROCLIB. Specify OROUTED parameters and change the data set
names as required to suit your local configuration.

Note: When using PGM=BPXBATCH to start OROUTED, STDOUT and STDERR
cannot be directed to any SYSOUT class; they must be directed to an HFS
file.

OROUTED cataloged procedure
A data set or file may be used to set the environment variables for an invocation of
OROUTED. This file is specified on the STDENV statement. An example of its
contents is included in the OROUTED cataloged procedure sample. For more
information about the cataloged procedure, refer to the OROUTED chapter in z/OS
Communications Server: IP Configuration Reference. For more complete
information about STDENV, refer to z/OS Communications Server: IP User’s Guide
and Commands.

Step 5: Specify the OROUTED port number in the SERVICES file
The services data set or file contains the relationship between service names
(servers) and port numbers in the z/OS UNIX environment. The portion of the
services file relevant to OROUTED is shown in Figure 118. The data set or file must
exist for OROUTED to run. The following search order is used to find the services
data set or file:

1. /etc/services

2. userid.ETC.SERVICES, where userid is the user ID that is associated with the
current security environment (address space or task/thread).

3. hlq.ETC.SERVICES

Step 6: Configure the gateways file or data set (optional)
The OROUTED server queries the network and dynamically builds routing tables
from routing information transmitted by other routers that are directly connected to
the network. The gateways file or data set is used to further configure the routing
tables.

Note: The gateways file or data set is not related to the GATEWAY statement used
in the PROFILE.TCPIP data set.

The OROUTED server uses the following search order to locate the GATEWAYS
configuration data set or file:

1. If the environment variable GATEWAYS_FILE has been defined, OROUTED
uses this value as the name of an MVS data set (//’mvs.dataset.name’) or HFS
file (/dir/subdir/file.name) to access the gateways file

2. /etc/gateways

3. hlq.ETC.GATEWAYS

Start of IBM added services ...
route 520/udp router routed

Figure 118. Sample portion of services file

Appendix E. Configuring the OROUTED server 779

A sample gateways file is provided in hlq.SEZAINST(EZARTGW).

A passive entry in the gateways file or data set is used to add a route to a part of
the network that does not support RIP. An external entry in the gateways file or
data set indicates a route that should never be added to the routing tables. If
another RIP server offers this route to your host, the route is discarded and not
added to the routing tables. An active entry indicates a gateway that can only be
reached through a network that does not allow or support link-level broadcasting or
multicasting.

Syntax rules
v The maximum LRECL allowed for the ETC.GATEWAY data set is 999.

v Keywords can be specified in mixed case.

v Blanks and comments are supported in the gateways file or data set. Comments
are identified by a semicolon in column 1.

v There should be no sequence numbers in the data set.

The syntax for the gateways file or data set is:

\\ net
host
active

name1 gateway name2 metric value gateway options \^

gateway options:

passive
external
active

mask subnetmask

net
Indicates the route goes to a network.

host
Indicates the route goes to a specific host.

active
Indicates that the route to the gateway will be treated as a network interface.
Active gateways are routers that are running RIP, but can only be reached
through a network that does not allow link-level broadcasting or multicasting
and is not point-to-point.

name1
Can be either a symbolic name or the IP address of the destination network or
host. If an IP address is specified, it must be in the standard dotted decimal
notation. All numbers will be interpreted as decimal values only. No
hexadecimal or octal notation will be accepted.

name1 must be specified as “active” if this is for an active gateway. The last
entry in the data set must specify an active gateway.

gateway
A constant. The parameters that follow this keyword identify the gateway or
router for this destination.

name2
Can be either a symbolic name or the IP address of the gateway or router for
this destination. If an IP address is specified, it must be in the standard dotted

780 z/OS V1R4.0 CS: IP Configuration Guide

decimal notation. All numbers will be interpreted as decimal values only. No
hexadecimal nor octal notation will be accepted.

metric
A constant. The value that follows this keyword is the hop count to the
destination host or network.

value
The hop count to this destination. This number is an integer in the range of 0
through 16, where 16 (infinity) indicates the network cannot be reached.

passive
A passive gateway does not exchange routing information. Information about
the passive gateway is maintained in the local routing tables indefinitely and is
only local to this OROUTED server. Passive gateway entries for indirect routes
are not included in any routing information that is transmitted. Directly
connected passive routes are included.

external
An external gateway parameter indicates that entries for this destination should
never be added to the routing table. The OROUTED server discards any routes
for this destination that it receives from other routers. Only the destination field
is significant. The gateway parameter is ignored, but you must specify a routing
interface in the network. The metric field is ignored.

active
Active gateways are treated as network interfaces. Active gateways are routers
that are running RIP, but can only be reached through a network that does not
allow link-level broadcasting or multicasting and is not point-to-point.

mask
A constant. The value that follows this keyword is the subnet mask for the
route.

subnetmask
A bit mask (expressed in dotted-decimal form) defining the subnetwork mask for
a network route. The bits must be contiguous in the network portion of the
subnetmask. If the subnetmask is not specified, OROUTED will default the
subnetwork mask to an interface subnetwork mask that matches the route’s
network. If there is no interface match, then the network class mask for the
route is used.

Note: For more information on passive, external, and active gateways, see z/OS
Communications Server: IP Configuration Reference.

The following example shows the contents of a gateways file or data set containing
multiple entries:
net acmenet gateway gateway.acme.com metric 5 passive
host vm3.ibm.com gateway 9.67.43.126 metric 6 passive
host bad.host gateway 9.67.113.1 metric 1 external
active active gateway 9.3.1.110 metric 3 active
net 0.0.0.0 gateway 9.67.112.1 metric 1 passive

In the first entry, the route indicates that acmenet can be reached through the
gateway gateway.acme.com, and that it is 5 hops away.

In the second entry, the route indicates that vm3.ibm.com can be reached through
the gateway 9.67.43.126, and that it is 6 hops away.

Appendix E. Configuring the OROUTED server 781

In the third entry, the external gateway parameter indicates that routes for the host
bad.host should not be added to the routing tables, and that routes received from
other OROUTED servers for bad.host should not be accepted.

The fourth entry shows an active gateway.

The fifth entry shows a default route to the destination gateway 9.67.112.1.

The syntax for the OPTIONS statement for the gateways file or data set is:

\\] OPTIONS gateway ip_addr
block
noreceive
none

interface.poll.interval timer_value
interface.scan.interval timer_value
interface name ip_addr block destination
interface name ip_addr forward destination fmask fmask
interface name ip_addr forward.cond destination fmask fmask
interface name ip_addr noforward destination fmask fmask
interface name ip_addr none
interface name ip_addr noreceive destination fmask fmask
interface name ip_addr passive
interface name ip_addr ripon
interface name ip_addr ripoff
interface name ip_addr receive destination fmask fmask
interface name ip_addr receive.cond destination fmask fmask
interface name ip_addr supply off
interface name ip_addr supply on
interface name ip_addr key

″authentication_key″
interface name ip_addr nokey
interface name ip_addr supply.control

RIP1
RIP2B
RIP2M
RIP2
NONE

interface name ip_addr receive.control
RIP1
RIP2
ANY
NONE

\^

gateway
A constant. The value that follows this keyword identifies the gateway or router.

interface.scan.interval
Specifies the time interval in seconds for the interface scan interval. OROUTED
uses this timer value to rescan existing interfaces for up/down status, new
interfaces, and new HOME lists. New interfaces and HOME lists are
dynamically added using VARY TCPIP,,CMD=OBEYFILE commands.
timer_value

The range is from 30 to 180 seconds in multiples of 30 seconds. The
default is 60 seconds.

interface.poll.interval
Specifies the time interval in seconds for the interface poll interval. OROUTED
uses this timer value to check existing interfaces for up/down status only.
Triggered updates are issued during interface outages to inform adjacent
routers of unreachable routes so that alternative routes can be discovered.

782 z/OS V1R4.0 CS: IP Configuration Guide

timer_value
The range is from 15 to 180 seconds in multiples of 15 seconds. The
default is 30 seconds.

interface
A constant

name
Specifies the name of the interface as used in the HOME list. A specification of
an asterisk (*) can only be used with the NONE parameter option to indicate all
interface names.

ip_addr
Specifies the internet address of the interface associated with the interface
name. A specification of an asterisk (*) can only be used with the NONE
parameter option to indicate all internet addresses of the interfaces.

block
For the interface option, specifies that the destination route in the received
broadcasts for this interface is to be ignored. For the gateway option, specifies
that routing table RIP responses from this gateway are to be ignored. This
option is provided as a RIP input filter.

destination
Specifies the destination route in network, subnetwork, or host format. A
specification of an asterisk (*) indicates that all destination routes to be used
with the noforward and noreceive options. This serves as a ″blackhole″ filter
option which can be used to filter out all routes from RIP packets to be sent or
received over an interface and allow routes with specified forward and receive
filters to be used.

fmask
Specifies the optional route filter mask.

forward
Specifies that the destination route in the RIP responses is to be forwarded to
this interface only. This option is provided as a RIP output filter and can be
used for inbound and outbound traffic splitting.

forward.cond
Specifies that the destination route is to be forwarded to this interface only
when the interface is active. In case of an interface outage, OROUTED will
include the destination route in the RIP responses to other active interfaces.
After recovery of an interface outage, ORouteD will resume to sending the
destination route over this interface only. This option is provided as a RIP output
filter and can be used for inbound and outbound traffic splitting.

noforward
Specifies that the destination route in the RIP responses is not to be forwarded.
This option is provided as a RIP output filter.

noreceive
See description for block.

passive
Same as ripoff.

receive
Specifies that the destination route is to be received over this interface only. If it
is received over any other interface, the route is discarded. This option is
provided as a RIP input filter.

Appendix E. Configuring the OROUTED server 783

receive.cond
Specifies that the destination route is to be received over this interface only
when the interface is active. In case of an interface outage, OROUTED will
allow the destination route in the RIP responses to be received over other
active interfaces. This option is provided as a RIP input filter and can be used
for inbound and outbound traffic splitting.

ripoff
Specifies that RIP is disabled for this interface. OROUTED will not send or
receive RIP updates. This option is provided as a RIP input and output filter.

ripon
Specifies that RIP is enabled for the interface. This is the default for all
interfaces. This option should be used when RIP has been previously disabled
for an interface with the ripoff option, but is now required to be enabled for that
interface.

supply off
Specifies that supplying RIP responses is disabled for this interface. OROUTED
will not send, but continues to receive RIP responses. This option is provided
as a RIP output filter.

supply on
Specifies that supplying RIP responses is enabled for this interface. This option
is provided as a RIP output filter.

none
For the interface option, specifies that any RIP filter options for this interface are
to be turned off or reset. If an asterisk (*) is specified for the interface name and
ip_addr, all options will be cleared from all interfaces. For the gateway option,
specifies that any RIP filter options for this gateway are to be turned off or
reset. If an asterisk (*) is specified for the internet address, all gateway entries
with gateway options will be cleared.

key
Specifies a plain text password containing up to 16 characters for the
authentication key to be used for this interface and is used to override the
router-wide setting defined in the OROUTED profile data set. The key must be
enclosed in double quotes for the delimiters and can contain mixed case and
blank characters. A no key or null key (″″) specification indicates that the
router-wide key will be used as the default.

authentication_key
An authentication key containing up to 16 characters to be used for this
interface and is used to override the OROUTED profile setting. The key must
be enclosed in double quotes. The key will start with the first character past the
first quotation mark and end at the last character before the last quotation mark
on the line.

nokey
Specifies that authentication is disabled for this interface even though the
router-wide specification from the OROUTED profile is defined.

supply.control
A constant. Specifies that the keyword following is to be used as the RIP supply
control for this interface and is used to override the OROUTED profile setting.
Possible supply controls are as follows:

RIP1 Unicast/Broadcast RIP Version 1 packets (Default)

RIP2B Unicast/Broadcast RIP Version 2 packets (Not Recommended)

784 z/OS V1R4.0 CS: IP Configuration Guide

RIP2M
Unicast/Multicast/Broadcast RIP packets (Migration)

RIP2 Unicast/Multicast RIP Version 2 packets

NONE Disable sending RIP packets

receive.control
A constant. Specifies that the variable following is to be used as the RIP receive
control for this interface and is used to override the OROUTED profile setting.
Possible receive controls are as follows:

RIP1 Receive RIP Version 1 packets

RIP2 Receive RIP Version 2 packets

ANY Receive any RIP Version 1 and 2 packets (Default)

NONE Disable receiving RIP packets

The following example shows the options entries of a gateways file or data set:
options interface.scan.interval 90
options interface.poll.interval 15
options interface ETH1 10.1.1.1 passive
options interface ETH1 10.1.1.1 supply off
options interface TR1 9.67.112.25 forward 11.0.0.0
options interface TR1 9.67.112.25 forward.cond 12.0.0.0
options interface TR1 9.67.112.25 block 9.1.0.0
options interface TR1 9.67.112.25 supply.control rip1
options interface ETH1 10.1.1.1 receive.control rip2
options interface ETH1 10.1.1.1 key
options interface CTC0 9.67.114.22 key "shredder"
options interface ETH1 10.1.1.1 none
options interface * * none
options gateway 9.2.1.4 noreceive
options gateway 9.2.1.4 none
options gateway * none

Step 7: Configure and start syslogd
If not already started, configure and start syslogd. For more information on syslogd,
see “Logging of system messages” on page 39. Otherwise, all output messages will
go to the operator system console.

Step 8: RACF-authorize user IDs
To control which users can start OROUTED (and thus reduce risk of an
unauthorized user starting it and affecting the contents of the routing table), the
appropriate users must be RACF-authorized to the entity
MVS.ROUTEMGR.OROUTED. To do this, the following commands must be entered
from a RACF user ID, substituting the authorized user ID on the ID (userid)
parameter:
RDEFINE OPERCMDS (MVS.ROUTEMGR.OROUTED) UACC(NONE)
PERMIT MVS.ROUTEMGR.OROUTED ACCESS(CONTROL) CLASS(OPERCMDS) ID(userid)
SETROPTS RACLIST(OPERCMDS) REFRESH

Appendix E. Configuring the OROUTED server 785

OROUTED parameters
OROUTED accepts the command line parameters listed below. These parameters
are valid when starting the program from either an MVS procedure or from the z/OS
shell. They are also valid when modifying OROUTED with the MODIFY command.
For information on using the MODIFY command, see z/OS Communications Server:
IP System Administrator’s Commands.

-c <filename.filetype>
OROUTED configuration files are processed and a file which can be used as an
OMPROUTE configuration file is created. If start parameters include -c,
OROUTED will terminate once the conversion file has been created. If modify
parameters include -c, OROUTED will remain active . Filename.filetype is an
option for this parameter. If -c is specified with a file name as a parameter for
modify of OROUTED, the resulting file name is automatically upper cased
regardless of the original input. The default output file is
CNVROUTED.PROFILE in the /tmp directory. The user must put this file in the
appropriate directory or data set for use by OMPROUTE. The converted profile
should be analyzed to determine if comments direct changes to the TCP/IP
profile. If suggested by comments, customer should take appropriate action to
update TCP/IP profile. If the file name already exists, OROUTED will not create
a conversion file and the user must specify -c again with a new output file name
or erase the existing file. When starting OROUTED, this parameter is allowed
with all other start parameters.

-del
All dynamic routes are deleted from the routing table upon initialization of
OROUTED. By default, OROUTED deletes only RIP routes at startup.

-d Enables printing internal debug information to standard output. This option
should only be used to debug problems. When this option is specified, the -ep
parameter is set internally.

-dp
Traces packets to and from adjacent routers and received and sent RIP
packets. Packets are displayed in data format. Output is written to standard
output.

-ep
Enable display of program print statements to standard output and standard
error. Information can be saved to a file by redirecting standard output to a file
using the ’>’ operator. If this option is specified, and the program is started in
the background from a z/OS shell, the userid will not be able to exit the shell
until the program has ended. This parameter is required is you start OROUTED
with a procedure and PGM=OROUTED. It is not required if you start
OROUTED with a proc and PGM=BPXBATCH.

-g Enables the default router. When this option is specified, OROUTED will add a
default route to its routing information and propagate it over all local interfaces.
If the adjacent routers add the default route to their routing tables, OROUTED
will receive all unknown packets from them and funnel them to a destination
router, provided that a default route is defined. If you use this option, we
recommend that you define a default route to a destination router in the
gateways file or data set. See “Configuring a default route” on page 792.

Note: Do not use this option if default routes are to be learned dynamically
from adjacent routers.

-h Include host routes in addition to network routes for the RIP responses.

786 z/OS V1R4.0 CS: IP Configuration Guide

Adjacent routers must be able to receive host routes to prevent NETWORK
UNREACHABLE problems from occurring.

-hv
Include only VIPA host routes in addition to network routes for the RIP
responses. Adjacent routers must be able to receive host routes’ otherwise,
network or subnetwork portions of VIPA addresses must be unique for each
z/OS TCP/IP stack.

-q Suppresses supplying routing information.

-sd
Supply default route only. When this option is specified, the -g parameter is set
internally. This option is provided as a RIP output filter.

-sdv (or -svd)
Supply network-specific VIPA routes and default routes only. See parameter
descriptions for -sv and -sd. This option is provided as a RIP output filter.

-sl Supply local (directly-connected) routes only. This option is provided as a RIP
output filter.

-st Supply triggered updates only. Similar to the -q parameter except that
OROUTED will supply network unreachable routing information during interface
outages so that adjacent routers can recover by switching to different routes
rather than relying on three-minute timeouts. This option is provided as a RIP
output filter.

-sv
Supply network-specific VIPA routes only. Recommended usage is when
multiple network adapters in a z/OS TCP/IP stack are in the same network;
otherwise, network connectivity problems will occur. This option is provided as a
RIP output filter.

-svd
Similar to -sdv parameter.

-svh (or -shv)
Supply VIPA (network-specific and host) routes only. This option is provided as
a RIP output filter.

-t Activates tracing of actions by the OROUTED server.

-t -t
Activates tracing of actions and packets sent or received.

-t -t -t
Activates tracing of actions, packets sent or received, and packet history.
Circular trace buffers are used for each interface to record the history of all
packets traced and are displayed whenever an interface becomes inactive.

-t -t -t -t
Activates tracing of actions, packets sent or received, packet history, and packet
contents. The packet displays the RIP network routing information.

Table 28 on page 788 shows how the above parameters affect the advertising
algorithm for routes in RIP responses to adjacent routers. The parameters can be
used as router-wide RIP output filters. To configure interface-wide RIP input and
output filters, see the OPTIONS statement in the GATEWAYS configuration data set
or file.

Appendix E. Configuring the OROUTED server 787

Table 28. ORouteD parameters

Parameter VIPA host
routes

Host
routes
(direct
and
indirect)

VIPA
network
routes

Direct
(local)
network
routes

Indirect
network
routes

Default
routes

Unreachable
routes

-g Yes Yes Yes Yes Yes

-h Yes Yes Yes Yes Yes Yes

-hv Yes Yes Yes Yes Yes

-s Yes Yes Yes Yes

-sd Yes Yes

-sl Yes Yes Yes

-sq or -q

-st Yes

-sv Yes Yes

-svd Yes Yes Yes

-svh Yes Yes Yes

None Yes Yes Yes Yes

Specifying parameters
If OROUTED is to be started from an MVS procedure, add your parameters to
PARM= in the OROUTED cataloged procedure. For example:
//OROUTED PROC PARMS=’-ep -t -t’
//OROUTED EXEC PGM=OROUTED,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON)’,
// ’ENVAR("_CEE_ENVFILE=DD:STDENV")’,
// ’/&PARMS’)

If OROUTED is to be started from a z/OS shell command line, enter the parameters
on the z/OS shell command line.

For either method of starting OROUTED, the following apply:
v Each parameter is separated by a blank.
v Parameters can be specified in mixed case.

Starting OROUTED
In a CINET environment, OROUTED will attempt to connect to a stack name whose
name is determined by the TCPIPJobname keyword from the resolver configuration
data set or file. The TCPIPJobname must match the NAME field for
ENTRYPOINT(EZBPFINI) in the BPXPRMxx member you used to start OMVS. For
information on configuring multiple TCP/IP instances as z/OS UNIX CINET physical
file systems, see “Considerations for multiple instances of TCP/IP” on page 54.

In configurations with multiple stacks, a copy of OROUTED must be started for
each stack that requires OROUTED services. To associate OROUTED with a
particular stack, use the environment variable RESOLVER_CONFIG to point to the
data set or file that defines the unique TCPIPjobname. A unique gateways file can
be associated with each copy of OROUTED by defining the environment variable

788 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|
|
|

GATEWAYS_FILE. In the example in Figure 119 for the z/OS shell, there are two
active stacks with the names TCP_A and TCP_B. First the environment variable
RESOLVER_CONFIG is set to point to the file that defines the TCPIPjobname
TCP_A, then the environment variable GATEWAYS_FILE is set to point to the
gateways file /etc/gateways.tcp_a, and then OROUTED is started for that stack.
Next, RESOLVER_CONFIG is set to point to another configuration file that defines
TCPIPjobname TCP_B, then the environment variable GATEWAYS_FILE is set to
point to the gateways file /etc/gateways.tcp_b, and then OROUTED is started for
that stack.

When running from an MVS procedure, the environment variables can be set by
using the STDENV DD statement in the procedure used to start OROUTED. For an
example of using the STDENV DD statement, see “OROUTED cataloged
procedure” on page 779.

Configuration examples
This section contains examples for configuring the OROUTED server. The following
example illustrates a OROUTED configuration.

Configuring a passive route
In Figure 120, assume that your z/OS server is host1 and is running an OROUTED
server. The other two hosts, host2 and host3, are not running a RIP server. Your
OROUTED server does not learn a route to host3, because host2 is not running a
RIP server. Your OROUTED server sends routing updates to host3 over the link to
host2 but never receives a routing update from host2. After 180 seconds, your
OROUTED server deletes the route to host2. This problem is inherent to the RIP
protocol and cannot be prevented.

export RESOLVER_CONFIG=/u/user105/tcp_a.conf !point to TCP_A resolver file
export GATEWAYS_FILE=/etc/gateways.tcp_a !point to TCP_A gateways file
export _BPX_JOBNAME=RDA !set procname to RDA
export ROUTED_PROFILE=/u/user105/rda.profile !set routed profile
orouted& !start orouted in the background
export RESOLVER_CONFIG=/u/user105/tcp_b.conf !point to TCP_B resolver file
export GATEWAYS_FILE=/etc/gateways.tcp_b !point to TCP_77 bB gateways file
export _BPX_JOBNAME=RDB !set procname to RDB
export ROUTED_PROFILE=/u/user105/rda.profile !set routed profile
orouted& !start orouted in the background

Figure 119. Example commands to start multiple copies of OROUTED

Appendix E. Configuring the OROUTED server 789

To solve the problem, you should add a passive route to this host in the gateways
file or data set. You can use either of the following gateway statements:

host host3 gateway host2 metric 2 passive

host 192.10.10.2 gateway 192.10.20.2 metric 2 passive

Similarly, if host2 is not running a RIP server, you can define a directly-connected
passive route as follows:

host host2 gateway host1 metric 1 passive

A directly-connected passive route is one where the gateway address or name is
one of the local interfaces in the HOME list.

Assume that your z/OS server is now host2 and is running a OROUTED server.
host1 is also running a RIP server, but host3 is not. Your OROUTED server sends
routing information updates to host3 over the link to host3 but never receives a
routing update from host3. After 180 seconds, your OROUTED server deletes the
route to host3.

You should add a passive route to this host as follows:
host host3 gateway host2 metric 1 passive

host1 cannot reach host3 unless a passive routing entry is added to host1. For
example:
host host3 gateway host2 metric 2 passive

or
host 192.10.10.2 gateway 192.10.20.2 metric 2 passive

Configuring an external route
In Figure 120, assume that your z/OS server is again host1, which is running an
OROUTED server. The other two hosts, host2 and host3, are also running RIP
servers. Your OROUTED server normally learns a route to host3 from host2,
because host2 is running a RIP server. You might not want host1 to route to host3
for security reasons. For example, a university might want to prevent student hosts
from routing to administrative hosts.

.1

.1 .2

.2

192.10.20

192.10.10

Host 1 Host 3Host 2

Figure 120. OROUTED configuration example

790 z/OS V1R4.0 CS: IP Configuration Guide

To prevent your OROUTED server from adding a route to host3, add an external
route to the gateways file or data set. You can use either of the following gateway
statements:

Configuring an active gateway

As shown in Figure 121, assume that your MVS host is host1, which is running an
OROUTED server and that device1 is a network attachment device that does not
support link-level broadcasting or multicasting or one that does not support ARP
processing (for example, HYPERchannel and ATM). Also, assume that host1 is
channel-connected to device1 as a hyperchannel device and that there are routers
router1 and router2 on the local area network. Because the IP addresses for
router1 and router2 are unknown by host1, they have to be manually configured in
host1 for OROUTED to communicate with them. Configuring active gateways for
router1 and router2 as remote network interfaces enables OROUTED to send RIP
responses to the target addresses.

Include the following definitions in hlq.PROFILE.TCPIP for host1, router1, and
router2:

1. Specify DEVICE and LINK statements for the hyperchannel. For example:
DEVICE HYPER1 HCH CE2
LINK HYPER1A HCH 2 HYPER1A

2. Add the TRANSLATE statement for the remote routers on the local area
network attached to the hyperchannel device:
TRANSLATE 155.80.10.2 HCH HYPER1A
TRANSLATE 155.80.10.3 HCH HYPER1A

3. Add the hyperchannel link to the HOME statement for the assignment of local IP
address:
HOME

155.80.10.1 HYPER1A

4. Add the hyperchannel link to the BSDROUTINGPARMS statement:
BSDROUTINGPARMS false

HYPER1A 16384 0 255.255.240.0 0
ENDBSDROUTINGPARMS

Define active gateways for the remote routers in the OROUTED gateways file or
data set:

host host3 gateway host2 metric 2 external

host 192.10.10.2 gateway 192.10.20.2 metric 2 external

Figure 121. Configuring an active gateway

Appendix E. Configuring the OROUTED server 791

active active gateway 155.80.10.2 metric 1 active
active active gateway 155.80.10.3 metric 1 active

From these active gateway addresses, OROUTED will use them as the destination
addresses to send RIP responses to the remote routers. In addition, OROUTED will
continue to receive RIP responses from the active gateways over the hyperchannel
device.

Configuring a point-to-point link
The OROUTED server can manage point-to-point links as long as there are RIP
services at both ends of the links. If a host router at the other end of a link is not
running a RIP service, then passive routing must be configured in the OROUTED
gateways data set for the link. See “Configuring a passive route” on page 789.

Configuring a default route
A default route is typically used on a gateway or router to an internet, or on a
gateway or router that uses another routing protocol, whose routes are not reported
to other local gateways or routers.

To configure a route to a default destination, add a default route using the passive
route definition in the gateways file or data set. For example, if the default
destination router has a gateway address 9.67.112.1, then add the following entry to
the data set:
net 0.0.0.0 gateway 9.67.112.1 metric 1 passive

Only one default route to a destination gateway or router can be specified.
OROUTED currently does not support multiple default routes.

Configuring ORouteD with Enterprise Extender
If running ORouteD with the Enterprise Extender on a z/OS TCP/IP stack connected
to SNA via IUTSAMEH device, special configuration needs to be considered
depending on the system environment. Assume that TOVTAM interface is the link
name for the IUTSAMEH device and its home IP address is 9.2.1.1.

1. If there are no other z/OS TCP/IP stacks in this MVS image, disable RIP on the
TOVTAM interface to prevent ORouteD from sending any routing information
over this interface. For example, in the ORouteD gateways file or data set:
options interface TOVTAM 9.2.1.1 ripoff

2. If one or more z/OS TCP/IP stacks exist in the MVS image, do the following:

v Define the link characteristics for the TOVTAM interface in the
BSDROUTINGPARMS statement of TCP/IP configuration profile. In this
definition, specify a subnet mask and a zero IP destination address.

For example, assume that the subnet mask for the TOVTAM interface is
255.255.255.0:
; link maxmtu metric subnet mask dest_addr
TOVTAM DEFAULTSIZE 0 255.255.255.0 0

If using RIP1 or RIP2B on this interface and depending on its subnet mask,
ORouteD will use a subnet-directed broadcast address to send the routing
information to other z/OS TCP/IP stacks in this MVS image. If using RIP2 or
RIP2M, ORouteD will use the RIP2 multicast address.

3. Repeat the above step for other z/OS TCP/IP stacks running with ORouteD and
configured with IUTSAMEH devices in this MVS image. Ensure that the RIP

792 z/OS V1R4.0 CS: IP Configuration Guide

settings for the TOVTAM interfaces are identical so that the routing information
exchanges will occur between z/OS TCP/IP stacks running ORouteD in this
MVS image.

Configuring OROUTED with VIPA
For more information on configuration options with VIPA, see the following topics:

v Chapter 5, “Virtual IP Addressing” on page 209

v “Configuring static VIPAs for a z/OS TCP/IP stack” on page 213

v “Planning for static VIPA Takeover and Takeback” on page 215

v “Configuring OROUTED to split traffic with VIPA”

If Host Route advertising is not supported by adjacent routers (that is, inability to
learn host routes), the following restrictions for VIPA addresses must be applied to
benefit from fault tolerance support:

v If you use subnetting and VIPA addresses are in the same network as the
physical IP addresses, the subnetwork portion of any VIPA addresses must not
be the subnetwork portion of any physical IP addresses in the network. In this
case, assign a new subnetwork for the VIPA address.

v If subnetting is not used on any physical interface, the network portion of any
VIPA addresses must not be the network portion of any physical IP addresses in
the network. In this case, assign a new network for the VIPA address, preferably
a class C network address.

If Host Route advertising is supported by adjacent routers, the network or
subnetwork portions of VIPA addresses can be the same across multiple z/OS
TCP/IP stacks in the network. To enable Host Route advertising in OROUTED,
specify option -h, -hv, or -svh.

Configuring OROUTED to split traffic with VIPA
The purpose of splitting traffic is to reduce traffic load on network attachments by
controlling the inbound and outbound traffic. The following techniques can be used
to produce traffic splitting effects with fault tolerance benefit:

v Using Interface Metric and VIPA To Split Inbound/Outbound Traffic

In the multiple network attachments to the same network configuration, split
inbound/outbound traffic can be achieved by configuring the metric on the
primary interface to one higher than the secondary interface(s). From routing
updates, an adjacent router uses the gateway of a secondary interface to reach
the destination VIPA on the z/OS server because the route to the gateway has a
shorter metric. The primary interface is used for outbound traffic and a secondary
interface is used for inbound traffic. The traffic splitting will function as long as the
primary and at least one secondary interfaces are active. For information on
configuring an interface metric, see the z/OS Communications Server: IP
Configuration Reference. A VARY TCPIP,,CMD=OBEYFILE command for the
BSDROUTINGPARMS statement can be used to update an interface metric for a
link. For an example of configuring a virtual device, see “Configuring OROUTED
with VIPA”.

Appendix E. Configuring the OROUTED server 793

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

TCPCS6
z/OS

Device Drivers

VIPA

Device1 Device2

TR1 TR2 ETH1 ETH2

LAN2

LAN1

9.2.1.1 .2 9.3.1.2

.3

.3

Router1

Router2

.2

10.1.1.1
Host

FE80::6:2900:40DC:217C
FEC0::6:2900:40DC:217C
5OC9:C2D4::6:2900:40DC:217C

FEC0::9:67:115:5
5OC9:C2D4:0:A:9:67:115:5

9.1.1.1

FE80::5:2900:40DC:217C
FEC0::5:2900:40DC:217C
5OC9:C2D4::5:2900:40DC:217C

9.3.1.1

FEC0::206:2AFF:FE66:C800

FEC0::1:206:2AFF:FE66:C800

FE80::260:8FF:FEF6:E46E
FEC0::1:9:67:114:44
5OC9:C2D4:0:1:260:8FF:FEF6:E46E

Figure 122. Single VIPA configuration. Sample configuration showing primary/multiple network attachments to the
same LAN, VIPAs, and inbound/outbound traffic splitting.

794 z/OS V1R4.0 CS: IP Configuration Guide

v Using Route Forwarding and VIPA to Split Session Traffic

With multiple VIPAs in one TCP/IP stack, a VIPA can be assigned to a particular
interface so that the VIPA can be reserved for session traffic (for example, FTP
or TELNET). This is accomplished by using the route forwarding option in
OROUTED. From routing updates, an adjacent router will have multiple gateways
to reach the VIPAs on the z/OS server. The adjacent router will use one gateway
to reach one VIPA reserved for one type of session traffic and the other gateway
to reach another VIPA reserved for another type of session traffic on the z/OS
server. For fault tolerance, it is recommended that the conditional option of route
forwarding be used. For information on route forwarding, see the options
statement in “Step 6: Configure the gateways file or data set (optional)” on
page 779. For an example of configuring a virtual device, see “Configuring
OROUTED with VIPA” on page 793.

Configuring OROUTED with OSA-Express in QDIO mode
OSA-Express operating in QDIO mode (for example, gigabit Ethernet) supports
multicasting but not broadcasting. Thus, RIP version 2, which relies on multicast, is
recommended over RIP version 1, which relies on broadcast. No extra configuration
is required for using RIP version 2.

MVS

Device Drivers

VIPA1
9.1.1.1

Device 1 Device 2

TR1

LAN2
LAN1

HOME
9.2.1.1
9.3.1.1
9.4.1.2
9.6.1.1
9.6.1.2

VIPA1
VIPA2
VCTC
ETH1
ETH2

ETC.GATEWAYS
interface ETH1 9.6.1.1 forward.cond 9.2.0.0
interface ETH2 9.6.1.2 forward.cond 9.3.0.0

9.5.1.1 9.6.1.1 9.6.1.2

.3

Router

To other networks...

Host

Uses 9.1.1.1 for FTP
Uses 9.2.1.1 for TELNET
Uses 9.3.1.1 for APPLx

Dest Gateway Metric
9.1 9.5.1.1 1
9.2 9.6.1.1 1
9.3 9.6.1.2 1

.3

.4

ETH1 ETH2

TCP/IP TCP/IP

9.4.1.1 9.4.1.2

VIPA1
9.2.1.1

VIPA2
9.3.1.1

HOME
9.1.1.1
9.4.1.1
9.5.1.1

VIPA1
VCTC
TR1

ETC.GATEWAYS
(none)

Domain Name Server
9.1.1.1
9.2.1.1
9.3.1.1

FTP
TELNET
APPLx

2000
2000
2000
1500
1500

2000
2000
2000

255.255.0.0 0
255.255.0.0 0
255.255.0.0 9.4.1.1
255.255.0.0 0
255.255.0.0 0

0
0
0
0
0

0
0
0

VIPA1
VIPA2
VTC
ETH1
ETH2

VIPA1
VCTC
TR1

BSDROUTINGPARMS

BSDROUTINGPARMS
255.255.0.0 0
255.255.0.0 9.4.1.2
255.255.0.0 0

Figure 123. Multiple VIPA configuration. Sample configuration showing primary/multiple network attachments to the
same LAN, VIPAs, and inbound/outbound traffic splitting.

Appendix E. Configuring the OROUTED server 795

|

|
|
|
|

If you must use RIP version 1, configure an active gateway entry in the OROUTED
gateways file for each adjacent RIP-1 router in the network reachable through the
QDIO interface.

Configuring OROUTED with HiperSockets
HiperSockets (iQDIO) supports multicasting but not broadcasting. Thus, RIP version
2, which relies on multicast, is recommended over RIP version 1, which relies on
broadcast. No extra configuration is required for using RIP version 2.

OROUTED support for RIP version 1 for HiperSockets depends on how a
HiperSocket was created.

If the HiperSocket was defined by DEVICE and LINK statements and was not
created from IPCONFIG DYNAMICXCF, then you can use OROUTED for RIP
version 1. Configure an active gateway entry in the OROUTED gateways file for
each adjacent RIP-1 router in the iQDIO network.

If the HiperSocket was created from IPCONFIC DYNAMICXCF, then you cannot
use OROUTED for RIP version 1 (an active gateway entry is not supported over
multiple network interfaces that share the same IP address). However, OMPROUTE
supports RIP version 1 over these HiperSockets. In the RIP_Interface statement in
the OMPROUTE configuration file, configure the Neighbor parameter for each
adjacent RIP-1 router in the iQDIO network.

796 z/OS V1R4.0 CS: IP Configuration Guide

|
|
|

|

|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

Appendix F. Related protocol specifications (RFCs)

This appendix lists the related protocol specifications for TCP/IP. The Internet
Protocol suite is still evolving through requests for comments (RFC). New protocols
are being designed and implemented by researchers and are brought to the
attention of the Internet community in the form of RFCs. Some of these protocols
are so useful that they become recommended protocols. That is, all future
implementations for TCP/IP are recommended to implement these particular
functions or protocols. These become the de facto standards, on which the TCP/IP
protocol suite is built.

These documents can be obtained from:

Government Systems, Inc.
Attn: Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

where:
nnnn Is the RFC number.
TXT Is the text format.
PS Is the PostScript format.

You can see Internet drafts at http://www.ietf.org/ID.html. See “Draft RFCs” on
page 804 for draft RFCs implemented in z/OS V1R4 Communications Server.

You can also request RFCs through electronic mail, from the automated NIC mail
server, by sending a message to service@nic.ddn.mil with a subject line of
RFC nnnn for text versions or a subject line of RFC nnnn.PS for PostScript versions.
To request a copy of the RFC index, send a message with a subject line of
RFC INDEX.

For more information, contact nic@nic.ddn.mil.

Many RFCs are available online. Hard copies of all RFCs are available from the
NIC, either individually or by subscription. Online copies are available using FTP
from the NIC at the following Web address: http://www.rfc-editor.org/rfc.html.

Use FTP to download the files, using the following format:
RFC:RFC-INDEX.TXT
RFC:RFCnnnn.TXT
RFC:RFCnnnn.PS

Many features of TCP/IP Services are based on the following RFCs:

RFC Title and Author

768 User Datagram Protocol J.B. Postel

791 Internet Protocol J.B. Postel

792 Internet Control Message Protocol J.B. Postel

793 Transmission Control Protocol J.B. Postel

821 Simple Mail Transfer Protocol J.B. Postel

© Copyright IBM Corp. 2000, 2002 797

http://www.ietf.org/ID.html
http://www.rfc-editor.org/rfc.html

822 Standard for the Format of ARPA Internet Text Messages D. Crocker

823 DARPA Internet Gateway R.M. Hinden, A. Sheltzer

826 Ethernet Address Resolution Protocol or Converting Network Protocol
Addresses to 48.Bit Ethernet Address for Transmission on Ethernet
Hardware D.C. Plummer

854 Telnet Protocol Specification J.B. Postel, J.K. Reynolds

855 Telnet Option Specification J.B. Postel, J.K. Reynolds

856 Telnet Binary Transmission J.B. Postel, J.K. Reynolds

857 Telnet Echo Option J.B. Postel, J.K. Reynolds

858 Telnet Suppress Go Ahead Option J.B. Postel, J.K. Reynolds

859 Telnet Status Option J.B. Postel, J.K. Reynolds

860 Telnet Timing Mark Option J.B. Postel, J.K. Reynolds

861 Telnet Extended Options—List Option J.B. Postel, J.K. Reynolds

862 Echo Protocol J.B. Postel

863 Discard Protocol J.B. Postel

864 Character Generator Protocol J.B. Postel

877 Standard for the Transmission of IP Datagrams over Public Data Networks
J.T. Korb

885 Telnet End of Record Option J.B. Postel

896 Congestion Control in IP/TCP Internetworks J. Nagle

903 Reverse Address Resolution Protocol R. Finlayson, T. Mann, J.C. Mogul, M.
Theimer

904 Exterior Gateway Protocol Formal Specification D.L. Mills

919 Broadcasting Internet Datagrams J.C. Mogul

922 Broadcasting Internet Datagrams in the Presence of Subnets J.C. Mogul

950 Internet Standard Subnetting Procedure J.C. Mogul, J.B. Postel

952 DoD Internet Host Table Specification K. Harrenstien, M.K. Stahl, E.J.
Feinler

959 File Transfer Protocol J.B. Postel, J.K. Reynolds

974 Mail Routing and the Domain Name System C. Partridge

1006 ISO Transport Service on top of the TCP Version 3 M.T.Rose, D.E. Cass

1009 Requirements for Internet Gateways R.T. Braden, J.B. Postel

1011 Official Internet Protocols J. Reynolds, J. Postel

1013 X Window System Protocol, Version 11: Alpha Update R.W. Scheifler

1014 XDR: External Data Representation Standard Sun Microsystems
Incorporated

1027 Using ARP to Implement Transparent Subnet Gateways S. Carl-Mitchell,
J.S. Quarterman

1032 Domain Administrators Guide M.K. Stahl

1033 Domain Administrators Operations Guide M. Lottor

798 z/OS V1R4.0 CS: IP Configuration Guide

||

||

1034 Domain Names—Concepts and Facilities P.V. Mockapetris

1035 Domain Names—Implementation and Specification P.V. Mockapetris

1042 Standard for the Transmission of IP Datagrams over IEEE 802 Networks
J.B. Postel, J.K. Reynolds

1044 Internet Protocol on Network System’s HYPERchannel: Protocol
Specification K. Hardwick, J. Lekashman

1055 Nonstandard for Transmission of IP Datagrams over Serial Lines: SLIP J.L.
Romkey

1057 RPC: Remote Procedure Call Protocol Version 2 Specification Sun
Microsystems Incorporated

1058 Routing Information Protocol C.L. Hedrick

1060 Assigned Numbers J. Reynolds, J. Postel

1073 Telnet Window Size Option D. Waitzman

1079 Telnet Terminal Speed Option C.L. Hedrick

1091 Telnet Terminal-Type Option J. VanBokkelen

1094 NFS: Network File System Protocol Specification Sun Microsystems
Incorporated

1096 Telnet X Display Location Option G. Marcy

1101 DNS encoding of network names and other types P.V. Mockapetris

1112 Host Extensions for IP Multicasting S. Deering

1118 Hitchhikers Guide to the Internet E. Krol

1122 Requirements for Internet Hosts—Communication Layers R.T. Braden

1123 Requirements for Internet Hosts—Application and Support R.T. Braden

1155 Structure and Identification of Management Information for TCP/IP-Based
Internets M.T. Rose, K. McCloghrie

1156 Management Information Base for Network Management of TCP/IP-Based
Internets K. McCloghrie, M.T. Rose

1157 Simple Network Management Protocol (SNMP) J.D. Case, M. Fedor, M.L.
Schoffstall, C. Davin

1158 Management Information Base for Network Management of TCP/IP-based
internets: MIB-II M.T. Rose

1179 Line Printer Daemon Protocol The Wollongong Group, L. McLaughlin III

1180 TCP/IP Tutorial T.J. Socolofsky, C.J. Kale

1183 New DNS RR Definitions C.F. Everhart, L.A. Mamakos, R. Ullmann, P.V.
Mockapetris, (Updates RFC 1034, RFC 1035)

1184 Telnet Linemode Option D. Borman

1187 Bulk Table Retrieval with the SNMP M.T. Rose, K. McCloghrie, J.R. Davin

1188 Proposed Standard for the Transmission of IP Datagrams over FDDI
Networks D. Katz

1191 Path MTU Discovery J. Mogul, S. Deering

1198 FYI on the X Window System R.W. Scheifler

Appendix F. Related protocol specifications (RFCs) 799

||

||
|

1207 FYI on Questions and Answers: Answers to Commonly Asked “Experienced
Internet User” Questions G.S. Malkin, A.N. Marine, J.K. Reynolds

1208 Glossary of Networking Terms O.J. Jacobsen, D.C. Lynch

1213 Management Information Base for Network Management of TCP/IP-Based
Internets: MIB-II K. McCloghrie, M.T. Rose

1215 Convention for Defining Traps for Use with the SNMP M.T. Rose

1228 SNMP-DPI Simple Network Management Protocol Distributed Program
Interface G.C. Carpenter, B. Wijnen

1229 Extensions to the Generic-Interface MIB K. McCloghrie

1230 IEEE 802.4 Token Bus MIB K. McCloghrie, R. Fox

1231 IEEE 802.5 Token Ring MIB K. McCloghrie, R. Fox, E. Decker

1236 IP to X.121 Address Mapping for DDN L. Morales, P. Hasse

1267 A Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

1268 Application of the Border Gateway Protocol in the Internet Y. Rekhter, P.
Gross

1269 Definitions of Managed Objects for the Border Gateway Protocol (Version 3)
S. Willis, J. Burruss

1270 SNMP Communications Services F. Kastenholz, ed.

1321 The MD5 Message-Digest Algorithm R. Rivest

1323 TCP Extensions for High Performance V. Jacobson, R. Braden, D. Borman

1325 FYI on Questions and Answers: Answers to Commonly Asked ″New Internet
User″ Questions G.S. Malkin, A.N. Marine

1340 Assigned Numbers J.K. Reynolds, J.B. Postel

1348 DNS NSAP RRs B. Manning

1349 Type of Service in the Internet Protocol Suite P. Almquist

1350 TFTP Protocol K.R. Sollins

1351 SNMP Administrative Model J. Davin, J. Galvin, K. McCloghrie

1352 SNMP Security Protocols J. Galvin, K. McCloghrie, J. Davin

1353 Definitions of Managed Objects for Administration of SNMP Parties K.
McCloghrie, J. Davin, J. Galvin

1354 IP Forwarding Table MIB F. Baker

1356 Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode A. Malis,
D. Robinson, R. Ullmann

1363 A Proposed Flow Specification C. Partridge

1372 Telnet Remote Flow Control Option D. Borman, C. L. Hedrick

1374 IP and ARP on HIPPI J. Renwick, A. Nicholson

1381 SNMP MIB Extension for X.25 LAPB D. Throop, F. Baker

1382 SNMP MIB Extension for the X.25 Packet Layer D. Throop

1387 RIP Version 2 Protocol Analysis G. Malkin

1388 RIP Version 2—Carrying Additional Information G. Malkin

800 z/OS V1R4.0 CS: IP Configuration Guide

||

||

||

||

1389 RIP Version 2 MIB Extension G. Malkin

1390 Transmission of IP and ARP over FDDI Networks D. Katz

1393 Traceroute Using an IP Option G. Malkin

1397 Default Route Advertisement In BGP2 And BGP3 Versions of the Border
Gateway Protocol D. Haskin

1398 Definitions of Managed Objects for the Ethernet-Like Interface Types F.
Kastenholz

1416 Telnet Authentication Option D. Borman, ed.

1464 Using the Domain Name System to Store Arbitrary String Attributes R.
Rosenbaum

1469 IP Multicast over Token-Ring Local Area Networks T. Pusateri

1535 A Security Problem and Proposed Correction With Widely Deployed DNS
Software E. Gavron

1536 Common DNS Implementation Errors and Suggested Fixes A. Kumar, J.
Postel, C. Neuman, P. Danzig, S.Miller

1537 Common DNS Data File Configuration Errors P. Beertema

1540 IAB Official Protocol Standards J.B. Postel

1571 Telnet Environment Option Interoperability Issues D. Borman

1572 Telnet Environment Option S. Alexander

1577 Classical IP and ARP over ATM M. Laubach

1583 OSPF Version 2 J. Moy

1591 Domain Name System Structure and Delegation J. Postel

1592 Simple Network Management Protocol Distributed Protocol Interface
Version 2.0 B. Wijnen, G. Carpenter, K. Curran, A. Sehgal, G. Waters

1594 FYI on Questions and Answers: Answers to Commonly Asked ″New Internet
User″ Questions A.N. Marine, J. Reynolds, G.S. Malkin

1695 Definitions of Managed Objects for ATM Management Version 8.0 Using
SMIv2 M. Ahmed, K. Tesink

1706 DNS NSAP Resource Records B. Manning, R. Colella

1713 Tools for DNS debugging A. Romao

1723 RIP Version 2—Carrying Additional Information G. Malkin

1766 Tags for the Identification of Languages H. Alvestrand

1794 DNS Support for Load Balancing T. Brisco

1832 XDR: External Data Representation Standard R. Srinivasan

1850 OSPF Version 2 Management Information Base F. Baker, R. Coltun

1876 A Means for Expressing Location Information in the Domain Name System
C. Davis, P. Vixie, T. Goodwin, I. Dickinson

1886 DNS Extensions to support IP version 6 S. Thomson, C. Huitema

1901 Introduction to Community-Based SNMPv2 J. Case, K. McCloghrie, M.
Rose, S. Waldbusser

Appendix F. Related protocol specifications (RFCs) 801

||

||

||

||

||
|

||

1902 Structure of Management Information for Version 2 of the Simple Network
Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

1903 Textual Conventions for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1904 Conformance Statements for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1905 Protocols Operations for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1906 Transport Mappings for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1907 Management Information Base for Version 2 of the Simple Network
Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

1908 Coexistence between Version 1 and Version 2 of the Internet-Standard
Network Management Framework J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

1912 Common DNS Operational and Configuration Errors D. Barr

1918 Address Allocation for Private Internets Y. Rekhter, B. Moskowitz, D.
Karrenberg, G.J. de Groot, E. Lear

1928 SOCKS Protocol Version 5 M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas,
L. Jones

1939 Post Office Protocol-Version 3 J. Myers, M. Rose

1981 Path MTU Discovery for IP version 6 J. McCann, S. Deering, J. Mogul

1982 Serial Number Arithmetic R. Elz, R. Bush

1995 Incremental Zone Transfer in DNS M. Ohta

1996 A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY) P.
Vixie

2010 Operational Criteria for Root Name Servers B. Manning, P. Vixie

2011 SNMPv2 Management Information Base for the Internet Protocol Using
SMIv2 K. McCloghrie

2012 SNMPv2 Management Information Base for the Transmission Control
Protocol Using SMIv2 K. McCloghrie

2013 SNMPv2 Management Information Base for the User Datagram Protocol
Using SMIv2 K. McCloghrie

2052 A DNS RR for specifying the location of services (DNS SRV) A.
Gulbrandsen, P. Vixie

2065 Domain Name System Security Extensions D. Eastlake, C. Kaufman

2096 IP Forwarding Table MIB F. Baker

2104 HMAC: Keyed-Hashing for Message Authentication H. Krawczyk, M.
Bellare, R. Canetti

2132 DHCP Options and BOOTP Vendor Extensions S. Alexander, R. Droms

2133 Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J.
Bound, W. Stevens

802 z/OS V1R4.0 CS: IP Configuration Guide

||
|

||

||

||

||

||
|

||

||
|

2137 Secure Domain Name System Dynamic Update D. Eastlake

2163 Using the Internet DNS to Distribute MIXER Conformant Global Address
Mapping (MCGAM) C. Allocchio

2168 Resolution of Uniform Resource Identifiers using the Domain Name System
R. Daniel, M. Mealling

2178 OSPF Version 2 J. Moy

2181 Clarifications to the DNS Specification R. Elz, R. Bush

2205 Resource ReSerVation Protocol (RSVP) Version 1 R. Braden, L. Zhang, S.
Berson, S. Herzog, S. Jamin

2210 The Use of RSVP with IETF Integrated Services J. Wroclawski

2211 Specification of the Controlled-Load Network Element Service J. Wroclawski

2212 Specification of Guaranteed Quality of Service S. Shenker, C. Partridge, R.
Guerin

2215 General Characterization Parameters for Integrated Service Network
Elements S. Shenker, J. Wroclawski

2219 Use of DNS Aliases for Network Services M. Hamilton, R. Wright

2228 FTP Security Extensions M. Horowitz, S. Lunt

2230 Key Exchange Delegation Record for the DNS R. Atkinson

2233 The Interfaces Group MIB Using SMIv2 K. McCloghrie, F. Kastenholz

2240 A Legal Basis for Domain Name Allocation O. Vaughn

2246 The TLS Protocol Version 1.0 T. Dierks, C. Allen

2308 Negative Caching of DNS Queries (DNS NCACHE) M. Andrews

2317 Classless IN-ADDR.ARPA delegation H. Eidnes, G. de Groot, P. Vixie

2320 Definitions of Managed Objects for Classical IP and ARP over ATM Using
SMIv2 M. Greene, J. Luciani, K. White, T. Kuo

2328 OSPF Version 2 J. Moy

2345 Domain Names and Company Name Retrieval J. Klensin, T. Wolf, G.
Oglesby

2352 A Convention for Using Legal Names as Domain Names O. Vaughn

2355 TN3270 Enhancements B. Kelly

2373 IP Version 6 Addressing Architecture R. Hinden, M. O’Dell, S. Deering

2374 An IPv6 Aggregatable Global Unicast Address Format R. Hinden, M. O’Dell,
S. Deering

2375 IPv6 Multicast Address Assignments R. Hinden, S. Deering

2389 Feature negotiation mechanism for the File Transfer Protocol P. Hethmon,
R. Elz

2428 FTP Extensions for IPv6 and NATs M. Allman, S. Ostermann, C. Metz

2460 Internet Protocol, Version 6 (IPv6) S pecification S. Deering, R. Hinden

2461 Neighbor Discovery for IP Version 6 (IPv6) T. Narten, E. Nordmark, W.
Simpson

2462 IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten

Appendix F. Related protocol specifications (RFCs) 803

||

||

||

||

||
|

||
|

||

||

||

||

||

||

||
|

||

||
|

||

||

||
|

||

2464 Transmission of IPv6 Packets over Ethernet Networks M. Crawford

2474 Definition of the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers K. Nichols, S. Blake, F. Baker, D. Black

2535 Domain Name System Security Extensions D. Eastlake

2539 Storage of Diffie-Hellman Keys in the Domain Name System (DNS) D.
Eastlake

2553 Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J.
Bound, W. Stevens

2571 An Architecture for Describing SNMP Management Frameworks D.
Harrington, R. Presuhn, B. Wijnen

2572 Message Processing and Dispatching for the Simple Network Management
Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B. Wijnen

2573 SNMP Applications D. Levi, P. Meyer, B. Stewart

2574 User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

2575 View-based Access Control Model (VACM) for the Simple Network
Management Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

2578 Structure of Management Information Version 2 (SMIv2) K. McCloghrie, D.
Perkins, J. Schoenwaelder

2640 Internationalization of the File Transfer Protocol B. Curtin

2665 Definitions of Managed Objects for the Ethernet-like Interface Types J. Flick,
J. Johnson

2672 Non-Terminal DNS Name Redirection M. Crawford

2710 Multicast Listener Discovery (MLD) for IPv6S. Deering, W. Fenner, B.
Haberman

2711 IPv6 Router Alert OptionC. Partridge, A. Jackson

2758 Definitions of Managed Objects for Service Level Agreements Performance
Monitoring K. White

2845 Secret Key Transaction Authentication for DNS (TSIG) P. Vixie, O.
Gudmundsson, D. Eastlake, B. Wellington

2874 DNS Extensions to Support IPv6 Address Aggregation and Renumbering M.
Crawford, C. Huitema

2941 Telnet Authentication Option T. Ts’o, ed., J. Altman

2942 Telnet Authentication: Kerberos Version 5 T. Ts’o

2946 Telnet Data Encryption Option T. Ts’o

2952 Telnet Encryption: DES 64 bit Cipher Feedback T. Ts’o

2953 Telnet Encryption: DES 64 bit Output Feedback T. Ts’o, ed.

3060 Policy Core Information Model—Version 1 Specification B. Moore, E.
Ellesson, J. Strassner, A. Westerinen

Draft RFCs
Several areas of IPv6 implementation include elements of the following draft RFCs
and are subject to change during the RFC review process.

804 z/OS V1R4.0 CS: IP Configuration Guide

||

||
|

||

||
|

||
|

||
|

||
|

||

||
|

||

||
|

||
|

||
|

||

||

||

||

||

||
|

|

|
|

Advanced Sockets API for IPv6
W. Richard Stevens, Matt Thomas, Erik Nordmark, Tatuya Jinmei

Basic Socket Interface Extensions for IPv6
R.E. Gilligan, S. Thomson, J. Bound, J. McCann, W. R. Stevens

Default Address Selection for IPv6
R. Draves

Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version
6 (IPv6) Specification

A. Conta, S. Deering

IP Version 6 Addressing Architecture
R. Hinden, S. Deering

Appendix F. Related protocol specifications (RFCs) 805

|
|

|
|

|
|

|
|
|

|
|

806 z/OS V1R4.0 CS: IP Configuration Guide

Appendix G. Information APARs

This appendix lists information APARs for IP and SNA documents.

Notes:

1. Information APARs contain updates to previous editions of the manuals listed
below. Documents updated for V1R4 are complete except for the updates
contained in the information APARs that may be issued after V1R4 documents
went to press.

2. Information APARs are predefined for z/OS V1R4 Communications Server and
may not contain updates.

3. Information APARs for OS/390 documents are in the document called OS/390
DOC APAR and PTF ++HOLD Documentation, which can be found at
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/
BOOKS/IDDOCMST/CCONTENTS.

4. Information APARs for z/OS documents are in the document called z/OS and
z/OS.e DOC APAR and PTF ++HOLD Documentation, which can be found at
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/
BOOKS/ZIDOCMST/CCONTENTS.

Information APARs for IP documents
Table 29 lists information APARs for IP documents.

Table 29. IP information APARs

Title z/OS CS V1R4 z/OS CS V1R2 CS for OS/390
2.10 and

z/OS CS V1R1

CS for OS/390
2.8

IP API Guide ii13255 ii12861 ii12371 ii11635

IP CICS Sockets Guide ii13257 ii12862 ii11626

IP Configuration ii11620
ii12068
ii12353
ii12649
ii13018

IP Configuration Guide ii13244 ii12498
ii13087

ii12362
ii12493
ii13006

IP Configuration Reference ii13245 ii12499 ii12363
ii12494
ii12712

IP Diagnosis ii13249 ii12503 ii12366
ii12495

ii11628

IP Messages Volume 1 ii13250 ii12857
ii13229

ii12367 ii11630
13230

IP Messages Volume 2 ii13251 ii12858 ii12368 ii11631

IP Messages Volume 3 ii13252 ii12859 ii12369
12990

ii11632
ii12883

IP Messages Volume 4 ii13253 ii12860

IP Migration ii13242 ii12497 ii12361 ii11618

© Copyright IBM Corp. 2000, 2002 807

|

|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IDDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Table 29. IP information APARs (continued)

Title z/OS CS V1R4 z/OS CS V1R2 CS for OS/390
2.10 and

z/OS CS V1R1

CS for OS/390
2.8

IP Network and Application Design
Guide

ii13243

IP Network Print Facility ii12864 ii11627

IP Programmer’s Reference ii13256 ii12505 ii11634

IP and SNA Codes ii13254 ii12504 ii12370 ii11917

IP User’s Guide ii12365
ii13060

ii11625

IP User’s Guide and Commands ii13247 ii12501 ii12365
ii13060

ii11625

IP System Admin Guide ii13248 ii12502

Quick Reference ii13246 ii12500 ii12364

Information APARs for SNA documents
Table 30 lists information APARs for SNA documents.

Table 30. SNA information APARs

Title z/OS CS V1R4 z/OS CS V1R2 CS for OS/390
2.10 and z/OS CS

V1R1

CS for OS/390
2.8

Anynet SNA over TCP/IP ii11922

Anynet Sockets over SNA ii11921

CSM Guide

IP and SNA Codes ii13254 ii12504 ii12370 ii11917

SNA Customization ii13240 ii12872 ii12388 ii11923

SNA Diagnosis ii13236 ii12490
ii13034`

ii12389 ii11915

SNA Messages ii13238 ii12491 ii12382
ii12383

ii11916

SNA Network Implementation Guide ii13234 ii12487 ii12381 ii11911

SNA Operation ii13237 ii12489 ii12384 ii11914

SNA Migration ii13233 ii12486 ii12386 ii11910

SNA Programming ii13241 ii13033 ii12385 ii11920

Quick Reference ii13246 ii12500 ii12364 ii11913

SNA Resource Definition Reference ii13235 ii12488 ii12380
ii12567

ii11912
ii12568

SNA Resource Definition Samples

SNA Data Areas ii13239 ii12492 ii12387 ii11617

Other information APARs
Table 31 on page 809 lists information APARs not related to documents.

808 z/OS V1R4.0 CS: IP Configuration Guide

Table 31. Non-document information APARs

Content Number

OMPROUTE ii12026

iQDIO ii11220

index of recomended maintenace for VTAM ii11220

CSM for VTAM ii12657

CSM for TCP/IP ii12658

AHHC, MPC, and CTC ii01501

DLUR/DLUS for z/OS V1R2 ii12986

Enterprise Extender ii12223

Generic resources ii10986

HPR ii10953

MNPS ii10370

Performance ii11710
ii11711
ii11712

Appendix G. Information APARs 809

810 z/OS V1R4.0 CS: IP Configuration Guide

Appendix H. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 2000, 2002 811

812 z/OS V1R4.0 CS: IP Configuration Guide

Notices

IBM may not offer all of the products, services, or features discussed in this
document. Consult your local IBM representative for information on the products
and services currently available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 2000, 2002 813

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O.Box 12195
3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly

814 z/OS V1R4.0 CS: IP Configuration Guide

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

This product includes cryptographic software written by Eric Young.

If you are viewing this information softcopy, photographs and color illustrations may
not appear.

You can obtain softcopy from the z/OS Collection (SK3T-4269), which contains
BookManager and PDF formats of unlicensed books and the z/OS Licensed
Product Library (LK3T-4307), which contains BookManager and PDF formats of
licensed books.

Notices 815

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

ACF/VTAM
Advanced Peer-to-Peer Networking
AFP
AD/Cycle
AIX
AIX/ESA
AnyNet
APL2
AS/400
AT
BookManager
BookMaster
CBPDO
C/370
CICS
CICS/ESA
C/MVS
Common User Access
C Set ++
CT
CUA
DATABASE 2
DatagLANce
DB2
DFSMS
DFSMSdfp
DFSMShsm
DFSMS/MVS
DPI
Domino
DRDA
eNetwork
Enterprise Systems Architecture/370
ESA/390
ESCON
eServer
ES/3090
ES/9000
ES/9370
EtherStreamer
Extended Services
FAA

Micro Channel
MVS
MVS/DFP
MVS/ESA
MVS/SP
MVS/XA
MQ
Natural
NetView
Network Station
Nways
Notes
NTune
NTuneNCP
OfficeVision/MVS
OfficeVision/VM
Open Class
OpenEdition
OS/2
OS/390
OS/400
Parallel Sysplex
Personal System/2
PR/SM
PROFS
PS/2
RACF
Resource Link
Resource Measurement Facility
RETAIN
RFM
RISC System/6000
RMF
RS/6000
S/370
S/390
SAA
SecureWay
Slate
SP
SP2
SQL/DS
System/360

816 z/OS V1R4.0 CS: IP Configuration Guide

FFST
FFST/2
FFST/MVS
First Failure Support Technology
GDDM
Hardware Configuration Definition
IBM
IBMLink
IBMLINK
IMS
IMS/ESA
InfoPrint
Language Environment
LANStreamer
Library Reader
LPDA
MCS

System/370
System/390
SystemView
Tivoli
TURBOWAYS
UNIX System Services
Virtual Machine/Extended Architecture
VM/ESA
VM/XA
VSE/ESA
VTAM
WebSphere
XT
z/Architecture
z/OS
z/OS.e
zSeries
400
3090
3890

Lotus, Freelance, and Word Pro are trademarks of Lotus Development Corporation
in the United States, or other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States, or
other countries, or both.

DB2 and NetView are registered trademarks of International Business Machines
Corporation or Tivoli Systems Inc. in the U.S., other countries, or both.

The following terms are trademarks of other companies:

ATM is a trademark of Adobe Systems, Incorporated.

BSC is a trademark of BusiSoft Corporation.

CSA is a trademark of Canadian Standards Association.

DCE is a trademark of The Open Software Foundation.

HYPERchannel is a trademark of Network Systems Corporation.

UNIX is a registered trademark in the United States, other countries, or both and is
licensed exclusively through X/Open Company Limited.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ActionMedia, LANDesk, MMX, Pentium, and ProShare are trademarks of Intel
Corporation in the United States, other countries, or both. For a complete list of
Intel trademarks, see http://www.intel.com/sites/corporate/tradmarx.htm .

Other company, product, and service names may be trademarks or service marks
of others.

Notices 817

http://www.intel.com/sites/corporate/tradmarx.htm

818 z/OS V1R4.0 CS: IP Configuration Guide

Index

Special Characters
/etc/ftp.data 389
/etc/hosts

accessing HOSTS.SITEINFO 31
/etc/inetd.conf

adding applications to 719
configuring for Popper 696
configuring z/OS UNIX REXECD 708
definition 709
setting traces in 719

/etc/osnmpd.data 22
/etc/pagent.conf 562
/etc/protocol 33
/etc/pw.src 23
/etc/resolv.conf

overview 109
use of system names in 110
verifying z/OS UNIX environment with onetstat 148

/etc/services 33, 108, 374, 645, 779
defining ports for OROUTED 779
defining ports for Popper 696
defining ports for RSHD 709
defining ports for z/OS UNIX REXECD 708
specifying syslog service 108

/etc/snmpd.boots 632
/etc/snmpd.conf 631
/etc/snmptrap.dest 24
/etc/syslog.conf

configuring for syslogd 101, 719
for FTP messages and traces 385
overview 39

/etc/trapfwd.conf 647
.onslookuprc file, configuring nslookup with 464
’SIOCSVIPA’ ioctl 221
’SIOCSVIPA’ IOCTL 66

Numerics
328x printer support 315

A
access control

Fast Response Cache Accelerator 85
netstat 85
network 83
port 82
stack 81

accessibility features 811
accounting, SMF records

FTP 40, 393, 396
PROFILE.TCPIP 113, 129, 150
syslogd 106
Telnet 40, 370

active route, configuring
NCPROUTE 302
RouteD 791

advertisements, router 162
AF_INET problems 70
alias names 673
anonymous logins, configuring FTP for 400
APPL statement for SNALINK LU0 273
APPL statement for SNALINK LU6.2 277
applications

configuration files for TCP/IP 18, 26
planning scenarios for multiple instances 219

applications, functions and protocols
Character Generator protocol 713
Discard protocol 713
Echo protocol 713
NCP Routing (NCPROUTE) 286
Network Computing System (NCS) 657
Network Database System (NDB) 659
OROUTED Protocol 769
Portmapper 653, 656, 659
Remote Execution Protocol Daemon

(REXECD) 705, 708
Remote Printing 649
Remote Procedure Call (RPC)

Network Computing System (NCS) 657
Network Data Base (NDB) 659
Portmapper 654

Routing Information Protocol (RIP) 286, 770
Simple Mail Transfer Protocol (SMTP) 669
Simple Network Management Protocol (SNMP) 623
SNALINK LU type 0 269

ARM (automatic restart manager) 38
ARPTO (IPCONFIG ARPTO) 113
AS (autonomous system) 166

definition 155
ATCCON member of VTAMLST 75
authorization, TCP/IP started task user ID 47
authorization, z/OS UNIX superuser 48
autoconfiguration, stateless 137
AUTOLOG 384
automated takeover, VIPA 216
automatic restart manager (ARM) 38
AUTOMOUNT 390
autonomous system, see also AS 155

B
backing up an MVS host with VIPA 215
banner page 651
Berkeley Internet Name Domain (BIND) 417
BIND (Berkeley Internet Name Domain) 417
BIND 4.9.3 417
BIND 9 417

DNSSEC 476
Dynamic update 470
Incremental zone transfers (IXFR) 470
IPv6 479
multiple stack considerations 469
Split DNS) 471
TSIG 475

© Copyright IBM Corp. 2000, 2002 819

BLKSIZE 390
boot file

creating 428
translating 428

BPX.DAEMON facility class 48, 49
BPX.DEFAULT.USER facility class profile 46, 47
BPX.SMF 43, 101, 106
BPXPRMxx

CINET configuration 64
BPXPRMxx, for defining z/OS UNIX environment 50
BPXPRMxx, role in AF_INET problems 70
BUFNO 390

C
cataloged procedures

MISCSERV (MISCSERV) 715
NDBSETUP (NDBSETUP) 660
PORTC (PORTCPRC) 662
PORTS (PORTSPRC) 662
RXSERVE (RXPROC) 705, 708
SNMPD (SNMPDPRC) 636
SNMPQE (SNMPPROC) 637

Cisco
Multi-Node Load Balancer (MNLB) 261, 264

CLAWUSEDOUBLENOP 113
code page IBM-1047, translating to 428, 438, 439
commands

MODIFY (MVS)
Remote Execution server 707
SNALINK LU0 275

START (MVS) 76
COMMONSEARCH 13, 16
Communications Server for z/OS, online

information xxi
component trace, customizing 71
CONDDISP 390
configuration data sets

ETCRPC 654
HOSTS 145
NPSIDATE 280
NPSIGATE 280
SAMPPROF 110
SMTPCONF 681
SMTPNOTE 671
VTAMLST

in SNALINK LU0 273
in SNALINK LU6.2 277
in X.25 NPSI 283

X25CONF 280
configuring

data set naming conventions 19
dynamic VIPA 218
files for TCP/IP applications 26
files for the TCP/IP stack 25
OROUTED 769
resolver environment variables 29
searching for data sets 18
SNMP for z/OS UNIX 623
SNTPD 701
TFTP server 408

configuring (continued)
TIMED 699
verifying for dynamic VIPAs 241

configuring host resolvers, onslookup
considerations 457

Configuring the z/OS UNIX Telnet server 374
connection optimization

configuring a sysplex domain
choosing sysplex name 492
configuring client applications 494
configuring for WLM registration 491, 495
configuring name servers 493
configuring WLM in goal mode 495
identifying server applications 490
updating parent name server 492

configuring a sysplex domain for
identifying name servers 492

overview 482
control characters, TCP/IP messages 77
conversion characters, TCP/IP messages 77
cryptography 87
CTRACE keyword 71
customizing

SMTP mail headers 672
customizing TCP/IP messages 76

D
data sets

dynamic allocation 19
naming conventions 19
overview 11
search order for 18

DATACLASS 390, 391
DATAGRAMFWD (IPCONFIG DATAGRAMFWD) 113,

240, 778
DB2 396, 406
DB2 connection authorization exit routine 660
DB2 SQL

in FTP server 406
in NDB 659

DB2PLAN 396
DCBDSN 390
DD cards 25, 26
DDNS (dynamic domain name services) 497
default route, configuring

NCPROUTE 303
RouteD 792

DEFAULTIPNODES 14, 16
DEFAULTTCPIPDATA 13, 16
DHCP (dynamic host configuration protocol) 497
Differentiated Services (DS)

Policies 565
DIRECTORY 390
disability, physical 811
distributed VIPA 209
DNS (Domain Name System)

authoritative servers 420
caching-only servers 421
definitions 417
dynamic update 426, 470

820 z/OS V1R4.0 CS: IP Configuration Guide

DNS (Domain Name System) (continued)
forward data files 433
forwarders 421
Logging, for BIND 9 442
master name servers 420
overview 417
problem diagnosis 467
Queries 425
reverse data files 433
slave name servers 421
slave name servers, configuring 450
SOURCEVIPA 466, 468
stealth server 421
synthetic IPv6 responses 480
SYSPLEXROUTING 491
translating boot files 428
translating data files 438, 439
Zone transfers 425

DNS, online information xxii
DNS, security 98
DNS/WLM 261
DNSSEC 476
documents, licensed xxii
Domain Name Resolution, SMTP 686
Domain Name System, see DNS 417
DSN3SATH 660
DSNLOAD 408
duplicate address detection 137
DVIPA takeover

overview 229
using IPSec with 231

DVIPSEC 228
dynamic domain name services (DDNS) 497
dynamic host configuration protocol (DHCP) 497
dynamic IP 496
dynamic routes

definition 155
dynamic routing

IPv6 205
using OMPROUTE 166
versus static routing 157

dynamic VIPA
256 limit 215
configuration 218, 240, 241
considerations 239
DNS considerations 462
MODDVIPA utility 222
multiple application-instance scenario 218
overview 209
relationship to UDP 239
resolving conflicts 232
routing protocols 247
unique application-instance scenario 218, 219
use with OMPROUTE 170, 185
verifying configuration using NETSTAT 244
verifying in a sysplex 241
within subnets 239

DYNAMICXCF 252
DYNAMICXCF (IPCONFIG DYNAMICXCF) 112, 114,

127, 226

E
EGP (exterior gateway protocol) 288

definition 155
Enterprise Extender 101

OROUTED and 792
overview 65
VIPA considerations 212, 214

entry point name incorrect 70
environment variables

for overriding default search order 18
FTP server and 388
OMPROUTE use of 174
OROUTED and 779, 789
passing to syslogd process 106
resolver configuration files and 29
REXECD and 709

environment, NCPROUTE 286
ETC.GATEWAY 780
ETC.IPNODES 143, 146
ETC.SERVICES

FTP and 385
NCPROUTE 293
OROUTED and 779
RouteD 779

Express Logon Feature (ELF) 96
overview 749

exterior gateway protocol (EGP) 288
definition 155

external gateway 287, 773
external route, configuring 773

NCPROUTE 302
RouteD 790

EZACFSM1 37
EZASMF76 43
EZASMF77 44
EZAZSSI 73
EZBDVIPA 229, 232
EZBRECNF 16
EZBREPRC 15

F
fast path for socket applications 52
Fast Response Cache Accelerator access control 85
fault tolerance, interface layer for LANs 137
filters, input/output, for RIP 290, 772
FIREWALL (IGNOREREDIRECTS FIREWALL) 113
FTCHKCMD 397
FTCHKIP 396
FTCHKJES 398
FTCHKPWD 397
FTP

/etc/syslog.conf 385
accounting 40, 393
anonymous 400, 405, 414
APPEND 393
AUTOLOG PORT KEEPALIVE 384
cataloged procedure 385, 406
CCXLATE 388
configuration statements, TCP/IP 384

Index 821

FTP (continued)
data translation 393
DB2 406
DELETE 393
ENVAR 388
environment variables for FTP server 388
FTCHKCMD 397
FTCHKIP 396
FTCHKJES 398
FTCHKPWD 397
FTP.DATA data set 389
FTPOSTPR 398
FTPSMFEX 396
JES 399
RACF considerations 386
RENAME 393
RETRIEVE 393
security considerations 386
SMF configuration 393
specifying attributes for new MVS data sets 391
STORE 394
STORE UNIQUE 394
SURROGATE 400
TCPIP.DATA 389
translation of data 393
updating the FTP cataloged procedure 385
user exit 396
XLATE 388

FTP.DATA 389
(FILETYPE=JES) 394
(FILETYPE=SEQ) 394
(FILETYPE=SQL) 394
ANONYMOUSHFSINFO 405
ANONYMOUSLOGINMSG 405
ANONYMOUSMVSINFO 405
ASATRANS 393
AUTOMOUNT 390
BANNER 405
BLKSIZE 390, 391
BLOCKSIZE 390
BUFNO 390
CONDDISP 390
CTRLCONN 393
data set attributes 390
DATACLASS 390, 391
DB2 396
DB2PLAN 396
DCBDSN 390, 391
DIRECTORY 390, 391, 392
dynamic allocation 391
ENCODING 393
EXTENSIONS UTF8 393
HSFINFO 405
JESINTERFACELEVEL 396
JESINTERFACELevel=2 399
JESLRECL 396
JESPUTGETTO 396
JESRECFM 396
LOGINMSG 405
LRECL 390, 391, 392
MBDATACONN 393

FTP.DATA (continued)
MGMTCLASS 390, 391
MIGRATEVOL 390
MVSINFO 405
PORTCOMMAND 387
PORTCOMMANDIPADDR 387
PORTCOMMANDPORT 387
PRIMARY 390, 391, 392
RECFM 390, 392
RETPD 390, 392
SBDATACONN 393
SBSUB 393
SBSUBCHAR 393
search order 389
SECONDARY 390, 391, 392
SMFAPPE 393
SMFDEL 393
SMFEXIT 393
SMFJES 393
SMFLOGN 393
SMFREN 393
SMFRETR 393
SMFSQL 393
SMFSTOR 393
SMS 392
SPACETYPE 390, 391
SPREAD 396
SQLCOL 396
STORCLASS 390, 391, 392
UCOUNT 390, 391
UCSHOSTCS 393
UCSSUB 393
UCSTRUNCT 393
UMASK 391
UNITNAME 391, 392
VCOUNT 391
VOLUME 391, 392
XLATE 393

FTPD 385
FTPOEBIND 406
FTPOSTPR 398
FTPSMFEX 396
FTPSMFEX user exit 396

G
gateway

Interior Gateway Protocol (IGP) 770
gateway route table name 294
GATEWAY statement 160

configuring static routes 292, 304
GATEWAY_PDS statement 299
gateways

active 791
active routes 289, 302
data set (NCPROUTE) 300, 303
default routes 303
enabling as DHCP relay agents 501
external routes 288
file configuration for OROUTED 779
NCPROUTE 287, 290

822 z/OS V1R4.0 CS: IP Configuration Guide

gateways (continued)
passive routes 287
resolving names of 152
SMTP 679
TCP-to-NJE mail 681, 683

gateways data set
NCPROUTE 300
RouteD 779

gateways file or data set 780
generic stack affinity 55
GLOBALIPNODES 14, 16
GLOBALTCPIPDATA 12, 16
gskkyman utility 726

H
HCD, using 757
HFS (Hierarchical File System)

concepts 11
security considerations 49

high-level qualifier (HLQ) 19
hints (root server) file

definition 439
HiperSockets

concepts 130
iQDIO 130

HiperSockets Accelerator
efficient routing with 135

HLQ (high-level qualifier) 19
HOMETEST 152
HOSTALIASES 29
HOSTS.ADDRINFO

generating from HOSTS.LOCAL 144
HOSTS.LOCAL 143
HOSTS.SITEINFO

generating from HOSTS.LOCAL 144
verifying 152

I
IBM Software Support Center, contacting xxiii
IDS 99, 595

Defining Policies Using LDAP 603
IEFSSNxx member 671
IGNOREREDIRECTS

FIREWALL 113
IGNOREREDIRECTS (IPCONFIG

IGNOREREDIRECTS) 159, 778
IGP (interior gateway protocol), definition 156
IKE (Internet Key Exchange) 91
IKJTSOxx member 672
ImageServer statement 510
in-addr.arpa domain, definition 418
inetd configuration file, setting up 719
inetd listener program 48
information APARs for IP-related documents 807
information APARs for non- document information 808
information APARs for SNA-related documents 808
initialization failure 69, 70
initializing, NCPROUTE 287
input/output filters, RIP 290, 772

installing z/OS CS 68
instances of TCPIP, considerations for multiple 54
interface takeover 137
interface-layer fault-tolerance for LANs 137
interior gateway protocol (IGP), definition 156
Internet Key Exchange (IKE) 91
Internet, finding z/OS information online xxi
InterNetwork Information Center (InterNIC) 418
InterNIC (InterNetwork Information Center) 418
Intrusion Detection Services 99, 540
Intrusion Detection Services (IDS) 595

IDS Policy 547
IP addressing, virtual 209
IPCONFIG

ARPTO 113
DATAGRAMFWD 113, 240, 778
DYNAMICXCF 112, 114, 127, 226
IGNOREREDIRECTS 159, 778
MULTIPATH 113, 164, 167
PATHMTUDISC 114, 159
SOURCEVIPA 113, 128, 213, 466, 468, 778
SYSPLEXROUTING 114, 240, 491
VARSUBNETTING 113, 778

IPSec, security 89
IPv6

autoconfiguration, stateless 137
BPXPRMxx, sample definitions 50
configuring static VIPAs 213
defining TCP/IP as UNIX System Services PFS 50
DNS lookups 480
duplicate address detection 137
dynamic routing 205
inetd configuration file, setting up 719
router advertisements 162
stack functions supported 3
static routing 161
static versus dynamic routing 157

iQDIO 259
concepts 130

IUCV/VMCF 75

J
JES 399
JESINTERFACELEVEL 396
JESLRECL 396
JESPUTGETTO 396
JESRECFM 396

K
Kerberos, security 97
keyboard 811

L
LDAP server 548

Object classes 548
Schema definition 555

license, patent, and copyright information 813
licensed documents xxii

Index 823

load libraries, protecting with RACF 50
local host table 143
LOCALDOMAIN environment variable, configuring

onslookup with 464
log files, offloading 106
loopback file

definition 441
LPD 649

banner page 651
configuration data set 651
LPDDATA 650
LPDPRFX 650
PROFILE.TCPIP changes 649
tracing 650

LRECL 390
LU assignments - objects, client identifiers, mapping

statements 325
LU0, see SNALINK LU0 269
LU6.2, see SNALINK LU6.2 276

M
MAKESITE 145
MD5

and OSPF 175
messages data sets 76
messages, logging of 39
messages, TCP/IP

rules for customizing 77
MGMTCLASS 390, 391
MIBS.DATA 641
middle-level qualifier (MLQ) 19
MIGRATEVOL 390
MISC server 713
MLQ (middle-level qualifier) 19
MNLB, Cisco 261, 264
MODDVIPA utility 222
MODDVIPA, defining RACF profile for 223
MODIFY command

Remote Execution server 707
SNALINK LU0 275

msys for Setup 6
Multi-Node Load Balancer (MNLB), Cisco 261, 264
MULTIPATH (IPCONFIG MULTIPATH) 113, 164, 167
multiple application-instance scenario 218
multiple copies of TCP/IP 54
multiple stacks

AUTOLOG 142
BPXPRMxx 64
CINET PFS 54
generic versus specific affinity 55
OROUTED considerations 788
OSA/SF considerations 645
OSPF and RIP considerations 169
overview 54
port management 55
selecting a stack 60
SMF accounting 43
socket application programs 60
TCPIP.DATA 61, 109
VIPA considerations 211, 216

MVS
accounting 40
automatic restart manager (ARM) 38
component trace 71
failure management 239
logging system messages 39
SERVAUTH 44
system symbols 37, 111

MX records 686

N
name resolution

HOMETEST command to verify 153
in a sysplex domain 483
iterative resolution 419
SMTP domain 686
TESTSITE command to verify 152
using HOSTS.LOCAL data set 143
VIPA host 213

name servers
authoritative 419
caching-only, definition 421
configuring master and caching-only 427
for VIPA host-name resolution 213
forwarder, definition 421, 426
master, definition 420
slave, definition 421
SMTP configuration for 686
Stealth, definition 421

named daemon 448
naming conventions, dynamically allocated data

sets 20
NCP host interface 296
NCP IP router statements 297
NCPROUTE

AUTOLOG 291
BSDROUTINGPARMS 292
building the NCPROUTE profile 298
cataloged procedure 293
configuration examples 303
configuring 290

active route 302
client NCP 294
default route 303
external route 302
GATEWAYS data set 300
passive route 301

DD statement for external message data set 76
defining for TCP/IP 272
DEVICE 293
ETC.SERVICES 293
filters 290
filters, input/output 290
gateways 287
gateways data set 300
HOME 292
interaction with VIPA 113
LINK 293
NCP 294
operation 287

824 z/OS V1R4.0 CS: IP Configuration Guide

NCPROUTE (continued)
overview 285, 286
PORT 291
profile data set 298
RIP 286
RIP advertising rules 288
RIP, external 288
RIP, passive 287
server requirements 287
SNMP 286
specifying configuration statements 291
updating ETC.SERVICES 293
use with OMPROUTE 161
VTAM definitions 292

NCS interface
configuration 657
LLBD cataloged procedure 658
NRGLBD cataloged procedure 658
specifying statements in PROFILE.TCPIP 658

NCST (NCP Connectionless SNA Transport) 295
NDB (network database) system

DSN3SATH 661
multiple PORTC procedures 662
NDB client for different platforms 662
NDBSETUP 660
PORTC 662
portmap requirement 659
PORTS 662
starting NDB 668

NETSTAT 71
netstat access control 85
NetView 623, 639
network access control 83
network connectivity, SNA network 269
Network DataBase System (NDB) 659
network file system, see also NFS 653
NFS (network file system)

PORTMAP address space 653
NJE

mail gateway 681
NOCOMMONSEARCH 13, 16
NPSI, see X.25 278
nslookup command

option alternatives 464
nslookup command, overview 463

O
offloading log files 106
OMPROUTE

autolog considerations 172
cataloged procedure 172
configuring 160, 171
displaying information 194
interaction with service policy 170
interaction with VIPA 113, 170, 211
migrating to, from OROUTED 165
multiple stack considerations 169
overview 165, 166, 169
parameters 177
ROUTESA_CONFIG 628

OMPROUTE (continued)
run-time environment 168
sample configuration files 202
SNMP subagent 642
starting 176
stopping 178
supported protocols 166
use with NCPROUTE 292
verification of configuration and state 194

OMPROUTE_DEBUG_FILE 175
OMPROUTE_DEBUG_FILE_CONTROL 175
OMPROUTE_FILE 174
OMPROUTE_OPTIONS 174
OMVS RACF segment 45, 47, 70, 71
onslookup command

command line mode 464
interactive mode 464
overview 463

onslookup considerations, configuring host
resolvers 457

open shortest path first, see also OSPF 156
Open Systems Adapter (OSA)

with ARP offload 129
with Cisco router 264
with SNMP 642

OPTIONS statement
use with NCPROUTE 301
use with OROUTED 782

OROUTED 769
cataloged procedure 779
command-line parameters 786
configuration examples 789
configuring 769
configuring the OROUTED Server 769
configuring with HiperSockets 796
configuring with OSA-Express in QDIO mode 795
DATAGRAMFWD 778
filters, input/output 772
gateways data set 779
IGNOREREDIRECTS 159, 778
interaction with NCPROUTE 285
interaction with VIPA 113
migrating from, to OMPROUTE 165
overview 165
PATHMTUDISC 159
SOURCEVIPA 778
starting 788
statement options 782
understanding OROUTED 769
VARSUBNETTING 778

OROUTED, understanding 769
osnmp command, configuring 640
OSNMPD, configuring 627
OSNMPD.CONF, search order for 22
OSNMPD.DATA, search order for 22
OSPF (open shortest path first)

configuring authentication 175
configuring OSPF and RIP 179
definition 156
overview 166
sample configuration files 202

Index 825

OSPF (open shortest path first) (continued)
security 98

otelnetd 378

P
PAGENT.CONF 562
parameter, Subnet_mask 182
parameters, LPD server cataloged procedure

DIAG 650
LPDDATA 650
LPDPRFX 650
TRACE 650
TYPE 650
VERSION 650

parameters, Miscellaneous server
CHARGEN 716
DEbug 716
DISCARD 716
ECHO 716
TRACE 716

parameters, OROUTED cataloged procedure
-dp 786
-g 786
-q 787
-s 786
-sd 787
-sdv 787
-st 787
-sv 787
-svd 787
-t 787
-t-t 787
-t-t-t 787
-t-t-t-t 787

parameters, OROUTED gateways data set
active 780
block, options 783
external 781
forward 783
forward.cond 783
host 780
interface, options 783
interface.poll.interval, options 782
interface.scan.interval, options 782
metric, options 781
net 780
passive, options 781, 783
supply off, options 784

parameters, SMTP statements
DEBUG, SMSG 681
EXPIRE, SMSG 681
HELP, SMSG 681
NODEBUG, SMSG 681
NOTRACE, SMSG 681
QUEUES, SMSG 681
SHUTDOWN, SMSG 681
STATS, SMSG 681
TRACE, SMSG 681

passive gateway 287, 773

passive route, configuring
NCPROUTE 301
OROUTED 789

path length 52
PATHMTUDISC (IPCONFIG PATHMTUDISC) 114, 159
performance considerations 52
performance monitoring, SLA subagent 588
PFS (physical file system) 50, 54
physical file system (PFS) 54
point-to-point link, configuring (OROUTED) 792
Policies

Attack 598
defining using LDAP 574
Differentiated Services (DS) 565
DS 571
IDS Attack 608
IDS Scan 605
IDS TR 615
IDS TR TCP 601
IDS TR TCP, using Policy Agent 603
IDS TR UDP 602
IDS, using LDAP 603
in Policy Agent configuration file 570
Integrated Services (RSVP) 567
RSVP 572
RSVP in LDAP 579
Scan 595
Sysplex Distributor 573
Sysplex Distributor (SD) 567
Sysplex Distributor in LDAP 580
Traffic Regulation (TR) 601

Policy Agent 539
and LDAP objects 554
Configuration file 570
Configuring 557
sample files 541
sample LDAP objects, using 556
Starting and stopping 562

popper 689
port access control 82
port management

multiple stacks 55
port ownership, specifying 431
PORTMAP

cataloged procedure 654
configuring 653
ETC.RPC 654
required by NFS 653
starting 656

PORTMAP address space
configuring 653, 656
starting PORTMAP 656, 657
updating the PORTMAP cataloged procedure 654,

657
PortMapper

cataloged procedure 657
starting 657

PortMapper, z/OS UNIX
configuring 656

PORTRANGE
TCP/IP profile statements 143

826 z/OS V1R4.0 CS: IP Configuration Guide

PRIMARY 390
printer support, 328x 315
printf function 77
problem diagnosis, DNS

checking syslog messages 467
using name server signals 467
using nslookup 468

procedures, TCP/IP
MISCSERV (MISCSERV) 715
NDBSETUP (NDBSETUP) 660
PORTC (PORTCPRC) 662
PORTS (PORTSPRC) 662
RXSERVE (RXPROC) 705, 708
SNMPD (SNMPDPRC) 636
SNMPQE (SNMPPROC) 637

PROFILE.TCPIP
ARPAGE 113
ARPTO 113
AUTOLOG 141
BEGINROUTES 129
BSDROUTINGPARMS 114
changes needed for FTP 384
CLAWUSEDOUBLENOP 113
DATAGRAMFWD 113
DATASETPREFIX 19
DELAYACKS 114
DEVICE 126
DYNAMICXCF 114
ECSALIMIT 113
FINWAIT2TIME 114
FIREWALL 113
GLOBALCONFIG 113
HOME 128
IGNOREREDIRECT 113
INTERFACE 128
IPCONFIG 113
IPCONFIG6 114
LINK 126
MULTIPATH 113
MVS system symbols 37
netstat 149
NOUDPCHKSUM 115
PATHMTUDISCOVERY 114
physical characteristics, setting up 115
PING 151
POOLLIMIT 113
PORT 60, 142, 385, 645
PRIMARYINTERFACE 128
REASSEMBLYTIMEOUT 114
reserved port number definitions, setting up 139
RESTRICTLOWPORTS 114, 115
SACONFIG 642, 645
sample 115
search order 25, 110
SENDGARBAGE 114
SOMAXCON 114
SOURCEVIPA 113, 128
STOPONCLAWERROR 114
SYSPLEXROUTING 114
TCP/IP operating characteristics, setting up 112
TCPCONFIG 114, 385

PROFILE.TCPIP (continued)
TCPIPSTATISTICS 113
TCPMAXRCVBUFRSIZE 114, 385
TCPRCVBUFRSIZE 114
TCPSENDBFRSIZE 114
TCPTIMESTAMP 114
TRACERTE 151
TRANSLATE 129
UDPCONFIG 115
UDPQUEUELIMIT 115
UDPRCVBUFRSIZE 115
UDPSENDBFRSIZE 115
VARSUBNETTING 113
verifying your configuration 148

PROFILE.TCPIP, specifying configuration statements
EZAFTSRV 385
NCPROUTE 291
OROUTED 777
PORTMAP 653, 656
SMTP 670
SNALINK 270
TCPIP 110
X.25 NPSI 279

program control 49
program directory 68
protocol suite 39
pwtokey 633

Q
QoS, see Quality of Service (QoS) 565
Quality of Service (QoS)

and Policy Agent 567
QoS Policy 546

R
RACF

Common Keyring support 726
considerations for FTP server 386
considerations for REXEC server 706

RACF (Resource Access Control Facility) 45, 47, 49,
70, 71

authorizing sources 45
FTPD 386
port access control 82
resource protection 81
REXEC access to MVS 706
stack access control 81
starting OMPROUTE 174
starting OROUTED 785
user access control 81

RACF profile, defining for MODDVIPA 223
REASSEMBLYTIMEOUT 114
RECFM 390
registration, WLM

overview 483
server applications

customized applications 495
TCP/IP 491
TN3270 491

Index 827

remote hosts, accessing using Telnet 305
RESOLVE_VIA_LOOKUP 144
resolver configuration files

for host names outside local area 143
MVS versus z/OS UNIX resolver 27
overview 27
search order 27
setting environment variables 29
TCPIP.DATA 109
use with OMPROUTE 172
use with OROUTED 778

resolver setup file statements
COMMONSEARCH 13, 16
DEFAULTIPNODES 14, 16
DEFAULTTCPIPDATA 13, 16
GLOBALIPNODES 14, 16
GLOBALTCPIPDATA 12, 16
NOCOMMONSEARCH 13, 16

resolver setup file, sample 16
resolver start procedure, sample 15
RESOLVER_CONFIG

overview 29
pointing to TCPIP.DATA 109
setting the value of 29
use by OMPROUTE 174
use with OROUTED 789
when running multiple TCP/IP stacks 63

RESOLVER_IPNODES 29
resolvers

and BIND 9 DNS 14
and dig 14
and IBM APIs 14
and nslookup 14
and nsupdate 14
and SMTP 14
customization 15
managing the resolver address space 18
setting up 14
starting and stopping 18
understanding resolvers 12

resolvers, configuring host
name server considerations 457
nslookup considerations 466

resolving conflicts, VIPA 232
RESOPROC 15
Resource Access Control Facility, see also RACF 45
Resource Access Control Facility, z/OS UNIX security

and, see also RACF 45
RESSETUP 16
RETPD 390
REXECD 48

cataloged procedure 707
configuring PROFILE.TCPIP 705
security considerations 706
UNIX 705
user exits 707
userid.RHOSTS.DATA 706

REXECD, z/OS UNIX
configuring inetd 719
considerations in CINET environment 58
HFS files 708

REXECD, z/OS UNIX (continued)
installation 708

RFC (request for comment)
list of 797

RFC (request for comments)
accessing online xxi

RIP (Routing Information Protocol)
configuring 179
definition 156, 167
external routes and NCPROUTE 288
input/output filters 290
interaction with NCPROUTE 285, 286
interaction with VIPA 249
OROUTED support of 774
overview 770
passive routes and NCPROUTE 287
reserving RIP UDP port for OMPROUTE 172
route advertising rules 288
sample configuration files 202

RIP input/output filters 290, 772
RIP_RECEIVE_CONTROL statement 298
RIP_SUPPLY_CONTROL statement 298
RIP2_AUTHENTICATION_KEY statement 298
root file system 12
router advertisements 162
router, definition 156
routing

daemons 156, 165
definition 156
dynamic VIPAs 247
IGNOREREDIRECTS 159
IPv6 dynamic 205
IPv6 static 161
MULTIPATH 164, 167
network design considerations 193
PATHMTUDISC 159
Routing Information Protocol (RIP) 286
routing information tables 294
routing table 286
SOURCEVIPA 213
static versus dynamic 157
verification of 205

Routing Information Protocol (RIP) 770
Routing Information Protocol, see also RIP 156
routing table 770
RPCINFO 654
RSHD 48
RSHD, z/OS UNIX

configuring inetd 719
considerations in CINET environment 58
HFS files 709
installation exit 710

RSVP 583
Configuring 584
Policies 567
Starting and stopping 584

RSVP Agent 540

S
sample NCP IP router statements 297

828 z/OS V1R4.0 CS: IP Configuration Guide

search order
configuration files 18
DATASETPREFIX value 19
ETC.IPNODES 32, 36
ETC.PROTO 21, 33, 36
ETC.SERVICES 21, 33, 37
FTP.DATA 21, 389
GATEWAYS configuration data set or file 779
high-level qualifier (HLQ) 19
HOSTS.ADDRINFO 32, 35
HOSTS.SITEINFO 31, 35
LPD configuration file 650
MIBS.DATA 641
middle-level qualifier (MLQ) 19
OROUTED configuration data set or file 774
OSNMPD.CONF 22
OSNMPD.DATA 22
overview 18
PAGENT.CONF 22
PROFILE.TCP/IP 25
PROFILE.TCPIP 22
PW.SRC 23
resolver configuration files 27
RSVPD.CONF 23
SERVICES data set or file 779
SNMPD.BOOTS 23
SNMPD.CONF 23
SNMPTRAP.DEST 24
STANDARD.TCPXLBIN 31, 34
TCPIP.DATA 26
TRAPFWD.CONF 24
with DD cards in TCP/IP startup procedure 25
without DD cards in TCP/IP startup procedure 26

SECONDARY 390
Secure Socket Layer, see SSL 721
security

application 79
event reporting 99
Express Logon Feature (ELF) 96
FTP server 386
IPSec 89
overview 79
principals 87
protecting data in the network 87
protocols 89
RACF 45
resource protection 81
SSL and TLS 93

security, z/OS UNIX considerations 45, 47, 48, 49
sendmail, z/OS UNIX 689
SERVAUTH 44, 139, 323

MVS considerations 44
resource protection 81
restricting access to port numbers by

applications 44
restricting access to TSO and UNIX shell Netstat

command 45
setting up 143

server requirements, NCPROUTE 287
ServerType statement 510

service policy agent
SNMP 628
SNMP subagent 642

SESSLIM parameter, VTAMLST 76
setup file statements, resolver

COMMONSEARCH 13, 16
DEFAULTIPNODES 14, 16
DEFAULTTCPIPDATA 13, 16
GLOBALIPNODES 14, 16
GLOBALTCPIPDATA 12, 16
NOCOMMONSEARCH 13, 16

setup file, sample resolver 16
Setup, z/OS msys for 6
shortcut keys 811
Simple Network Management Protocol, see also

SNMP 623
Simple Network Time Protocol (SNTP) 701
SLA subagent 585

performance monitoring 588
traps generated by 630

SMF (System Management Facility)
record type 118 43
record type 119 44
records for FTP 40, 393
records for Telnet 40
see also, accounting 40
user exit for FTP server 396

SMS (Storage Management System) 392
SMTP

configuring 669
exit to filter unwanted mail 687

SMTP headers, customizing 672
SMTP.RULES data set 673
SMTP.SECTABLE data set 683
SNA network connectivity 269
SNALINK environment 269
SNALINK LU0 269

AUTOLOG 274
BEGINROUTES 270
BSDROUTINGPARMS 270
cataloged procedure 273
configuring 270
connections 275
definitions 272
DEVICE 270
dynamic routing 269
GATEWAY 270
HOME 270
LINK 270
MODIFY 275
NETSTAT DEVLINKS 275
PROFILE.TCPIP 270
sample console 274
starting 273
stopping 273
verifying 275
VTAM definitions 273

SNALINK LU6.2 276
cataloged procedure 277
configuration data set 278
configuring 276

Index 829

SNALINK LU6.2 (continued)
DEVICE 277
LINK 277
VTAM definitions 277

SNMP
agents and subagents 627
configuring 623
overview 623
updating the SNMPD cataloged procedure 637

SNMP (Simple Network Management Protocol)
agents and subagents 642
community names 629
community-based security 629, 637
configuring for NCPROUTE 298
configuring for z/OS UNIX 623
creating user keys 633
DD statement for external message data set 76
enabling traps for SLA subagent 589
Enterprise-Specific variables 639
MIBDESC.DATA 637
multiple SNMPv3 agents in same MVS image 23,

633
NetView 637
OSA 642
OSNMP 640
OSNMPD, starting 635
OSNMPD.DATA 22
overview 623
port specification 628
PW.SRC 23
pwtokey 633
security 625
SNMPD.BOOTS 632
SNMPD.CONF 631
SNMPTRAP.DEST 24, 630
SNMPv1, SNMPv2C, SNMPv3 625
TCP/IP profile statements 143, 627, 645
textual names 641
trap forwarding 646
TRAPFWD.CONF 647
user-based security 631

SNMP SLA Subagent 540
SNMP_AGENT statement 299
SNMP_COMMUNITY statement 299
SNMPIUCV module 639
SNMPv3, security 98
SNTPD daemon 701
socket applications (z/OS UNIX), support for fast

path 52
socket applications use of z/OS UNIX 45
SOURCEVIPA (IPCONFIG SOURCEVIPA) 113, 128,

213, 466, 468, 778
SPACETYPE 390
specific stack affinity 55
specifying configuration statements in

PROFILE.TCPIP 291
splitting network traffic 793
SPREAD 396
SQL 406
SQL usage

in FTP server 406

SQL usage (continued)
in NDB 659

SQLCOL 396
SSL

for DCAS 721
for FTP server 721
for Telnet server 721
overview 721

SSL, security 93
stack access control 81
stack affinity, specifying 431
stack communications, z/OS UNIX to TCP/IP 52
stack functions supported, IPv6 3
STANDARD.TCPXLBIN 31, 34
START command 76
start procedure, sample resolver 15
started task 46, 47
static routes

definition 156
static routing

configuration examples 162
IPv6 161
using with OMPROUTE 160
versus dynamic routing 157

static routing, IPv4 158
Storage Management System (SMS) 392
STORCLASS 390, 391
subagent, SLA performance monitoring 588
Subnet_mask parameter 182
subnets, dynamic VIPAs within 239
superuser authorization 48
SURROGATE, in anonymous logins 401
symbols, MVS system 37
SYSFTPD 389
syslog file, creating 458
syslogd

command format 105
configuring 101
diagnosing configuration problems 108
exit values 106
for z/OS UNIX applications 107
overview 39, 108
stopping 106

sysplex
configuring for connection optimization 490
failure management 239
name resolution in 483
overview 482
sysplex wide dynamic source VIPAs for TCP

connections 226
Sysplex Wide Security Associations (SWSA) 228
SYSPLEXPORTS 227
TCP/IP in a 251
workload balancing 260

Sysplex Distributor 209, 546, 573, 580, 587
configuring distributed DVIPAs 224
DATAGRAMFWD 240
DNS considerations 462
DYNAMICXCF 112
policy interactions 261
SYSPLEXROUTING 240

830 z/OS V1R4.0 CS: IP Configuration Guide

Sysplex Distributor (continued)
using IPSec with 231
with Cisco routers 261
with SWSA 230
workload verification 246

Sysplex Distributor (SD)
Policies 567

sysplex wide dynamic source VIPAs for TCP
connections 226

Sysplex Wide Security Associations (SWSA)
DVIPA takeover 229
EZBDVIPA 229, 232
IPSec with DVIPAs and Sysplex Distributor 231
overview 228
Sysplex Distributor 230

SYSPLEXPORTS 227
SYSPLEXROUTING (IPCONFIG

SYSPLEXROUTING) 114, 240, 491
SYSTCPD DD

fork() considerations 30, 109
search order for TCPIP.DATA 109
SNALINK LU6.2 cataloged procedure 277

System Management Facility, see also SMF 43
system symbols, MVS 37

T
takeover, DVIPA 229
tasks

migrating an existing DNS configuration to BIND
4.9.3 dynamic IP

steps for 498
starting SNTPD as a procedure

steps for 702
starting SNTPD from the z/OS shell

steps for 701
TCP/IP

application configuration files 26
changing configuration information 111
configuration data sets 21
configuration files for the stack, search order 25
customizing messages 76
installation, planning for 67
multiple instances 54
online information xxi
protocol specifications 797
resolver configuration files 27
search order and configuration files for the stack 18
stack configuration files, search order 25
starting the address space 76
startup DD cards 25
sysplex considerations 251

TCPIP.DATA
/etc/resolve.conf 109
characteristics 109
configuring for FTP 389
configuring nslookup 464
creating 109
DATASETPREFIX 19, 63
finding with SYS1.TCPPARMS 20
multiple stacks 61

TCPIP.DATA (continued)
MVS system symbols 37
overview 109
search order 26
setting default with DEFAULTTCPIPDATA 13
Specifying a default local host file with

DEFAULTIPNODES 14
Specifying a global local host file with

GLOBALIPNODES 14
specifying global resolver settings with

GLOBALTCPIPDATA 12
Specifying local host file search order with

COMMONSEARCH 13
Specifying local host file search order with

NOCOMMONSEARCH 13
syntax 110
TCPIPJOBNAME 63, 148
verifying 148

TCPSTACKSOURCEVIPA 113, 128, 212, 213, 226
Telnet

accounting 40
associated printer function 347
connection and session takeover 356
connection security 319
connection types 314
device types 361
diagnostics 367
disconnect on error 360
Express Logon Feature (ELF) 361
generic connection requests 344
getting started 306
keep LU for client identifier 349
keeping the ACB open 360
logmode considerations 361
LU assignments 325
LU group capacity warning 349
LU mapping by application name 349
LU mapping selection rules 352
LU name assignment user exit 345
LUMAP statements, multiple 348
managing the server 309
map default application and ParmsGroup by LU

group 347
mapping groups to client identifiers 345
mapping objects to client identifiers 325
mapping statements 335
overview 305
queuing sessions 358
session initiation management 354
SMF records 370
solicitor 362
specific connection requests 344
starting 306
storage considerations 307, 319
timers 366
TN3270 Enhanced (TN3270E) 315
TN3270 Telnet server, overview 305
Unformatted System Services (USS) 362
using wildcards to configure 306, 327, 737, 738
VTAM configuration data sets 306
Workload Manager (WLM) 372

Index 831

Telnet (continued)
z/OS UNIX (otelnetd) 374

Telnet server, configuring 374
TESTSITE 152
TFTP server, configuring 408
TIMED daemon 699
TLS

for DCAS 721
for FTP server 721
for Telnet server 721

TLS, security 93
TN3270 Enhanced (TN3270E) 315
TN3270 Telnet server 305
TNF 72
trademark information 816
Traffic, splitting with VIPA 793
translating TCP/IP messages 76
translation of data, FTP 393
TRMD

running as a started task 620
running from the z/OS UNIX shell 620
stopping and starting 620

TRMDSTAT 621
TSIG 475

U
UCOUNT 390
UMASK 391
unique application-instance scenario 218, 219
UNITNAME 391
UNIX, superuser authorization 48
user interface

ISPF 811
TSO/E 811

V
variables, setting environment for resolver configuration

files 29
VARSUBNETTING (IPCONFIG

VARSUBNETTING) 113, 778
VCOUNT 391
verification

system configuration 76
X Window System 153

VIPA (virtual IP address)
backing up TCP/IP stack 215
configuring static 213
distributed VIPA 209
dynamic (DVIPA) 215
dynamic routing 209
dynamic VIPA 209
interfaces 185
manual movement 211
overview 65, 209
splitting traffic with 793
static 213
takeover planning 210, 216

VIPA interfaces 185
virtual IP address, see also VIPA 209

virtual machine communication facility, see also
VMCF 72

VMCF (virtual machine communication facility)
commands 73
configuring as non-restartable system 73
configuring as restartable system 72

VOLUME 391
VPN, security 89
VTAM APPL definition

for SNALINK LU0 273
for SNALINK LU6.2 277
for X.25 NPSI 283

VTAM parameters, general update 75
VTAM, online information xxi
VTAMLST member 75

W
well-known procedure names, defining 654
wizard, for configuration 6
WLM (Workload Manager) 372
Workload Manager for Telnet 372

X
X Window System verification 153
X Windows, verifying installation 153
X.25 NPSI 278

cataloged procedure 280
configuration 280
configuration data set 280
configuring 279
DATE 280
DEVICE 279
GATE 280
GATEWAY 279
HOME 279
LINK 279
performance 279
START 279
VTAM definitions 283

Z
z/OS CS environment, overview 18
z/OS msys for Setup 6
z/OS UNIX initialization failure 71
z/OS UNIX System Services (z/OS UNIX)

applications and syslogd 107
concepts 10
Hierarchical File System (HFS) concepts 11
overview 10

z/OS UNIX Telnet server, configuring 374
z/OS UNIX, superuser authorization 48
z/OS, documentation library listing xxiii
z/OS, listing of documentation available 807
zone transfers 421

832 z/OS V1R4.0 CS: IP Configuration Guide

Communicating Your Comments to IBM

If you especially like or dislike anything about this document, please use one of the
methods listed below to send your comments to IBM. Whichever method you
choose, make sure you send your name, address, and telephone number if you
would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization,
subject matter, or completeness of this document. However, the comments you
send should pertain to only the information in this manual and the way in which the
information is presented. To request additional publications, or to ask questions or
make comments about the functions of IBM products or systems, you should talk to
your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

If you are mailing a readers’ comment form (RCF) from a country other than the
United States, you can give the RCF to the local IBM branch office or IBM
representative for postage-paid mailing.

v If you prefer to send comments by mail, use the RCF at the back of this
document.

v If you prefer to send comments by FAX, use this number: 1-800-254-0206

v If you prefer to send comments electronically, use this network ID:
usib2hpd@vnet.ibm.com

Make sure to include the following in your note:

v Title and publication number of this document

v Page number or topic to which your comment applies.

© Copyright IBM Corp. 2000, 2002 833

|

|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|

|

|
|

|

|

|

834 z/OS V1R4.0 CS: IP Configuration Guide

Readers’ Comments — We’d Like to Hear from You

z/OS Communications Server
IP Configuration Guide
Version 1 Release 4

Publication No. SC31-8775-02

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC31-8775-02

SC31-8775-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Software Reengineering
Department G7IA/ Bldg 503
Research Triangle Park, NC
27709-9990

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694–A01 and 5655–G52

Printed in U.S.A.

SC31-8775-02

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
z/

O
S

Co
m

m
un

ic
at

io
ns

Se
rv

er
z/

O
S

V
1R

4.
0

C
S:

IP
Co

nf
ig

ur
at

io
n

G
ui

de
Ve

rs
io

n
1

R
el

ea
se

4

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	Where to find more information
	Where to find related information on the Internet
	DNS web sites

	Accessing z/OS licensed documents on the Internet
	Using LookAt to look up message explanations
	How to contact IBM service
	z/OS Communications Server information
	Softcopy information
	z/OS Communications Server library
	Redbooks
	Related information
	Determining if a publication is current

	Summary of changes
	Part 1. Base TCP/IP system
	Chapter 1. Configuration overview
	z/OS TCP/IP stack function support
	z/OS msys for Setup and Wizard
	Wizard
	z/OS msys for Setup

	z/OS UNIX System Services (z/OS UNIX) concepts
	Overview of data sets and HFS files
	Hierarchical File System concepts
	The root file system

	Understanding resolvers
	Setting up a resolver address space
	Resolver customization
	Managing the resolver address space

	Understanding search orders of configuration information
	Configuration data set naming conventions
	Dynamic data set allocation
	

	Configuration files for the TCP/IP stack
	PROFILE.TCPIP search order
	Examples

	TCPIP.DATA search order

	Configuration files for TCP/IP applications
	Resolver configuration files
	Search orders used in the z/OS UNIX environment
	Search orders used in the native MVS environment

	MVS-related considerations
	MVS system symbols
	Automatic restart manager (ARM)
	Logging of system messages
	Accounting - SMF records
	SMF accounting issues (Record type 118)
	SMF accounting issues (Record type 119)

	Security considerations

	UNIX System Services security considerations
	Requirement for an OMVS segment
	Authorization of TCP/IP started task user ID
	Other user IDs requiring z/OS UNIX superuser authority
	BPX.DAEMON facility class
	Program control

	Defining TCP/IP as a UNIX System Services physical file system (PFS)
	References

	Performance considerations
	Fast path support
	Considerations for multiple instances of TCP/IP
	Common INET physical file system (CINET PFS)
	Port management overview
	Generic server versus server with affinity for a specific transport provider
	Generic servers in a CINET environment
	Port reservation across multiple transport providers

	Selecting a stack when running multiple instances of TCP/IP
	Standard servers and clients
	Nonstandard servers and clients
	TCP/IP TSO clients
	Selecting configuration data sets
	Sharing resolver configuration data sets

	Specifying BPXPRMxx values for a CINET configuration

	Considerations for Enterprise Extender
	Considerations for VIPA
	Required steps before starting TCP/IP
	Planning your installation and migration
	Step 1: Install z/OS CS
	Verifying the initial installation
	Step 2: Customize z/OS CS
	Making SYS1.PARMLIB changes

	Step 3: Configure VMCF and TNF
	Restartable subsystems
	Non-restartable subsystems
	VMCF commands
	Common VMCF problems
	IUCV/VMCF considerations

	Step 4: Update the VTAM application definitions
	Step 5: Verify that the resolver address space is active
	Step 6: Start the TCP/IP address space
	Step 7: Set up cataloged procedures and configuration data sets
	Step 8: Customize TCP/IP messages
	How to access the message data sets
	Message text
	Message format
	Rules for customizing the messages

	Chapter 2. Security
	System resource protection
	Application security
	TCP/IP resource protection
	Local user access control to TCP/IP resources using the SAF
	Stack Access Control
	Port Access Control
	Network Access Control
	Netstat Access Control
	Fast Response Cache Accelerator Access Control
	Syslogd isolation
	IP filtering

	Protecting data in the network
	Network security principals
	Cryptography: The foundation of good security
	End to end security
	Workload-based security deployment

	Network security protocols
	IPSec and VPNs
	SSL and TLS
	Kerberos
	OSPF authentication
	Secure DNS
	SNMPv3

	Security Event Reporting
	Integrated Intrusion Detection Services (IDS)

	Chapter 3. Customization
	Configuring the syslog daemon (syslogd)
	Configuration statements
	Starting and stopping syslogd
	Offloading log files
	Using syslogd for z/OS UNIX application programs
	Usage notes
	Diagnosing syslogd configuration problems

	Configuring TCPIP.DATA
	Use of TCPIP.DATA and /etc/resolv.conf
	Creating TCPIP.DATA
	TCPIP.DATA statements

	Configuring PROFILE.TCPIP
	Changing configuration information
	Setting up TCP/IP operating characteristics in PROFILE.TCPIP
	Setting up physical characteristics in PROFILE.TCPIP
	Devices that support ARP offload
	HiperSockets concepts and connectivity
	Interface-layer fault-tolerance for local area networks (interface-takeover function)
	IPv6 considerations: Stateless autoconfiguration and duplicate address detection

	Setting up reserved port number definitions in PROFILE.TCPIP
	Setting up SAF Server Access Authorization (SERVAUTH) (optional)

	Configuring the local host table (optional)
	Why configure a local host table?
	Creating HOSTS.LOCAL site host table
	HOST entries
	NET and GATEWAY entries
	Using MAKESITE

	Creating /etc/hosts
	Creating ETC.IPNODES and /etc/ipnodes

	Verifying your configuration
	Verify TCPIP.DATA and TCPIPJOBNAME
	Verify /etc/resolv.conf
	Verifying PROFILE.TCPIP with netstat or onetstat
	Verifying interfaces with PING and TRACERTE
	Verifying local name resolution with TESTSITE
	Verifying PROFILE.TCPIP and TCPIP.DATA using HOMETEST
	Verifying your X Windows System installation (Optional)
	Verifying the X Windows X11R4 System installation
	Verifying the X Windows X11R6 System installation

	Chapter 4. Routing
	Routing terminology
	General terms
	Interior Gateway Protocols (IGP)

	Static versus dynamic routing
	The sample network

	IPv4 static routing
	Using static routing with OMPROUTE

	IPv6 static routing
	Using static routing with router advertisements

	Static routing configuration examples
	z/OS TCPCS4
	z/OS TCPCS7

	IPv4 dynamic routing
	Routing daemons
	Migration from OROUTED to OMPROUTE
	Dynamic routing using OMPROUTE
	Supported protocols
	OMPROUTE configuration
	Configuring OMPROUTE
	Starting and controlling OMPROUTE

	Configuring OSPF and RIP
	Step 1: Setting the OSPF router ID (If OSPF protocol is used)
	Step 2: Defining OSPF areas (If OSPF protocol is used)
	Step 3: Limiting information exchange between OSPF areas (If OSPF protocol is used)
	Step 4: Defining interfaces (OSPF and RIP)
	Step 5: Defining interface costs (OSPF and RIP)
	Step 6: Configuring Virtual Links (If OSPF protocol is used)
	Step 7: Managing high-cost links (If OSPF protocol is used)
	Step 8: Defining filters (If RIP protocol is used)
	Step 9: Defining route precedence in a MultiProtocol environment (If OSPF protocol is used)
	Network design considerations with z/OS CS
	Verification of OMPROUTE configuration and state
	Sample OMPROUTE configuration files

	IPv6 dynamic routing
	Verification of routing (Static and dynamic)
	Verifying connections with NETSTAT, PING, and TRACERTE

	Chapter 5. Virtual IP Addressing
	Terminology
	Introduction to VIPA
	Moving a VIPA (For TCP/IP outage)
	Static VIPAs, Dynamic VIPAs (DVIPAs), Distributed DVIPAs
	Using static VIPAs
	Configuring static VIPAs for a z/OS TCP/IP stack
	Configuring static VIPAs for Enterprise Extender
	Considerations when using static VIPAs with IPv6
	Planning for static VIPA Takeover and Takeback

	Using Dynamic VIPAs (DVIPAs)
	Configuring Dynamic VIPA (DVIPA) support
	Planning for Dynamic VIPA Takeover
	Different application uses of IP addresses and DVIPAs
	Configuring Dynamic VIPAs
	Configuring the Multiple Application-Instance Scenario
	Configuring the Unique Application-Instance Scenario
	Using the 'SIOCSVIPA' ioctl command
	Using the MODDVIPA utility
	Defining a RACF profile for MODDVIPA

	Choosing which form of Dynamic VIPA support to use
	Configuring Distributed DVIPAs — Sysplex Distributor
	Sysplex wide source VIPA
	Sysplex wide dynamic source VIPAs for TCP connections
	SYSPLEXPORTS

	Sysplex Wide Security Associations
	DVIPA takeover
	Sysplex Distributor
	Using IPSec with DVIPAs and Sysplex Distributor
	Loss of access to coupling facility

	Resolution of Dynamic VIPA conflicts
	Restart of the original VIPADEFINE TCP/IP after an outage
	VIPADEFINE MOVEABLE IMMEDIATE
	VIPADEFINE MOVEABLE WHENIDLE

	Movement of unique application-instance (BIND)
	VIPARANGE (DEFINE) MOVEABLE NONDISRUPTIVE
	VIPARANGE (DEFINE) MOVEABLE DISRUPTIVE

	Movement of a unique APF-authorized application instance (ioctl)
	VIPARANGE (DEFINE) MOVEABLE NONDISRUPTIVE
	VIPARANGE (DEFINE) MOVEABLE DISRUPTIVE

	Same Dynamic VIPA as VIPADEFINE and BIND(), SIOCSVIPA ioctl, or MODDVIPA utility
	Dynamic VIPA creation results

	Other considerations
	Mixture of types of Dynamic VIPAs within subnets
	MVS failure and Sysplex Failure Management
	Applications and Dynamic VIPAs
	Example of configuring Dynamic and Distributed VIPAs
	Verifying the DVIPAs in a sysplex
	Using NETSTAT support to verify Dynamic VIPA configuration
	Verifying Sysplex Distributor workload

	Dynamic VIPAs and routing protocols
	OMPROUTE
	RIP (Routing Information Protocol)

	Chapter 6. TCP/IP in a sysplex
	Connectivity in a sysplex
	Dynamic XCF
	IUTSAMEH
	XCF
	Examples of definitions generated by Dynamic XCF
	iQDIO (Internal Queued Direct Input/Output or HiperSockets)

	Workload balancing
	Single systemwide image
	Horizontal growth
	Ease of management
	DNS/WLM
	External IP workload balancing
	Sysplex Distributor
	Policy interactions
	Connection load balancing using Sysplex Distributor in a network with CISCO routers
	Setting up Sysplex Distributor to be the service manager for Cisco's MNLB

	Part 2. Server applications
	Chapter 7. Network connectivity with an SNA network
	SNALINK LU0 environment
	Understanding the SNALINK environment
	Configuring SNALINK LU0
	Step 1: Specify configuration statements in hlq.PROFILE.TCPIP
	Step 2: Update the SNALINK cataloged procedure
	Step 3: Define the SNALINK application to VTAM

	Stopping and starting SNALINK
	Sample console

	Verifying connection status using NETSTAT DEVLINKS
	Controlling the SNALINK LU0 interface with the MODIFY command

	SNALINK LU6.2
	Configuring SNALINK LU6.2
	Step 1: Specify DEVICE and LINK statements in hlq.PROFILE.TCPIP
	Step 2: Update the SNALINK LU6.2 cataloged procedure
	Step 3: Define the SNALINK LU6.2 application to VTAM
	Step 4: Update the SNALINK LU6.2 configuration data set

	Sample console

	X.25 NCP Packet Switching Interface (NPSI)
	Configuring X.25 NPSI
	Step 1: Specify X.25 configuration statements in hlq.PROFILE.TCPIP
	Step 2: Update the X.25 NPSI cataloged procedure
	Step 3: Update the X.25 NPSI server configuration data set
	Step 4: Define the X.25 NPSI configuration
	Step 5: Define the X.25 NPSI application to VTAM
	Step 6: Define VTAM switched circuits

	NCPROUTE
	Understanding the NCPROUTE environment
	Server requirements
	NCPROUTE operation
	NCPROUTE gateways summary
	RIP input/output filters

	Configuring NCPROUTE
	Step 1: Specify configuration statements in hlq.PROFILE.TCPIP
	Step 2: Configure VTAM and SNALINK applications
	Step 3: Configure the IP over CDLC DEVICE and LINK statements
	Step 4: Update the NCPROUTE cataloged procedure
	Step 5: Update hlq.ETC.SERVICES
	Step 6: Configure the host-dependent NCP clients
	Step 7: Configure the NCPROUTE profile data set (Optional)
	Step 8: Configure the NCPROUTE gateways data set (Optional)
	Step 9: Define a directly connected host route for the NCST session
	Controlling the NCPROUTE address space with the MODIFY command

	Chapter 8. Accessing remote hosts using Telnet
	TN3270 Telnet server
	Getting started
	Starting a Telnet session
	Customizing the VTAM configuration data sets
	Customizing the TCP/IP configuration data sets

	Managing the Telnet server
	Commands
	Qualified ports
	Multiple ports
	Complete profile replacement
	Connection association

	Connection mode choices
	TN3270 Enhanced (TN3270E)
	TN3270
	Linemode

	Connection security
	Data overrun security
	Transport layer security

	Mapping Objects to Client Identifiers
	Objects
	Client Identifiers
	Client Identifier selection rules
	The mapping rule search order
	Object assignment examples

	Mapping methods
	LU name mapping statements
	Application mapping statements
	Connection parameters mapping statement

	Advanced LU mapping topics
	Generic and Specific connection requests
	Mapping groups to Client Identifiers
	LU name assignment user exit
	Associated printer function
	Map default application and ParmsGroup by LU group
	Multiple LUMAP statements
	Keep LU for the Client Identifier
	LU group capacity warning
	LU mapping by application name
	LU mapping selection rules

	Advanced application topics
	Session initiation management (LOGAPPL, QINIT, FIRSTONLY, and DEFONLY)
	Connection and session takeover
	Queuing sessions
	Disconnect on session error
	Bypass RESTRICTAPPL with CERTAUTH
	Keeping the ACB open
	Express Logon Feature (ELF)

	Device types and logmode considerations
	Using the Telnet Solicitor or USS logon panel
	Using the Telnet Solicitor logon panel
	Using the Telnet USS and INTERPRET support

	Timers
	Telnet diagnostics
	DEBUG
	MSG07
	Abend trap
	SMF
	TESTMODE
	DISPLAYS
	CTRACE

	WorkLoad Manager for Telnet (WLM)

	Configuring the z/OS UNIX Telnet server (otelnetd)
	Installation information
	Starting, stopping, and administration of z/OS UNIX Telnet
	otelnetd
	SMF record handling
	BPX.DAEMON considerations
	Kerberos

	Chapter 9. Transferring files using FTP
	Configuring PROFILE.TCPIP for FTP
	Configuring ETC.SERVICES
	Configuring /etc/syslog.conf
	Configuring the FTPD cataloged procedure
	Security considerations for the FTP server
	Defining environment variables for the FTP server (optional)
	_FTPXLATE_name used for translation
	TZ and other UNIX environment variables
	_BPX_JOBNAME
	_BPXK_SETIBMOPT_TRANSPORT for affinity to a specific stack

	Configuring TCPIP.DATA for FTP
	Configuring FTP.DATA
	Optionally configuring user-level server options using FTPS.RC
	Data set attributes
	Specifying attributes for new MVS data sets
	Dynamic allocation
	Storage Management Subsystem (SMS)

	Translation of data

	Accounting
	Configure the FTP server for SMF (optional)

	Customizing the FTP server for TLS
	Customizing the FTP server for the GSSAPI
	DB2® and JES
	Configuring the optional FTP user exits
	The FTPSMFEX user exit
	The FTCHKIP user exit
	The FTCHKPWD user exit
	The FTCHKCMD user exit
	The FTCHKJES user exit
	The FTPOSTPR user exit

	Customizing the FTP-to-JES interface for JESINTERFACELevel 2 (optional)
	Configuring the FTP server for anonymous logins (optional)
	Creating an anonymous directory structure in the HFS

	Configure the Welcome Banner Page, Login, and Directory Message (optional)
	Using magic cookies to represent information

	Configuring to send detailed login failure replies to an FTP client (optional)
	Install the SQL query function (optional) and access the DB2 modules
	Accessing DB2 modules
	FTP.DATA updates for SQL query function

	Trivial File Transfer Protocol (TFTP)
	Considerations for z/OS

	Verification of FTP
	Verify server
	Verify client
	Verify FTP.DATA statements
	Verifying anonymous, banner, and other optional configuration information
	Verify FTP-JES interface (optional)

	Chapter 10. Domain Name System (DNS)
	DNS and BIND overview
	Domain names
	Domain name servers
	Authoritative servers
	Caching-only servers
	Forwarders
	Stealth server

	Resolvers
	Resolver directives for nslookup
	Resolver directives for dig
	Query Packets
	Resource Records

	Recommended reading

	Migrating to BIND 9
	Performance issues
	Compatibility considerations
	Zone transfers
	Queries
	Dynamic update
	DNSSEC
	TSIG
	DNS/WLM (Sysplex connection balancing)
	IPv6 support
	Stack affinity
	NOTIFY

	Running the name server in BIND 9 and BIND 4.9.3 mode simultaneously
	Setting up and running the name server
	Configuring a master (primary) name server
	Step 1a. Create the boot file for BIND 4.9.3–DNS
	Step 1b. Create the configuration file for BIND 9–DNS.
	Step 2. For BIND 4.9.3–DNS only: specify stack affinity (Multiple stack environment)
	Step 3. Specify port ownership
	Step 4. Update the name server start procedure (Optional)
	Step 5. Create the domain data files (master name server only)
	Step 6. Create the hints (root server) file
	Step 7. Create the loopback file
	Step 8. For BIND 9 only — configure logging
	Step 9. Ensure that the syslog daemon is running on your system
	Step 10. Specify whether the name server is to run swappable or nonswappable
	Step 11. Start the name server
	Step 12. Verify that the name server started correctly
	Step 13. Verify the name server can accept queries

	Configuring a slave name server
	Step 1a. Create the boot file for BIND 4.9.3–DNS
	Step 1b. Create the configuration file for BIND 9–DNS.

	Configuring a cache-only name server
	Step 1a. Create the boot file for BIND 4.9.3–based DNS.
	Step 1b. Create the configuration file for BIND 9–DNS.

	Configuring a stealth name server
	Adding forwarding to your name server
	Configuring host resolvers: Name server considerations
	Configuring host resolvers: onslookup considerations
	Creating the syslog file
	BIND 9 security considerations
	Remote Name Daemon Control (rndc)
	Access Control Lists
	chroot and setuid
	Dynamic update security

	Special considerations when using Dynamic VIPA
	Dynamic primary DNS movement using Dynamic VIPA

	Querying name servers
	nslookup command
	Entering the interactive mode
	Entering the command line mode
	nslookup configuration

	Diagnosing problems
	Checking messages sent to the operators console
	Checking the syslog messages
	Using name server signals to diagnose BIND 4.9.3 DNS problems
	Using name server signals to diagnose BIND 9 DNS problems
	Using rndc to diagnose BIND 9 problems
	Checking name server logging files to diagnose BIND 9
	Using nslookup to diagnose problems
	Using dig to diagnose problems

	Advanced BIND 9 name server topics
	Multiple TCP/IP stack (common INET) considerations
	Dynamic update
	Incremental zone transfers (IXFR)
	Split DNS
	Implementing split DNS with views

	TSIG
	Generate shared keys for each pair of hosts
	Copying the shared secret to both machines
	Informing the servers of the key's existence
	Instructing the server to use the key
	TSIG key based access control
	Errors

	DNSSEC
	Generating keys
	Creating a key set
	Signing the child's key set
	Signing the zone
	Configuring servers

	IPv6 support in BIND 9
	Address lookups using AAAA records
	Address lookups using A6 records
	Synthetic IPv6 responses
	Address to name lookups using nibble format
	Address to name lookups using bitstring format
	Using DNAME for delegation of IPv6 reverse addresses

	Advanced BIND 4.9.3–Name server topics
	Connection optimization in a sysplex domain
	Overview
	Configuring a sysplex domain for connection optimization
	Registering your own applications

	Dynamic IP
	Overview
	Administering dynamic domains
	Steps for Migrating an existing DNS configuration to BIND 4.9.3 dynamic IP
	RSA encryption
	Configuring the DHCP server for z/OS
	Changing the DHCP configuration file
	Configuring DHCP server as DDNS client proxy
	Defining DHCP proxy authority
	Configuring the BINL server
	Configuring a DDNS server (BIND 4.9.3 only)

	DNS-related RFCs
	Proposed standards
	Proposed standards still under development
	Other important RFCs about DNS implementation
	Resource record types
	DNS and the Internet
	DNS operations
	Other DNS-related RFCs

	Chapter 11. Policy-Based Networking
	The role of policy
	Policy components overview
	Policy Agent
	RSVP Agent
	SNMP SLA subagent
	Intrusion Detection Services
	Policy sample files

	Policy object model overview
	What kind of policy do you want?
	QoS policy
	IDS policy

	Where do you want to define your policies?
	LDAP server
	Overview of the object classes
	Considerations for defining LDAP objects
	Policy Agent retrieval of LDAP objects
	Installing the schema definition on the LDAP server
	Using the sample LDAP objects

	Policy Agent common functions
	Configuring the Policy Agent
	Step 1: General configuration
	Step 2: Configure QoS policies in Policy Agent configuration files
	Step 3: Configure Policy Agent to use LDAP server via the ReadFromDirectory statement
	Step 4: Optionally add SSL to the Policy Agent connection to LDAP

	Starting and stopping the Policy Agent
	Refreshing policies

	Verification
	Are the policies defined correctly to the LDAP server?
	Are the policies defined correctly to the Policy Agent?

	Chapter 12. Quality of Service (QoS)
	Differentiated Services (DS) policies
	Integrated Services (RSVP) policies
	Sysplex Distributor (SD) policies
	QoS specific Policy Agent functions
	Sysplex distributor policy performance monitoring configuration
	Type of Service (ToS) mapping configuration

	Defining policies in a Policy Agent configuration file
	Differentiated Services policy examples
	RSVP policy example
	Sysplex Distributor policy example

	Defining policies using LDAP
	Differentiated Services policy example
	RSVP policy example
	Sysplex Distributor routing policy example

	RSVP
	Configuring the RSVP agent
	Starting and stopping RSVP

	Service Level Agreement Performance Monitor MIB subagent
	Starting and stopping the SLA subagent

	Verification
	Are the policies installed in the TCP/IP stacks?
	Is the expected traffic mapping to the correct QoS policies?
	Are the Sysplex Distributor policy functions working correctly?
	Does anything need to be tuned?
	Using PASEARCH
	Using the SLA subagent to monitor policies
	SLA subagent performance monitoring

	Chapter 13. Intrusion Detection Services (IDS)
	Scan policies
	Attack policies
	Traffic Regulation (TR) policies
	TR TCP
	TR UDP

	Defining TR TCP policies using the Policy Agent
	Defining IDS policies using LDAP
	IDS policy definition considerations
	IDS scan policy example
	IDS attack policy examples
	Traffic Regulation (TR) policy examples

	Verification
	Are the correct policies active?
	Is the expected traffic mapping to the correct policies?
	Are the IDS policy functions working correctly?

	TRMD
	Running TRMD as a started task
	Running TRMD from the z/OS UNIX shell
	Stopping TRMD
	TRMDSTAT

	Chapter 14. Network management
	Overview of SNMP
	Overview of z/OS CS SNMP version 3

	Processing an SNMP request
	Deciding on SNMP security needs
	Step 1: Configure the SNMP agent (OSNMPD)
	Provide TCP/IP profile statements
	Provide community-based security and notification destination information
	Provide community name information
	Provide trap destination information

	Provide community-based and user-based security and notification destination information
	SNMPD.CONF file
	SNMPD.BOOTS
	Creating user keys

	Provide security product access to agent from subagents
	Provide MIB object configuration information
	Start the SNMP agent (OSNMPD)
	Sample JCL procedure for starting OSNMPD from MVS
	Starting OSNMPD from z/OS UNIX

	Step 2: Configure the SNMP commands
	Configure the NetView SNMP (SNMP) command
	Configure the SNMP query engine
	Configure NetView as an SNMP monitor

	Configure the z/OS UNIX SNMP (osnmp) command
	Provide osnmp configuration information
	Provide user MIB object information
	MIBS.DATA statement syntax

	Step 3: Configure the SNMP subagents
	Step 4: Configure the Open Systems Adapter (OSA) support
	OSA/SF prerequisites
	Required TCP/IP profile statements
	Multiple TCP/IP instances considerations
	Subagent connection to OSA/SF

	Step 5: Configure the trap forwarder daemon
	Provide PROFILE.TCPIP statements
	Provide trap forwarder configuration information
	Starting and stopping the trap forwarder daemon
	Starting the trap forwarder daemon from z/OS UNIX

	Chapter 15. Remote Print Server (LPD)
	Configuring the Remote Print Server
	Step 1: Configuring PROFILE.TCPIP for LPD
	Step 2: Updating the LPD server cataloged procedure
	Specifying LPD server parameters
	Configuring LPDDATA

	Step 3: Updating the LPD server configuration data set
	Step 4: Creating a banner page (optional)

	Chapter 16. Remote procedure calls
	Configuring the PORTMAP address space
	Step 1: Configuring PROFILE.TCPIP for PORTMAP
	Step 2: Updating the PORTMAP cataloged procedure
	Step 3: Defining the data set for well-known procedure names
	Starting the PORTMAP address space

	Configuring the z/OS UNIX PORTMAP address space
	Step 1: Configuring PROFILE.TCPIP for UNIX PORTMAP
	Step 2: Updating the PORTMAP cataloged procedure
	Starting the PORTMAP address space

	Configuring the NCS interface
	Understanding the LLBD server
	Understanding the NRGLBD server
	Step 1: Configuring PROFILE.TCPIP for NCS
	Step 2: Updating the NRGLBD cataloged procedure
	Step 3: Updating the LLBD cataloged procedure

	Configuring the Network Database (NDB) System
	Step 1: Updating the NDB setup sample job
	Step 2: Running the NDB setup job
	Step 3: Updating and installing the DB2 sample connection exit routine
	DSN3SATH ASSEMBLE modifications for NDB

	Step 4: Updating the PORTS cataloged procedure
	Step 5: Updating the PORTC cataloged procedure
	Running multiple PORTC procedures

	Step 6: Creating the NDB clients
	Creating an NDB client in the AIX environment
	Creating an NDB client in the SUN UNIX environment
	Creating an NDB client in the OS/2 environment
	Creating an NDB client in the DOS environment
	Creating an NDB client in the VM environment
	Creating an NDB client in the MVS environment

	Starting NDB

	Chapter 17. Mail servers
	Configuring the SMTP server
	Checklist for working within the SMTP environment
	Configuration process
	Step 1: Specify AUTOLOG and PORT statements in hlq.PROFILE.TCPIP
	Step 2: Update the SMTP cataloged procedure
	Step 3: Customize the system CLIST and modify PARMLIB data sets
	Step 4: Customize the SMTP mail headers (Optional)
	Step 5: Set up a TCP-to-NJE mail gateway (Optional)
	Step 6: Specify configuration statements in SMTP configuration data set
	Step 7: Create an SMTP security table (Optional)
	Step 8: Enable SMTP domain name resolution
	Step 9: Enable sending of non-local messages to other mail servers
	Step 10: Design SMTP exit to inspect and filter unwanted mail (optional)

	Configuring z/OS UNIX sendmail and popper
	Overview
	Configuring z/OS UNIX sendmail
	The sendmail samples directory
	Creating the configuration file
	Creating the aliases file
	Configuration hints and tips

	sendmail as a daemon
	Configuring popper
	Popper command—administering received mail

	Chapter 18. TIMED daemon
	Starting TIMED from z/OS shell
	Starting TIMED as a procedure

	Chapter 19. SNTPD daemon
	Steps for starting SNTPD from the z/OS shell
	Steps for starting SNTPD as a procedure
	Stack affinity

	Chapter 20. Remote Execution
	UNIX REXEC
	TSO REXEC
	Configuring the TSO Remote Execution server
	Step 1: Configuring PROFILE.TCPIP for TSO Remote Execution server
	Step 2: Determine whether Remote Execution client will send REXEC or RSH commands
	Step 3: Permit remote users to access MVS resources (optional)
	Step 4: Update the TSO Remote Execution cataloged procedure
	Step 5: Create a user exit routine (optional)

	Configuring the z/OS UNIX Remote Execution servers
	Installation information
	HFS files for z/OS UNIX REXECD
	HFS files for z/OS UNIX RSHD
	Setting up the z/OS UNIX RSHD installation exit

	Configuring TSO and z/OS UNIX Remote Execution servers to use the same port

	Chapter 21. Miscellaneous (MISC) server
	Discard protocol
	Echo protocol
	Character generator protocol
	Configuring the MISC server
	Step 1: Configuring PROFILE.TCPIP for the MISC server
	Step 2: Updating the MISC server cataloged procedure (MISCSERV)
	MISC server cataloged procedure (MISCSERV)
	Specifying the MISC server parameters

	Part 3. Appendixes
	Appendix A. Setting up the inetd configuration file
	Appendix B. TLS/SSL security
	Secure Socket Layer overview
	Server authentication
	Client authentication
	Encryption algorithms
	Enable CSFSERV resources

	Creating and managing keys and certificates at the server
	Overview
	Certificate file types
	Common terminology
	Copying HFS files to MVS data sets

	Using the gskkyman utility
	Create a keyring file
	Create a server self-signed certificate
	Extract the server certificate from the keyring
	Add client certificates to the server keyring

	Using RACF's common keyring support
	Configuring RACF services for the servers
	Create a keyring file
	Create a server self-signed certificate
	Extract a server certificate from a server keyring
	Add client certificates to the server keyring
	Associate certificate with user ID
	Add user IDs to the SERVAUTH profile access list
	Define PassTicket profiles to RACF

	Migrating an existing gskkyman key database to RACF

	Creating and managing keys and certificates at the client
	Create a self-signed client certificate
	Add server certificates to the client keyring

	Appendix C. Express Logon Feature (ELF)
	Configuring RACF services for Express Logon
	Configuring the Express Logon components
	Configuring the HOD V5 TN3270 client
	Configuring the z/OS TN3270 server
	Configuring the middle-tier TN3270 server (CS/2 example)
	Configuring the Digital Certificate Access Server (DCAS)
	Setting up DCAS
	Define a user ID as superuser to OMVS services
	Give the user ID access to operator commands
	Provide a RACF definition for MVS startup
	Starting, stopping, and toggling DCAS
	DCAS and system SSL

	Appendix D. Using HCD
	Appendix E. Configuring the OROUTED server
	Understanding OROUTED
	Routing Information Protocol (RIP)
	RIP Version 2
	OROUTED miscellaneous features

	RIP input/output filters
	RIP routes
	OROUTED gateways
	Passive RIP routes
	External RIP routes
	Active gateways

	OROUTED gateways summary
	OROUTED configuration process
	Step 1: Configure the OROUTED profile
	Step 2: Update configuration statements in PROFILE.TCPIP
	Step 3: Update the resolver configuration file
	Step 4: Update the OROUTED cataloged procedure (optional)
	OROUTED cataloged procedure

	Step 5: Specify the OROUTED port number in the SERVICES file
	Step 6: Configure the gateways file or data set (optional)
	Syntax rules

	Step 7: Configure and start syslogd
	Step 8: RACF-authorize user IDs
	OROUTED parameters
	Specifying parameters
	Starting OROUTED
	Configuration examples
	Configuring a passive route
	Configuring an external route
	Configuring an active gateway
	Configuring a point-to-point link
	Configuring a default route
	Configuring ORouteD with Enterprise Extender
	Configuring OROUTED with VIPA
	Configuring OROUTED to split traffic with VIPA
	Configuring OROUTED with OSA-Express in QDIO mode
	Configuring OROUTED with HiperSockets

	Appendix F. Related protocol specifications (RFCs)
	Draft RFCs

	Appendix G. Information APARs
	Information APARs for IP documents
	Information APARs for SNA documents
	Other information APARs

	Appendix H. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Trademarks

	Index
	Communicating Your Comments to IBM
	Readers’ Comments — We'd Like to Hear from You

